Trehalose and Carbon Partitioning in Sugarcane
Total Page:16
File Type:pdf, Size:1020Kb
TREHALOSE AND CARBON PARTITIONING IN SUGARCANE Susan Bosch Dissertation presented for the Degree of Doctor of Philosophy (Plant Biotechnology) at the University of Stellenbosch Promoter: Prof. F.C. Botha Institute for Plant Biotechnology and South African Sugar Research Institute Co-Promoter: Prof. J.M. Rohwer Department of Biochemistry December 2005 i Declaration I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ……………………….. Date: ……………………….. ii ABSTRACT The current understanding of the regulation of sucrose accumulation is still incomplete even though many scientists have investigated this subject. Components of trehalose metabolism have been implicated in the regulation of carbon flux in bacteria, yeast and more recently in plants. With a view to placing trehalose metabolism in the context of cytosolic sugarcane sucrose metabolism and carbon partitioning we have investigated the metabolites, transcripts and enzymes involved in this branch of carbohydrate metabolism in sugarcane internodal tissues. Sugarcane internodal trehalose levels varied between 0.31 ± 0.09 and 3.91 ± 0.99 nmol.g-1 fresh weight (FW). From statistical analysis of the metabolite profile it would appear that trehalose does not directly affect sucrose accumulation, although this does not preclude involvement of trehalose- 6-phosphate in the regulation of carbon partitioning. The metabolite data generated in this study demanded further investigation into the enzymes (and their transcripts) responsible for trehalose metabolism. Trehalose is synthesised in a two step process by the enzymes trehalose-6-phosphate synthase (EC 2.4.1.15, TPS) and trehalose-6-phosphate phosphatase (EC 3.1.3.12, TPP), and degraded by trehalase (EC 3.2.1.28). Two novel sugarcane partial cDNAs that coded for trehalase (tre) and actin (required for normalisation in profiling experiments) were isolated and used along with partial transcripts for TPS and TPP to determine transcript levels in different tissue- and genotypes. A putative full-length SugTPS cDNA was isolated and characterised. Enzyme activities for TPS, TPP and trehalase were measured at levels of 2.7 nmol.min-1.mg-1protein, 8.5 nmol.min-1.mg-1protein and 6.2 nmol.min-1.mg-1protein respectively, from young internodal protein extracts of sugarcane, variety N19. TPP enzyme activity and transcript levels were higher in S. spontaneum than Saccharum interspecific hybrids. Kinetic analysis of TPP and trehalase activities were performed with the purpose of providing parameters for an in silico kinetic model of trehalose and sucrose metabolism. Three isoforms of TPP were identified and desingated TPPAI, TPPAII and TPPB. Both TPPA isoforms had pH optima of 6.0, and TPPB of pH 6.5. Apparent Km values were determined as 0.447 ± 0.007 mM for TPPAI, 13.82 ± 1.98 mM for TPPAII and 1.387 ± 0.18 mM for TPPB. Partial purification and characterisation of trehalase demonstrated dual pH optima of 3.5 and 6.0, with Km values between 0.345 and 0.375 mM. These data were used as the basis for a kinetic model of trehalose metabolism. A previously described kinetic model of cytosolic sucrose metabolism has been expanded to include the trehalose pathway (TPS, TPP and trehalase). The aim was to supplement the iii available information on cytosolic metabolism in sugarcane storage parenchyma, identify points of control between sucrose and trehalose metabolism, and provide a platform from which further experimental and in silico modelling can be launched. The model predicted trehalose in the same order of magnitude as those determined in the metabolite profiling experiments. The majority of control of flux over the trehalose pathway resided in the TPS step, with flux control coefficients > 70% of the total pathway. Incorporation of the trehalose branch into the original sucrose model showed that reactions from the original model significantly affected the steady-state attributes of the trehalose pathway. Due to the relatively low flux through the trehalose branch of the expanded model, complete recycling of trehalose, and the lack of allosteric regulation by trehalose-6-phosphate or trehalose on any of the reactions from the original sucrose model, incorporation of the trehalose branch had no significant effect on either steady-state cytosolic sucrose concentration or flux of sucrose into the vacuole. The expanded model affords a basis from which to further investigate trehalose metabolism in the context of plant sucrose accumulation. iv OPSOMMING Die proses van sukrose akkumulering word nie volledig verstaan nie, ten spyte van uitgebreide navorsing oor hierdie onderwerp. Aspekte van trehalose-metabolisme is al geïmpliseer in die regulering van koolstofverdeling in bakterieë, giste en meer onlangs in plante. Teen die agtergrond van sitosoliese sukrose-metabolisme en koolstofverdeling in suikerriet, het ons trehalose-metabolisme ondersoek deur die metaboliete, transkripte en ensieme te bestudeer wat by hierdie gedeelte van koolhidraatmetabolisme in suikerriet betrokke is. Suikerrietstingel trehalose-vlakke het tussen 0.31 ± 0.09 en 3.91 ± 0.99 nmol.g-1 vars massa gewissel. Statistiese analise van die metabolietprofiel dui aan dat trehalose nie sukrose- akkumulering direk beïnvloed nie. Die betrokkenheid van trehalose-6-fosfaat by die regulering van koolstofverdeling kan egter nie uitgesluit word nie. Die analise van metabolietdata het vereis dat verdere ondersoek gedoen word op die ensieme wat verantwoordelik is vir trehalose metabolisme en op hulle transkripte. Trehalose word gesintetiseer in 'n twee-stap proses deur die ensieme trehalose-6-fosfaat sintase (EC 2.4..1.14, TPS) en trehalose-6-fosfaat fosfatase (EC 3.1.3.12, TPP), en word afgebreek deur trehalase (EC 3.2.1.28). Twee nuwe suikerriet geen-fragmente wat kodeer vir trehalase (tre) en aktien (benodig vir normalisering in uitdrukkings-eksperimente) is geïsoleer en saam met geen- fragmente vir TPS en TPP gebruik om transkripsievlakke in verskillende weefsel- en genotiepes te bepaal. 'n Kandidaat vollengte SugTPS geenfragment is geïsoleer en gekarakteriseer. Ensiemaktiwiteite vir TPS, TPP en trehalase, gemeet van jong stingel-proteïenekstrakte uit suikeriet variëteit N19, is 2.7 nmol.min-1.mg-1proteïen, 8.5 nmol.min-1.mg-1 proteïen en 6.2 nmol.min-1.mg-1 proteïen onderskeidelik. TPP ensiemaktiwiteit en transkripvlakke was hoër in Saccharum spontaneum as Saccharum interspesifieke hibriede. TPP en trehalase aktiwiteite is kineties geanaliseer met die doel om data vir 'n in silico kinetiese model van trehalose en sukrose metabolisme te voorsien. Drie isovorme van TPP is geïdentifiseer en TPPAI, TPPAII en TPPB genoem. Beide TPPA-isovorme het pH-optima van 6.0 gehad, en TPPB ‘n optimum van pH 6.5. Km waardes is bepaal as 0.447 ± 0.007 mM vir TPPAI, 13.82 ± 1.98 mM vir TPPAII en 1.387 ± 0.18 mM vir TPPB. Gedeeltelike suiwering en karakterisering van trehalase het 'n tweevoudige pH-optimum van 3.5 en 6.0 getoon, met Km waardes tussen 0.345 en 0.375 mM. Hierdie data is gebruik as die basis vir 'n kinetiese model van trehalose metabolisme. 'n Voorheen beskrewe kinetiese model van sitosoliese sukrose metabolisme is aldus uitgebrei (met TPS, TPP en trehalase) om die trehalose-pad in te sluit. Die doel was om die inligting wat tans beskikbaar is oor sitosoliese sukrose-metabolisme in bergingsweefsel van suikerriet aan te vul, v punte van beheer tussen sukrose en trehalose-metabolisme te identifiseer, en om 'n platform te skep waarvandaan verdere eksperimentele werk en in silico modellering geloods kan word. Die model het trehalose vlakke van dieselfde grootte-orde voorspel as dié wat eksperimenteel bepaal is. Die grootste beheer van fluksie deur die trehalose-pad is gesetel in die TPS stap, met 'n fluksie-kontrole-koëffisiënt > 70% van die totale pad. Inkorporering van die trehalose-tak in die oorspronklike sukrose-model het getoon dat die reaksies van die oorspronklike model 'n beduidende effek op die bestendige-toestand-eienskappe van die trehalose-pad uitoefen. As gevolg van die relatiewe lae fluksie deur die trehalose-tak van die uitgebreide model, die totale herwinning van glukose na trehalose degradasie, en die gebrek aan allosteriese regulering deur trehalose-6-fosfaat of trehalose op enige van die reaksies in die oorspronklike model, het inkorporering van die trehalose-tak geen beduidende effek op die bestendige-toestand van òf sitosoliese sukrosekonsentrasie òf die fluksie van sukrose na die vakuool gehad nie. Die uitgebreide model skep 'n basis vir verdere navorsing oor trehalose-metabolisme in die konteks van plant sukrose-akkumulering. vi FOR MY FATHER vii ACKNOWLEDGEMENTS I would like to thank both Dr. F.C. Botha and Prof J.M. Rohwer for supervision of this study. Frikkie, your input in both my life and this project will never be forgotten. I have learnt so much from you and feel privileged to have been your student. Johann, your guidance has opened a whole new side of biology to me- thank you for your infectious enthusiasm, patience and hard work. Thank you to Hennie Groenewald, Jens Kossmann and James Lloyd for consistently having an open-office-door policy for my many questions. To Mauritz Venter and Wolfgang Schäfer, thank you both for your willingness to help at all times and for the many useful discussions. Gratitude is expressed to Johan Thevelein and Patrick van Dijck who afforded me the opportunity of researching at the laboratory for Molecular Cell Biology, Katolieke Universiteit, Leuven, Belgium. Special thanks to Jean Mackenzie of the Central Analytical NMR facility (University of Stellenbosch) for help with both experiments and data processing from the NMR work. Financial support is gratefully acknowledged from the National Research Foundation, the South African Sugar Research Institute, the Bilateral SA-Belgian assoc., the Harry Crossley Trust, and the University of Stellenbosch. The support and love of my husband made the last years in the lab possible.