Preparation of D-Arabinose-1-C^14 and D-Ribose-1-C^14

Total Page:16

File Type:pdf, Size:1020Kb

Preparation of D-Arabinose-1-C^14 and D-Ribose-1-C^14 Journal of Research of the National Bureau of Standards Vol. 51, No.6, December 1953 Research Paper 2458 14 Preparation of D-Arabinose-I-C'4and D-Ribose-l-C I Harriet L. Frush and Horace S. Isbell 1 By application of t he cyanohydrin synthesis to D-erythroso, D-arabinose-I-C14 a nd D­ t ribose-I-C" have been prepared in overall radiochemical yields of 30 and 8.5 percent, respectively. General acid catalysts in t he cyanohydrin reaction appear to favor format ion of t he ambonic epimer. The epimeri c acids res ul ting from the reaction of labeled cyanide and D-erythroso, and subsequent hydrolysis, were separated as crystalline potassium D­ arabonate-l-C14 and cadmium D-ribonate-l-C'4, respectively. The salts we re conver ted to the corresponding lactones, and t hese were red uced to t he sugars by usc of sodium amalgam in t he prese nce of sodi um a cid oxalate. 1. Introduction D-arabonate-l-C'4 was converted to D-arabono--y­ (" lactone-l-CI4, and this was reduced with sodium As part of it program to make position-labeled amalgam in the presence of sodium acid oxala te. 3 sugars available for research w'orkers in other labora­ A 56-percent yield of the crystalline D-arabinose-l-CI4 tories, methods have been developed at the National was separated without carrier ; by use of carrier, the Bureau of Standards for the preparation of D-glucose- radioch emical yield was increased to 60 percent. 1-CI4, D-mannose-1-CI", D-mannitol-l-C'4, n-fruc­ As potassium D-arabonate-l-CI4 was produced in 50- tose-l,6-C'\ lactose-l-C''', and D-arabinose-5-CI4 [1, percent yield, the over-all radiochemical yield of ~I 2, 3, 4, 5, 6).2 The present report gives methods D-arabinose-l-CI4 was 30 percent, based on Lhe for the preparation of D-arabinose-l-CI4 and n-ribose­ cyanide originally used. l_C I4. D-Arabinose-l-C I4 was required as an inter­ The cadmium D-ribonate-1-C'\ prepared from Lhe mediate in the preparation of D-glucose-2-C I4, and mother liquors of the potassium n-arabonate-l-CI4, both n ·arabinose-l -·C I4 and D-ribose-l-CI4 were n eeded was converted to D-ribono--y-lactone-l-CI4, which was for studies of the transformation of pentoses in brought to crys tallization by nucleation.4 The biological systems. R appoport and Hassid [7] lactone was reduced wi th sodium amalgam and gave obtained L-arabinose-l-C14 by application of the D-ribose-1-CI4 in 37-percent yield. Inasmuch as 23 Sowden-Fischer nitromethane synthesis [8] to L-ery­ pel'cen t of the activity of the cyanide had been tlu'ose. The L-arabinose-l-CI4 was separated in obtained as cadmium D-ribonate-l-C14, the over-all 3-percent yield by partition chromatography. radioch emical yield of D-ribose-1-CI4 was 8.5 percent. In ligh t of prior work at the Bureau, it seemed de­ Work still in progress will undoubtedly raise the sirable to attempt the synthesis of both D-arabinose­ yields of both cadmium D-ribonate and D-ribose-l-C14. l _C 14 and D-ribose-l-CI4 by th e cyanohydrin method, b eginning with D-erythrose. It was found that in 2. Experimental Procedures the reaction of cyanide wi th D-erythrose the presence of a general acid catalyst, such as bicarbonate or 2.1 Preparation of D-Erythrose ammonium ion, favors formation of the arabonic epimer. The epimeric products of reaction were For the preparation of sirupy D-erythrose, Sow­ separated by th e following steps: (1) Hydrolysis of den's m ethod of perioda te oxidation of a 4,6-substi­ the nitriles with aqueous sodium carbonate, (2) tuted glucose [9] was applied to 4,6-ethylidene-D­ passage of the solution over a cation exchange r esin glucose essen tially as described by R appoport and to give the free acids, (3) neutraliza tion of the acids Hassid [7], but wi th certain convenient modifi cations. r with po tassium hydroxide, and separation of labeled A mixture of 5.64 g of 4,6-ethylidene-D-glucose, mp D-arabonic acid as crystalline potassium D-arabonate, 180 0 to 1810 C [10] and 4.6 g of so dium bicarb onate (4) conversion of th e potassium salts in the mother was dis sol ved in an ice-cold solu tion con taining 11. 7 g liquor to cadmium salts by passage of the solution of sodium metaperiodate in 150 ml of water. The over a cation exchange resin, and neutralization of solution was kep t in an icc bath for a few minuLes, th e acid wi th cadmium hydroxide, and (5) separ ation and finally a t room temperature for 2.5 hr; it was then of the labeled D-ribonic acid in the form of crystalline freeze-dried. The fluffy residue was extracted with cadmium D-ribona te. a total of 150 ml of hot ethyl acetate in 3 portions. This procedure gave labeled potassium D-arabonate The extract was filtered through a b ed of decolorizing and cadmium D-ribonate in radiochemical yields of 3 In prev ious \'jPrk at t he Bureau , an cq ui molecu lar m ixture of 'Sodi um oxalate 50 and 23 percent, respectively. The potassium and oxalic acid was used as an internal neutral izi ng agent. Crystalline so1ium acid oxalate is a more co nvenient reagen t, and is rca:l il y prepared, although apparen tly not commcrciall y available. Usc of tlw aciel salt has res ulted in some­ 1 'I' he work descri bed in this papcr was sDonsored by the Atomic Energy what higher yie-Ids or the S l H~fl.r, pOSS ibly throu gh clo3er pH cont rol. CommiSS ion , givcn in ABC R eport NBS-2309. , We are indebterl to N . K . Richtmye r, of the N . tional Institntes of H ealth, , Figures in brackets indicate the literature references at the end or this paper. for seed cryslals of D-ribono-"),-Iaclono. 307 carbon and diatomaceous earth, and the solvent was TABLE 1. Effect of a general acid catalyst on the yield of the removed by distillation under reduced pressure. arabonic epimer obtained by the addition of cyanide to D-erythrose The residue, amorphous ~,4 - ethylidene-D-erythrose, was hydrolyzed by refluxmg for 1 hI' with 60 ml of Activity O.~-~ sulfuric acid; the hydrolyzate was cooled, and found in Experi­ carrier Arabonic deIOmzed by passage through a column of mixed Reaction mixture' potassinm epimer ment formed cation 5 and anion 6 exchange resins. The resulting D-arabon­ solution was concentrated under reduced pressure to ate b about 50 ml, and was then freeze-dried. The color­ Millimole. less sirup weighed 2.91 g and had a specific rotation o().0267 D-erythrose _______ ___________ __ } ;<C % { .0134 Na'CO'_______ _____________ ___ d 9.90 37.1 [a]~, ~'Jf - 17.3°. The cyanide-combining power of '.0267 NaCN_______ __________________ . '.0267 D-erythrose ____ ______________ __ } the SIrup was about 90 percent of the theoretical 2 { .134 (NH,l,CO, _____________________ d 14.80 55. 6 '.0267 NaCN ____ __ __________________ _ and consequently it was assumed that the residu~ ' 4.0 D-erythrose ____ ___________________ } contained 90 percent of D-erythrose. It was used { 10.0 NaHCO,_ _________ __ _____________ I 6,950 49. 6 without further purification for the cyanohydrin .3.1 NaCN ____ ____ _________________ __ _ synthesis described in the following sections. • Total v:olume was 1 ml in experiments 1 and 2, and 20 ml in experiment 3. b ActIVities determmed by means of a vibrating-reed electrometer after a modified Van Slyke-Folch wet oxidation procedure (see [11]). , Assuming 9O-percent purity of the erythrose sirup. d Calculated for entire 500 mg of carrier added. , Contained 26.7 ;<C of carbon 14. 2 .2. Effect of Genera l Acid Catalysts in the Cya n­ f Radioactivity recovered in several crops . ohydrin Synthesis on the Yield of the D-Arabonic • Contained 14 mc of carbon 14. Epimer 2.3. Preparation of Pota ssium D-Arabonate-l-C 14 from Several c~anohydr~n syntheses employing C14_ D-Erythrose by the Cya nohydrin Synthesis in the labeled cyamde and SIrupy D-erythrose were carried Presence of Sodium Bica rbon ate out on a semimicro scale under the conditions de­ scribed below. After hydrolysis of the cyanohydrins Ten milliliters of an aqueous solution containino- each mixture was treated with a large excess of non~ 3.1 millimoles of sodium cyanide (14.0 me of carbo~ radioactive potassium D-arabonate. From the ra­ 14) and 5 millimoles of sodium hydroxide was frozen dioactivity of the recrystallized potassium salt the on the sides of a small glass-stoppered tube. A proportion of D-arabonic acid was calculated. ' small lump of solid carbon dioxide was added, and The mixtures, two of which are listed in table 1 as tl?-en a solution containing 5 millimoles of sodium experiments 1 and 2, were frozen, and the tubes were bICarbonate and approximately 4 millimoles of D­ sealed and allowed to stand at room temperature for erythrose in 10 ml of water. The loosely stoppered 72 hr. They were then opened and heated on It flask was placed in an ice bath, shaken until the water bath at 80° C for 7 hI' in the presence of a contents had dissolved, and then kept in the bath stream of air.
Recommended publications
  • Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24).
    [Show full text]
  • Conversion of Carbohydrates to Furfural Via Selective Cleavage Of
    Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2015 Conversion of carbohydrates to furfural via selective cleavage of carbon-carbon bond: cooperative effect of zeolite and solvent Jinglei Cui,ab Jingjing Tan,ab Tiansheng Deng,a Xiaojing Cui,a Yulei Zhu*ac and Yongwang Liac a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China. E-mail: [email protected]; Fax: +86-351-7560668. b University of Chinese Academy of Sciences, Beijing, 100049, PR China. c Synfuels China Co. Ltd., Beijing, PR China. 1. Materials Cellulose, inulin, starch, sucrose, maltose, D-glucose, D-fructose, D-xylose, D- arabinose, 5-hydromethylfurfural (HMF), formic acid (FA) and levulinic acid (LA) were purchased from Aladdin. γ-valerolactone (GVL), γ-butyrolactone (GBL), 1,4- dioxane, gluconic acid, H2SO4 (98%), Amberlyst-15, AlCl3 and γ-Al2O3 were purchased from Sinopharm Chemical Reagent Co., Ltd.. All the above agents were utilized without further purification. Hβ, HY, H-Mordenite and HZSM-5 zeolite were purchased from The Catalyst Plant of Nankai University. 2. Experiments 2.1 The computational formula The conversion of sugars and the yield of the products were quantified according to the following equations: 푚표푙 표푓 푠푢푔푎푟(푖푛푙푒푡)-푚표푙 표푓 푠푢푔푎푟(표푢푡푙푒푡) Conversion = 푚표푙 표푓 푠푢푔푎푟(푖푛푙푒푡) ×100% 푚표푙 표푓 표푛푒 푝푟표푑푢푐푡 푝푟표푑푢푐푒푑 Yield =푚표푙 표푓 푡ℎ푒표푟푒푡푖푐푎푙 푝푟표푑푢푐푡 푣푎푙푢푒×100% 2.2 Procedures for the catalyst recycling After the first run was completed, the reaction products were centrifuged for 10 min to separate the Hβ zeolite from the solutions.
    [Show full text]
  • The Fischer Proof of the Structure of (+)-Glucose Started in 1888, 12
    The Fischer proof of the structure of (+)-glucose Started in 1888, 12 years after the proposal that carbon was tetrahedral, and thus had stereoisomers. Tools: - melting points - optical rotation (determine whether a molecule is optically active) - chemical reactions Fischer knew: - (+)-glucose is an aldohexose. - Therefore, there are 4 stereocenters and 24 = 16 stereoisomers (8 D-sugars and 8 L-sugars) - At this time could not determine the actual configuration (D or L) of sugars - Fischer arbitrarily assigned D-glyceraldehyde the following structure. CHO H OH CH2OH - In 1951 Fischer was shown to have guessed correctly. CO2H CHO H OH HO H HO H CH2OH CO2H L-Tartaric acid L-glyceraldehyde Which of the 8 D-aldohexoses is (+)-glucose??? 1) Oxidation of (+)-glucose with nitric acid gives an aldaric acid, glucaric acid, that is optically active. Therefore (+)-glucose cannot have structures 1 or 7, which would give optically inactive aldaric acids. HNO3 (+)-glucose Glucaric acid Optically active CHO CO2H H OH H OH 1 H OH HNO3 H OH Mirror plane H OH H OH H OH H OH Since these aldaric CH2OH CO2H acids have mirror planes they are meso structures. CHO CO2H They are not optically H OH H OH active HO H HNO3 HO H 7 Mirror plane HO H HO H H OH H OH CH2OH CO2H 2) Ruff degradation of (+)-glucose gives (-)-arabinose. Oxidation of (-)-arabinose with nitric acid gives arabanaric acid, which is optically active. Therefore, (-)-arabinose cannot have structures 9 or 11, which would give optically inactive aldaric acids. If arabinose cannot be 9 or 11, (+)-glucose cannot be 2 (1 was already eliminated), 5 or 6, which would give 9 or 11 in a Ruff degradation.
    [Show full text]
  • 406-3 Wood Sugars.Pdf
    Wood Chemistry Wood Chemistry Wood Carbohydrates l Major Components Wood Chemistry » Hexoses – D-Glucose, D-Galactose, D-Mannose PSE 406/Chem E 470 » Pentoses – D-Xylose, L-Arabinose Lecture 3 » Uronic Acids Wood Sugars – D-glucuronic Acid, D Galacturonic Acid l Minor Components » 2 Deoxy Sugars – L-Rhamnose, L-Fucose PSE 406 - Lecture 3 1 PSE 406 - Lecture 3 2 Wood Chemistry Wood Sugars: L Arabinose Wood Chemistry Wood Sugars: D Xylose l Pentose (5 carbons) CHO l Pentose CHO l Of the big 5 wood sugars, l Xylose is the major constituent of H OH arabinose is the only one xylans (a class of hemicelluloses). H OH found in the L form. » 3-8% of softwoods HO H HO H l Arabinose is a minor wood » 15-25% of hardwoods sugar (0.5-1.5% of wood). HO H H OH CH OH 2 CH2OH PSE 406 - Lecture 3 3 PSE 406 - Lecture 3 4 1 1 Wood Chemistry Wood Sugars: D Mannose Wood Chemistry Wood Sugars: D Glucose CHO l Hexose (6 carbons) CHO l Hexose (6 carbons) l Glucose is the by far the most H OH l Mannose is the major HO H constituent of Mannans (a abundant wood monosaccharide (cellulose). A small amount can HO H class of hemicelluloses). HO H also be found in the » 7-13% of softwoods hemicelluloses (glucomannans) H OH » 1-4% of hardwoods H OH H OH H OH CH2OH CH2OH PSE 406 - Lecture 3 5 PSE 406 - Lecture 3 6 Wood Chemistry Wood Sugars: D Galactose Wood Chemistry Wood Sugars CHO CHO l Hexose (6 carbons) CHO H OH H OH l Galactose is a minor wood D Xylose L Arabinose HO H HO H monosaccharide found in H OH HO H H OH certain hemicelluloses CH2OH HO H CHO CH2OH CHO CHO » 1-6% of softwoods HO H H OH H OH » 1-1.5% of hardwoods HO H HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH CH2OH CH2OH CH2OH CH2OH D Mannose D Glucose D Galactose PSE 406 - Lecture 3 7 PSE 406 - Lecture 3 8 2 2 Wood Chemistry Sugar Numbering System Wood Chemistry Uronic Acids CHO 1 CHO l Aldoses are numbered l Uronic acids are with the structure drawn HO H 2 polyhydroxy carboxylic H OH vertically starting from the aldehydes.
    [Show full text]
  • Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides
    biomolecules Article Multi-Enzymatic Cascades in the Synthesis of Modified Nucleosides: Comparison of the Thermophilic and Mesophilic Pathways Ilja V. Fateev , Maria A. Kostromina, Yuliya A. Abramchik, Barbara Z. Eletskaya , Olga O. Mikheeva, Dmitry D. Lukoshin, Evgeniy A. Zayats , Maria Ya. Berzina, Elena V. Dorofeeva, Alexander S. Paramonov , Alexey L. Kayushin, Irina D. Konstantinova * and Roman S. Esipov Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997 GSP, B-437 Moscow, Russia; [email protected] (I.V.F.); [email protected] (M.A.K.); [email protected] (Y.A.A.); [email protected] (B.Z.E.); [email protected] (O.O.M.); [email protected] (D.D.L.); [email protected] (E.A.Z.); [email protected] (M.Y.B.); [email protected] (E.V.D.); [email protected] (A.S.P.); [email protected] (A.L.K.); [email protected] (R.S.E.) * Correspondence: [email protected]; Tel.: +7-905-791-1719 ! Abstract: A comparative study of the possibilities of using ribokinase phosphopentomutase ! nucleoside phosphorylase cascades in the synthesis of modified nucleosides was carried out. Citation: Fateev, I.V.; Kostromina, Recombinant phosphopentomutase from Thermus thermophilus HB27 was obtained for the first time: M.A.; Abramchik, Y.A.; Eletskaya, a strain producing a soluble form of the enzyme was created, and a method for its isolation and B.Z.; Mikheeva, O.O.; Lukoshin, D.D.; chromatographic purification was developed. It was shown that cascade syntheses of modified nu- Zayats, E.A.; Berzina, M.Y..; cleosides can be carried out both by the mesophilic and thermophilic routes from D-pentoses: ribose, Dorofeeva, E.V.; Paramonov, A.S.; 2-deoxyribose, arabinose, xylose, and 2-deoxy-2-fluoroarabinose.
    [Show full text]
  • Determination of Sugar Profiles of Sweetened Foods and Beverages
    Journal of Food and Nutrition Research, 2016, Vol. 4, No. 6, 349-354 Available online at http://pubs.sciepub.com/jfnr/4/6/2 ©Science and Education Publishing DOI:10.12691/jfnr-4-6-2 Determination of Sugar Profiles of Sweetened Foods and Beverages Şana SUNGUR*, Yusuf KILBOZ Department of Chemistry, Science and Letters Faculty, Mustafa Kemal University, Hatay, Turkey *Corresponding author: [email protected] Abstract The determination of sugar profile in commonly consumed sweetened foods and beverages (cake, chocolate, jelly tots, cookie, wafer, pudding, fruit yogurt, limon-flavored soda, cola, lemonade, mineral water, fruit juice, milk drink and ice tea) was carried out using high performance liquid chromatography (HPLC). The amount of fructose was found higher than the amount of glucose in most of the foods and beverages (juice, limon-flavored soda, mineral water, cola, chocolate, cookie, wafer). The highest fructose contents were found in cola (71.10 % of sugars), chocolate (52.40 % of sugars) and limon-flavored soda (48.21 % of sugars) samples. The galactose, mannitol, arabinose and xylitol were not detected in any of the examined food and beverage samples. The predominant sugar in milk drinks, jelly tots, pudding, cookie and cake samples was determined as sucrose. Maltitol was only determined in cake and jellytots samples. Keywords: fructose, sweetened foods, sweetened beverages, sugar profile, HPLC Cite This Article: Şana SUNGUR, and Yusuf KILBOZ, “Determination of Sugar Profiles of Sweetened Foods and Beverages.” Journal of Food and Nutrition Research, vol. 4, no. 6 (2016): 349-354. doi: 10.12691/jfnr-4-6-2. The objective of this study was to determine fructose content and sugar profile in commonly consumed 1.
    [Show full text]
  • Cofermentation of Glucose, Xylose and Arabinose by Genomic DNA
    GenomicCopyright © DNA–Integrated2002 by Humana Press Zymomonas Inc. mobilis 885 All rights of any nature whatsoever reserved. 0273-2289/02/98-100/0885/$13.50 Cofermentation of Glucose, Xylose, and Arabinose by Genomic DNA–Integrated Xylose/Arabinose Fermenting Strain of Zymomonas mobilis AX101 ALI MOHAGHEGHI,* KENT EVANS, YAT-CHEN CHOU, AND MIN ZHANG Biotechnology Division for Fuels and Chemicals, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, E-mail: [email protected] Abstract Cofermentation of glucose, xylose, and arabinose is critical for complete bioconversion of lignocellulosic biomass, such as agricultural residues and herbaceous energy crops, to ethanol. We have previously developed a plas- mid-bearing strain of Zymomonas mobilis (206C[pZB301]) capable of cofer- menting glucose, xylose, and arabinose to ethanol. To enhance its genetic stability, several genomic DNA–integrated strains of Z. mobilis have been developed through the insertion of all seven genes necessay for xylose and arabinose fermentation into the Zymomonas genome. From all the integrants developed, four were selected for further evaluation. The integrants were tested for stability by repeated transfer in a nonselective medium (containing only glucose). Based on the stability test, one of the integrants (AX101) was selected for further evaluation. A series of batch and continuous fermenta- tions was designed to evaluate the cofermentation of glucose, xylose, and L-arabinose with the strain AX101. The pH range of study was 4.5, 5.0, and 5.5 at 30°C. The cofermentation process yield was about 84%, which is about the same as that of plasmid-bearing strain 206C(pZB301). Although cofer- mentation of all three sugars was achieved, there was a preferential order of sugar utilization: glucose first, then xylose, and arabinose last.
    [Show full text]
  • Ii- Carbohydrates of Biological Importance
    Carbohydrates of Biological Importance 9 II- CARBOHYDRATES OF BIOLOGICAL IMPORTANCE ILOs: By the end of the course, the student should be able to: 1. Define carbohydrates and list their classification. 2. Recognize the structure and functions of monosaccharides. 3. Identify the various chemical and physical properties that distinguish monosaccharides. 4. List the important monosaccharides and their derivatives and point out their importance. 5. List the important disaccharides, recognize their structure and mention their importance. 6. Define glycosides and mention biologically important examples. 7. State examples of homopolysaccharides and describe their structure and functions. 8. Classify glycosaminoglycans, mention their constituents and their biological importance. 9. Define proteoglycans and point out their functions. 10. Differentiate between glycoproteins and proteoglycans. CONTENTS: I. Chemical Nature of Carbohydrates II. Biomedical importance of Carbohydrates III. Monosaccharides - Classification - Forms of Isomerism of monosaccharides. - Importance of monosaccharides. - Monosaccharides derivatives. IV. Disaccharides - Reducing disaccharides. - Non- Reducing disaccharides V. Oligosaccarides. VI. Polysaccarides - Homopolysaccharides - Heteropolysaccharides - Carbohydrates of Biological Importance 10 CARBOHYDRATES OF BIOLOGICAL IMPORTANCE Chemical Nature of Carbohydrates Carbohydrates are polyhydroxyalcohols with an aldehyde or keto group. They are represented with general formulae Cn(H2O)n and hence called hydrates of carbons.
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]
  • Screening of Levan Producing Bacteria from Soil Collected from Jaggery Field Nb
    IJPCBS 2017, 7(3), 202-210 Laddha et al. ISSN: 2249-9504 INTERNATIONAL JOURNAL OF PHARMACEUTICAL, CHEMICAL AND BIOLOGICAL SCIENCES Available online at www.ijpcbs.com Research Article SCREENING OF LEVAN PRODUCING BACTERIA FROM SOIL COLLECTED FROM JAGGERY FIELD NB. Laddha1* and MP. Chitanand2 1Research Centre in Microbiology, Netaji Subhashchandra Bose College, Nanded-431 602, Maharashtra, India. 2Department of Microbiology, Netaji Subhashchandra Bose College, Nanded- 431 602, Maharashtra, India. ABSTRACT Levan is an extracellular polysaccharide composed predominantly of D-fructose residues joined by glycosidic bonds. At present, there are many polysaccharides in the market primarily of plant origin. But microbial levans are more preferred as dietary polysaccharide due to its mult- idimensional application as anti-lipidemic, anti-cholesterimic, anti-cancerous and as prebiotic. In this context, in present study twelve levan producing isolates were screened out from jaggery field. Iosolate SJ8 was the highest levan producer which was studied for cultural, morphological and biochemical characterization. It was identified as Bacillus subtilis (KC243314). The optimized fermentation conditions for levan production were pH 7, temperature 300 C,100rpm and 48hrs fermentation period. At these optimized conditions the maximum levan production was 30.6mg/ml. Sugar composition of the polymer was confirmed by analytical methods and TLC. Result proved the presence of fructose as the main sugar in the polymer. Keywords : Levan, Bacillus subtilis (KC243314), polymer, fructose. INTRODUCTION plasma substitute, drug activity prolonger5, anti- Levan is a biopolymer formed by β-(2,6) linkage obesity and lipid-lowering agent6, having β-(1,2) linkages on its branch points and osmoregulator, cryoprotector, or antitumor contains long chain of fructose units in its agent7.
    [Show full text]
  • The Utilization of Sugars by Fungi Virgil Greene Lilly
    West Virginia Agricultural and Forestry Experiment Davis College of Agriculture, Natural Resources Station Bulletins And Design 1-1-1953 The utilization of sugars by fungi Virgil Greene Lilly H. L. Barnett Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins Digital Commons Citation Lilly, Virgil Greene and Barnett, H. L., "The utilization of sugars by fungi" (1953). West Virginia Agricultural and Forestry Experiment Station Bulletins. 362T. https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/629 This Bulletin is brought to you for free and open access by the Davis College of Agriculture, Natural Resources And Design at The Research Repository @ WVU. It has been accepted for inclusion in West Virginia Agricultural and Forestry Experiment Station Bulletins by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Digitized by the Internet Archive in 2010 with funding from Lyrasis IVIembers and Sloan Foundation http://www.archive.org/details/utilizationofsug362lill ^ni^igaro mU^ 'wmSS'"""' m^ r^' c t» WES: VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STAl. luiietin I62T 1 June 1953 ; The Utilization of Sugars by Fungi by Virgil Greene Lilly and H. L. Barnett WEST VIRGINIA UNIVERSITY AGRICULTURAL EXPERIMENT STATION ACKNOWLEDGMENT The authors wish to thank research assist- ants Miss Janet Posey and Mrs. Betsy Morris Waters for their faithful and conscientious help during some of these experiments. THE AUTHORS H. L. Barnett is Mycologist at the West Virginia University Agricultural Experiment Station and Professor of Mycology in the College of Agriculture, Forestry, and Home Economics. Virgil Greene Lilly is Physiol- ogist at the West Virginia University Agricul- tural Experiment Station and Professor of Physiology in the College of Agriculture, Forestry, and Home Economics.
    [Show full text]
  • Extending Enzyme Molecular Recognition with an Expanded Amino Acid Alphabet
    Extending enzyme molecular recognition with an expanded amino acid alphabet Claire L. Windlea,b, Katie J. Simmonsa,c, James R. Aulta,b, Chi H. Trinha,b, Adam Nelsona,c,1, Arwen R. Pearsona,2,3, and Alan Berrya,b,1 aAstbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; bSchool of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; and cSchool of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom Edited by Perry Allen Frey, University of Wisconsin–Madison, Madison, WI, and approved January 20, 2017 (received for review October 26, 2016) Natural enzymes are constructed from the 20 proteogenic amino for catalysis and arise through posttranslational modifications of acids, which may then require posttranslational modification or the the polypeptide chain (21, 22), allowing access to chemistries not recruitment of coenzymes or metal ions to achieve catalytic function. otherwise provided by the 20 proteogenic amino acids. Here, we demonstrate that expansion of the alphabet of amino acids Technologies for the protein engineer to incorporate Ncas into can also enable the properties of enzymes to be extended. A proteins at specifically chosen sites, either by genetic means (23–25) chemical mutagenesis strategy allowed a wide range of noncanon- or by chemical modification (26, 27), have recently been developed. ical amino acids to be systematically incorporated throughout an These approaches are powerful because, unlike traditional protein active site to alter enzymic substrate specificity. Specifically, 13 engineering with the 20 canonical amino acids, protein engineering different noncanonical side chains were incorporated at 12 different with Ncas has almost unlimited novel side-chain structures and positions within the active site of N-acetylneuraminic acid lyase chemistries from which to choose.
    [Show full text]