Quick viewing(Text Mode)

Carbohydrates Hydrates of Carbon: General Formula Cn(H2O)N Plants

Carbohydrates Hydrates of Carbon: General Formula Cn(H2O)N Plants

Chapter 25:

of : general formula Cn(H2O)n

Plants: hν 6 CO2 + H2O C6H12O6 + 6 O2

Polymers: large molecules made up of repeating smaller units (monomer)

Biopolymers: Monomer units: carbohydrates (chapter 25) peptides and (chapter 26) amino nucleic acids (chapter 28)

315

25.1 Classification of Carbohydrates: I. Number of units monosaccharides: one carbohydrate unit (simple carbohydrates) : two carbohydrate units (complex carbohydrates) : three carbohydrate units : many carbohydrate units CHO H OH HO HO HO H HO HO O HO O H OH HO HO OH HO H OH OH

CH2OH HO HO HO O HO O HO HO O HO HO O HO HO HO O O O O O HO HO O HO HO HO O O HO HO HO OH + glucose O glucose = polymer = or 316

160 II. Position of at C1, carbonyl is an : at any other carbon, carbonyl is a :

III. Number of three carbons: six carbons: four carbons: seven carbons: five carbons: etc.

IV. Cyclic form (chapter 25.5)

CHO CHO CHO CHO CH2OH H OH HO H H OH H OH O

CH2OH H OH H OH HO H HO H CH2OH H OH H OH H OH

CH2OH H OH H OH CH OH 2 CH2OH glucose (triose) (tetrose) (pentose) (hexose) (hexose) 317 (aldohexose) (ketohexose)

25.2: Depicting carbohydrates stereochemistry: Fischer Projections: representation of a three-dimensional molecule as a flat structure. Tetrahedral carbon represented by two crossed lines:

horizontal line is coming vertical line is going back out of the plane of the behind the plane of the page (toward you) paper (away from you) substituent carbon (R)-glyceraldehyde

CHO CHO CHO H OH H OH H C CH2OH HO CH2OH CH2OH

(S)-glyceraldehyde

CHO CHO CHO HO H HO H HO C CH OH H 2 CH OH CH2OH 2 318

161 Manipulation of Fischer Projections 1. Fischer projections can be rotate by 180° only!

CHO CH2OH CHO CH2OH 180 ° H OH HO H 180 ° HO H H OH

CH2OH CHO CH2OH CHO (R) (R) (S) (S)

180° 180°

Valid Valid Fischer projection

319

a 90° rotation inverts the stereochemistry and is illegal!

90 ° CHO OH H OH ! OHC CH2OH

CH2OH H (R) (S)

90 °

This is not the correct convention 90° for Fischer projections

Should be projecting toward you Should be projecting away you

This is the correct convention for Fischer projections and is the

320

162 2. If one group of a Fischer projection is held steady, the other three groups can be rotated clockwise or counterclockwise. hold steady CHO CHO

H OH HO CH2OH

CH2OH H (R) (R)

CHO H HO H OHC OH hold steady CH2OH CH2OH (S) (S)

120° 120°

hold hold steady steady hold steady

120° 120°

hold hold 321 hold steady steady steady

Assigning R and S Configuration to Fischer Projections 1. Assign priorities to the four substitutents according to the Cahn-Ingold-Prelog rules 2. Perform the two allowed manipulations of the Fischer projection to place the lowest priority group at the top (or bottom). 3. If the priority of the groups 1-2-3 are clockwise then assign the center as R, if 1-2-3 are counterclockwise then assign the center as S.

2 place at the top 4 CO2H H 1 H2N H 4 2 HO2C NH2 1 hold steady CH3 CH3 rotate other 3 3 three groups counterclockwise 1-2-3 counterclockwise = S

2 4 2 CO2H H CO2H 4 1 2 H NH2 1 H2N CO2H H2N CH3 CH3 1 3 CH3 H 3 3 4 1-2-3 clockwise = R 322

163 Fischer projections with more than one chiral center:

1 CHO CHO 2 HO H HO H 3 H OH H OH

4 CH2OH CH2OH Threose 2 CHO H 4 1 2 1 2 4 2 HO H OHC S OH 3 3 4 H OH 4 H OH 1 Hold Steady 1 3 CH2OH CH2OH 3 (2S, 3R)

H 4 H 4 Hold Steady 2 1 2 1 2 S 2 OHC OH OHC OH 3 3 HO CH OH 4 H OH 1 1 2 R 3 H CH OH 2 4 3 323

25.3 D, L Glyceraldhyde- before the R/S convention, stereochemistry was related to (+)-glyceraldhyde CHO CHO H OH HO H

CH2OH CH2OH D-glyceraldehyde L=glyceraldehyde R-(+)-glyceraldhyde (+)-rotation = dextrorotatory = D

D-carbohydrate have the -OH group of the highest numbered chiral carbon pointing to the right in the Fisher projection as in R-(+)-glyceraldhyde

CHO CHO CHO CHO H OH H OH HO H HO H HO H H OH HO H H OH H OH H OH HO H HO H

H OH CH2OH CH2OH HO H

CH2OH CH2OH

D- glucose D-ribose L-ribose L- glucose

Most carbohydrate in nature are of the D-series 324

164 For carbohydrates, the convention is to put the carbonyl group at the top for and closest to the top for . The carbons are numbered from top to bottom.

Carbohydrates are designated as D- or L- according to the stereochemistry of the highest numbered chiral carbon of the Fischer projection. If the hydroxyl group is pointing to the right in the Fischer projection, the is designated as D (Dextro: Latin for on the right side). If the hydroxyl group is pointing to the left in the Fischer projection, the sugar is designated as L (Levo: Latin for on the left side). Most naturally occurring carbohydrates are of the D-configuration.

1 CHO 1 H 2 OH CHO 3 2 HO H H OH 3 4 HO H H OH highest numbered highest numbered 5 HO 4 H stereogenic carbon H OH stereogenic carbon 5 CH2OH 6 CH2OH 325 D-Glucose L-

24.4 Configuration of the Aldoses: triose CHO CHO CHO H OH HO H H OH H OH H OH CH2OH CH2OH CH2OH D-glyceraldehyde D- D-threose

CHO CHO CHO CHO H OH HO H H OH HO H H OH H OH HO H HO H H OH H OH H OH H OH

CH2OH CH2OH CH2OH CH2OH

D-ribose D-arabinose D- D-

CHO CHO CHO CHO CHO CHO CHO CHO H OH HO H H OH HO H H OH HO H H OH HO H H OH H OH HO H HO H H OH H OH HO H HO H H OH H OH H OH H OH HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH H OH H OH

CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH

D- D- D- glucose D- D- D- D-galactose D- 326

165 25.5 Cyclic structures of Monosaccharides: formation

O H+ HO OR2 + R2OH R1 H R1 H

hemiacetal

O OH H H cyclic hemiacetal OH O

327

328

166 25.6: : Anomers: the hemiacetal or hemiketal carbon (the carbonyl carbon of the open form) is a new chiral center and is referred to as the anomeric carbon (hemi- carbon of the closed form)

CH OH Trans 2 CH2OH Cis HO HO O O HO HO H OH HO HO OH H

α-D-Glucopyranose (36%) β-D-Glucopyranose (64%) (α-: C1-OH and (β-anomer: C1-OH and CH OH are cis) CH2OH are trans) 2

The hemiacetal forms of adopts a chair conformation. The hydroxyl of the new anomeric (acetal)carbon can be axial (α) or equatorial ( ). The anomers are . β 329

The α- and β-anomers are in equilibrium. They interconvert through the open form. The pure anomers can be isolated by crystallization. When the pure anomers are dissolved in they undergo mutarotation, the process by which they return to an equilibrium mixture of the anomers

HO HO OH HO HO O O HO HO OH HO HO H CHO H H OH HO H β-anomer H OH H OH CH OH 2 HO HO OH HO HO O HO H HO H HO HO O OH α-anomer 330

167 25.7: Reactions of monosaccharides

reacts like a carbonyl CHO H OH HO HO H HO reacts like HO O reacts like alcohols alcohols H OH HO H OH OH

CH2OH Ester formation: H3C O O O O HO H C O CH O HO 3 3 H3C O O HO OH O O HO O CH3 pyridine H3C O O O !-D-glucopyranose O CH3 Formation

HO Ag O, CH I H3CO HO 2 3 O H3CO HO OH H CO O HO 3 OCH3 H3CO

!-D-glucopyranose 331

Glycoside Formation

HO OR + R O OR O H+ 2 H 2 2 + R2OH R1 H R1 H R1 H R2OH hemiacetal acetal

O OH OR2 H H+ H H O O OH R2OH

cyclic hemiacetal

OH OH CH OH, HCl OH HO 3 O HO HO O + HO OH HO HO O HO OCH3 HO HO OCH3 methyl !-D-glucopyranoside methyl "-D-glucopyranoside

When R2OH is another carbohydrate unit, complex carbohydrate are formed. 332

168 The Koenigs-Knorr Reaction

AcO AcO AcO HBr ROH, Ag O AcO 2 O AcO AcO O AcO OAc O AcO AcO AcO OR AcO AcO Br

Neighboring group participation directs the stereochemistry of the glycosidation reaction 333

Reduction of Monosaccharides

reacts like a carbonyl CHO CH2OH H OH HO H OH HO HO H NaBH4 HO O HO H H OH HO H OH H OH OH H OH CH2OH CH2OH alditol Oxidation of Monosaccharides: aldoses can be oxidized to

aldonic acids with Ag(I) in NH3 (Tollin’s reagent), Cu(II) (Fehling’s or Benedict’s reagent) or Br2.

CHO CO2H H OH Ag(I) Ag(0) H OH HO H HO H H OH H OH NH3 H OH H OH

CH2OH CH2OH aldonic

334

169 Reducing sugars: carbohydrates that can be oxidized to aldonic acids.

2-ketose

Oxidation to aldaric acids:

CHO CO2H H OH H OH HO H HNO3, heat HO H H OH H OH H OH H OH

CH2OH CO2OH aldaric acid 335

Killiani-Fischer Synthesis- chain lengthening of monosaccharides

N NH O H H C C C

HO H HO H + HO H HCN H2, Pd H3O HO H HO H HO H H OH H OH H OH H OH H OH H OH CH OH CH OH CH OH CHO 2 2 2 HO H D-Glucose H OH H OH

CH2OH N NH O D-Arabinose C H C H C H OH H OH H OH HO H H , Pd + HCN 2 HO H H3O HO H H OH H OH H OH H OH H OH H OH CH OH 2 CH2OH CH2OH D-Mannose

336

170 The Wohl Degradation: chain shortening of monosaccharides

HON H N CHO C C H OH H OH H OH CHO (CH3CO)2O CH3ONa HO H H2NOH HO H HO H HO H HO H CH CO Na - HCN HO H 3 2 HO H HO H H OH H OH - H2O H OH H OH CH2OH CH OH CH OH 2 CH2OH 2

D-galactose oxime cyanohydrin D-Lyxose

337

25.8 Stereochemistry of Glucose: The Fischer Proof (. . . as applied to the D-tetroses and D-pentoses)

1) KCN CHO CO2H 2) H , Pd HNO , 2 H OH 3 H OH 3) H2O heat H OH H OH

CH2OH CO2H

D-(-)-erythrose tartaric acid

CHO H OH Killiani-Fischer synthesis CH2OH D-(+)-glyceraldehyde

CHO CO2H HNO3, HO H heat HO H H OH H OH 1) KCN CH2OH CO2H 2) H2, Pd 3) H2O D-(-)-threose D-(-)-tartaric acid

338

171 1) KCN CHO CO2H 2) H2, Pd 3) H O H OH HNO3, H OH 2 heat H OH H OH H OH H OH CH OH 2 CO2H D-(-)-ribose ribonic acid CHO H OH Killiani-Fischer H OH synthesis

CH2OH D-(-)-erythrose

CHO CO2H HO H HNO3, HO H heat H OH H OH 1) KCN H OH H OH 2) H2, Pd CH OH 3) H2O 2 CO2H D-(-)-arabinose arabonic acid

339

1) KCN CHO CO2H 2) H , Pd 2 H OH HNO3, H OH 3) H2O heat HO H HO H H OH H OH

CH2OH CO2H D-(+)-xylose xylonic acid CHO HO H Killiani-Fischer H OH synthesis

CH2OH D-(-)-threose

CHO CO2H HNO3, HO H HO H heat HO H HO H 1) KCN H OH H OH 2) H2, Pd CH OH CO2H 3) H2O 2 D-(-)-lyxose lyxonic acid

340

172 CHO CHO CHO CHO H OH HO H H OH HO H H OH H OH HO H HO H H OH H OH H OH H OH

CH2OH CH2OH CH2OH CH2OH D-ribose D-arabinose D-xylose D-lyxose

CHO CHO CHO CHO CHO CHO CHO CHO H OH HO H H OH HO H H OH HO H H OH HO H H OH H OH HO H HO H H OH H OH HO H HO H H OH H OH H OH H OH HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH H OH H OH

CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH CH2OH D-allose D-altrose D- glucose D-mannose D-gulose D-idose D-galactose D-talose

CO2H CO2H CO2H CO2H CO2H CO2H CO2H CO2H H OH HO H H OH HO H H OH HO H H OH HO H H OH H OH HO H HO H H OH H OH HO H HO H H OH H OH H OH H OH HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH H OH H OH

CO2H CO2H CO2H CO2H CO2H CO2H CO2H CO2H

optically optically optically optically optically optically optically optically inactive active active active active active inactive active

341

25.9: Disaccharides OH OH OH ROH HO HO HO -or- HO O HO O HO O OH OR HO HO HO OR When ROH is another carbohydrate unit, a formed.

HO HO HO O HO 1 HO 4' HO O O (1,4'-!-glycoside) HO HO HO O HO HO + HO O OH HO HO OH HO OH HO HO glucose glucose HO O 4' HO O HO O (1,4'-"-glycoside) 1 HO HO OH

342

173 HO HO HO HO HO HO HO HO O HO O HO O HO Ag(I) HO O O OH O OH + Ag(0) O HO HO HO HO HO H [O] HO OH HO HO HO OH O O reducing end cellobiose and maltose are

HO HO HO HO Ag(I) HO HO HO HO HO + Ag(0) O 4' O [O] HO HO HO O O O O OH O OH HO HO HO HO 1 HO H HO OH HO HO HO lactose OH O O (1,4'- -glycoside) reducing ! end lactose is a reducing sugar

HO HO Ag(I) HO O HO No reaction HO 1 ! [O] 2' glucose O " O is not OH fructose sucrose HO a reducing sugar (1,2'-glycoside) No reducing end 343 OH

25.10 Polysaccharides and the their synthesis (please read) Cellulose: glucose polymer made up of 1,4’-β-glycoside linkages HO HO HO HO HO HO O O O O O O O O O O O O O HO HO HO HO HO HO HO HO HO HO HO HO H H H H H H

Amylose: glucose polymer made up of 1,4’-α-glycoside linkages HO HO H HO HO HO O O H H HO O O H H O O H O O O HO HO HO HO O O HO HO HO HO HO O O HO HO HO

344

174 and : branched amylose related

glucose polymers HO O O HO H HO HO O O HO H HO HO HO H HO O HO O O H H HO O O H H O O H O O O HO HO HO HO O O HO HO HO HO HO O O HO HO HO 25.11 Other Important Carbohydrates Deoxy sugars: carbohydrates that are missing a hydroxyl group

ribose C H O 2- CHO HO H OH HO HO O O H H H OH OH HO O O H OH OH HO OH H OH OH HO H OH OH OH OH CH2OH OH CH2OH ribopyranose ribofuranose 2-deoxyribopyranose 2-deoxyribofuranose found in found in 2’-deoxyribonucleic ribonucleic acid (RNA) acid (DNA) 345

Eight essential monosaccahrides

OH HO HO HO HO OH CH HO HO 3 O O HO O O HO O HO HO HO HO HO HO HO HO OH OH OH OH OH CHO HO H CHO CHO CHO H OH H OH H OH HO H CHO H OH HO H HO H HO H H OH HO H HO H H OH H OH HO H H OH H OH CH3 H OH H OH

CH2OH CH2OH CH2OH CH2OH L- D-galactose D- glucose D-mannose D-xylose (6-deoxy-L-galactose HO2C

OH O HO OH HO HO HO O HO O HN OH HO OH HN HN OH OH OH O CO2H O O O H H CHO CHO H OH H NHCOCH H NHCOCH 3 3 H3COCHN H HO H HO H HO H H OH HO H H OH H OH H OH H OH CH OH CH OH 2 2 CH2OH 346 N-acetylglucosamine N-acetylgalactosamine N-acetyl-D-

175 25.12 -Surface Carbohydrates and Carbohydrate Vaccines (please read): : of proteins

HO HO O HO X HO X= -O- or -NH-

O CH3 O carbohydrate carbohydrate O N O N H H HN HN

serine threoine

O H N carbohydrate N H O HN asparagine

347

176