Failure of the HP Boiler Feed Water Pump on an Ammonia Plant

Total Page:16

File Type:pdf, Size:1020Kb

Failure of the HP Boiler Feed Water Pump on an Ammonia Plant Failure of the HP Boiler Feed Water Pump on an Ammonia Plant A catastrophic failure occurred on the main High-Pressure Boiler Feed Water Pump Train on an Ammonia Plant. The direct cause of the failure was flow reversal from the Boiler Feed Water system and/or the Steam Drum, to the turbine driven High Pressure Boiler Feed Water Pump. While the failure of the pump is the focus of the paper, the identified causal factors involve failures of several auxiliary operating systems, which are also discussed. The paper presents the sequence of events and associated root causes that resulted in the failure of the pump as well as recommendations to prevent a re-occurrence. Godfrey Harrylal, Shiva Maharaj Industrial Plant Services Limited, Trinidad and Tobago, W.I. Introduction valves in the discharge piping of the pumps are designed to prevent liquid vaporization in the he high-pressure boiler feed water pump casing and pump damage, by ensuring positive train of an ammonia plant experienced a flow. The ARC valves on each pump also act as failure on 25th September 2015. The fail- check valves to prevent reverse flow. The pumps T ure occurred in a 1,850 MTPD (2,040 are also furnished with minimum flow lines from STPD) ammonia plant. This paper describes the the ARC valves that converge to a single line failure that occurred, the investigations and the back to the deaerator. lessons learnt. The turbine utilizes a mechanical hydraulic speed governor for speed control. The governor con- trols turbine speed by adjusting the quantity of System Configuration MP steam supplied to the turbine. The governor As shown in Figure 1, boiler feed water (BFW), has an output between 0 – 100% representing leaving the deaerator, is directed to the steam minimum (3,026 rpm) to maximum (3,728 rpm) drum for the purpose of high pressure (HP) steam governor speed settings. The DCS boiler feed generation using two (2) identical boiler feed wa- water flow controller, acts in two ways. It con- ter pumps. The main HP BFW pump is driven trols the speed set point of the turbine and also by an API 611 condensing turbine which utilizes the output to the control valve on the discharge medium pressure (MP) steam, and the standby of the standby pump. HP BFW pump is driven by an electric motor, which operates at the 4,160V level. Deaerated boiler feed water from the BFW pumps is fed to the steam drum via the three paths The HP BFW pumps are API 610 centrifugal each with a control valve and a tilting disc check multi-stage, opposed impeller, horizontally split valve. Two of the paths include BFW pre-heat- volute pumps. Automatic recirculation (ARC) ing and steam generating shell and tube heat ex- changers. 2018 41 AMMONIA TECHNICAL MANUAL STEAM DRUM 40 LP Steam FT CH-V3 CH-V2 CH-V1 Restriction Orifice Control RO-1 Val ve DEAERATOR CV1 Restriction BFW Restriction Orifice Preheating/ Orifice RO-A RO-B Steam HP BFW Gen. Pumps Heat Control Exchangers Val ve CV2B To Dump Control Val ve CV2A Turbine Control Valve CV3 Control Valve Flow Control Valve FCV Temperature Flow Indicator Indicator Figure 1. Simplified System Diagram Incident Description which initiated a shutdown of the primary re- former and downstream systems (total plant trip) On 25th September 2015, the plant experienced a as per design. spurious activation of the process air compressor shutdown signal resulting in the synthesis gas With the main process systems offline a plant op- compressor and downstream steam generating erator was dispatched to initiate shutdown of the equipment to shut down as per the plant’s design main and standby BFW pumps which were still interlock logic. Despite the shutdown signal that online. The operator utilized the mechanical trip initiated these events, the process air compressor lever on the turbine driver for the main HP BFW remained online which resulted in a deficit MP pump and initially observed a speed reduction. steam mass balance since the process air com- Within seconds, the operator heard an accelerat- pressor is one of the largest consumers of MP ing sound and observed the turbine speed to be steam. increasing past 5200 rpm (well over the maxi- mum of 3728 rpm). An instruction was given by The ensuing steam system upset resulted in the the shift supervisor to evacuate the area immedi- following sequence of events over a 40 minute ately and within seconds the catastrophic failure period: a high steam drum level, low BFW flow of the main BFW pump and turbine unit oc- to the steam drum, the automatic start of the curred. Thankfully, only minor injury was sus- standby HP BFW pump on low flow, no BFW tained by an operator which was treated by on flow to the steam drum and eventually low steam site first aid. Figure 2 shows the resulting dam- drum level. These events culminated in the acti- age. vation of the steam drum low level interlock AMMONIA TECHNICAL MANUAL 42 2018 Figure 2. A – BFW pump & turbine view from pump discharge side; B – Dispersion of components; C – BFW pump turbine damage; D – BFW pump shaft damage Actions Before the BFW Pump Failure closing of the valve was still in progress. It is believed that the turbine’s mechanical hydraulic During the steam upset with the trip of the syn- governor compensated for the reduction in steam thesis gas compressor train, the steam drum level flow by opening to allow more flow as evidenced was rising. The plant operators attempted to con- by a return to 3500rpm. The corresponding drop trol the steam drum level by reducing the BFW in discharge flow also had the unintended side ef- flow from the main pump. To reduce the BFW fect of auto-starting the standby pump against its flow, the speed of the BFW turbine was reduced closed discharge control valve. The steam inlet by using the governor control to bring the turbine valve was then reopened from the partially closed speed to minimum governor. With the level still position. rising, the flow through the steam inlet valve for the turbine driver of the main BFW pump was re- As the steam system was now being managed, duced by a plant operator partially closing the the steam drum level began to fall. The plant op- valve. This action only momentarily dropped the erators at this time did not observe any flow be- main pump’s speed from 3500rpm to 1900rpm. ing indicated on the outlet of the pumps. Without The pump’s speed returned to 3500rpm while the isolating the main pump, the discharge control 2018 43 AMMONIA TECHNICAL MANUAL valve on the standby pump was opened fully, but Inspection of the ARC valve on the main pump still no flow was observed. The steam drum level revealed the presence of debris lodged between continued to fall until the eventual plant trip due and around the main check valve and lower body to low-low steam drum level. seating surfaces, likely preventing the check valve from closing fully, shown in Figures 3B & 3C. The vortex plug on the recirculating/bypass Findings end of the ARC was also found to be stuck in the valve body, possibly restricting bypass flow. The Inspection Findings debris was confirmed to be a section of the The steam turbine was a total wreck with the tur- pump’s casing inter-stage ring. The pump suc- bine casing disintegrated and the rotor compo- tion strainer, shown in Figure 3D, was found to nents dispersed across the site. The damage be distorted in a collapsed inverted condition noted on the pump skid and foundation indicated which suggests flow reversal and was found to be clockwise rotation from the drive end of the train, fouled on both the upstream and downstream indicating that the machine was experiencing re- sides with the pump rotor’s wear ring material verse rotation as it usually operates in a counter- also found in the ARC valve. clockwise direction from this frame of reference. This damage, combined with the dispersion of Of the three check valves on the lines to the parts shown in Figure 2, indicated reverse rota- Steam Drum, two (CH-V1 & CH-V3) were tion of the unit. Additionally, more evidence of found stuck in the open position with debris reverse rotation was observed upon inspection of lodged in the seating area – shown in Figures 3E the pump’s internal components. The shaft was & 3F. The debris that was found in one of the bent toward the non-drive end as shown in Figure valves was identified to be SMAW welding elec- 2D with significant deterioration to the casing trodes. On the other valve, twisted tape turbula- wear rings, inter stage rings, impeller rings, im- tors from within the tubes of a BFW pre- peller and bushings at the discharge end of the heater/steam generator were noted between the pump, some of which is shown in Figure 3A. disc and seating area. Figure 3. A – Main HP BFW pump wear rings found damaged; B & C – Wear ring debris lodged in main BFW pump ARC check valve seat; D – Main HP BFW pump strainer found fouled on both sides; E & F Check valves found open AMMONIA TECHNICAL MANUAL 44 2018 Discussion there were three pathways available to the fluid being pumped – the common recirculation line, Analysis of the Sequence of Events the common discharge line, and most im- portantly, because of its reduced output, back to The trip signal generated by the air compressor the main pump.
Recommended publications
  • Circulatic Steam Generator Installation Manual
    STEAM GENERATORS CIRCULATIC® STEAM GENERATORS INSTALLATION MANUAL VAPOR POWER INTERNATIONAL 551 S. County Line Rd. Franklin Park, IL 60131 P: 630.694.5500 F: 630.694.2230 VaporPower.com Revised July 2005 Bulletin No. Printed in U.S.A. TWM5-AM-2 CIRCULATIC TABLE OF CONTENTS Section Page No. List of Figures ..................................................................................................................2 List of Tables ...................................................................................................................2 1.0 Introduction .....................................................................................................................3 2.0 Lifting and Handling .........................................................................................................4 3.0 Installation .......................................................................................................................8 4.0 Mounting .........................................................................................................................9 5.0 Clearances .................................................................................................................... 10 6.0 Combustion and Ventilation Air Requirements ............................................................... 12 7.0 Stack Installation ........................................................................................................... 13 8.0 Steam Output ...............................................................................................................
    [Show full text]
  • Hurst Boiler & Welding Company, Inc
    Hurst Boiler & Welding Company, Inc. P.O. Drawer 530 - Highway 319 North Coolidge, Georgia 31738 877-99HURST – Toll Free 229-346-3545 – Local 229-346-3874 – Fax www.hurstboiler.com SERIES 45 STEAM BOILER (8.5- 813 HP, STEAM 15 psig) SAMPLE SPECIFICATIONS The following sample specifications are provided by Hurst Boiler & Welding Co., Inc. to assist you in meeting your customer's specific needs and application. The sample specifications are typically utilized as the base template for the complete boiler specification. Contact your local Hurst Boiler & Welding Co., Inc. authorized representative for information on special insurance requirements, special code requirements, optional equipment, or general assistance in completing the specification. 1.0 – General Boiler Specifications 1.1 - The Steam Boiler shall be Hurst Boiler & Welding Co., Inc. Series 45, hp designed for 15 psig. The maximum operating pressure shall be psig and the minimum operating pressure shall be psig. 1.2 - The boiler shall have a maximum output of Btu/hr, or horsepower when fired with oil and/or natural gas, Btu/cu-ft. Electrical power available shall be Volt Phase Cycle. 2.0 – Boiler Design 2.1 - The boiler shall be a three-pass wetback horizontal firebox type boiler with four (4) square feet of fireside heating surface per rated boiler horsepower. Furnace volume shall not be less than cubic feet. It shall be mounted on a heavy steel frame with integral forced draft burner and burner controls. The complete packaged boiler approved as a unit by Underwriters Laboratories and shall bear the UL label. 2.2 - The boiler shall be completely preassembled and tested at the factory.
    [Show full text]
  • Conventional Steam
    DECEMBER 2019 Application Solutions Guide CONVENTIONAL STEAM Experience In Motion 1 Application Solutions Guide — The Global Combined Cycle Landscape TABLE OF CONTENTS THE GLOBAL CONVENTIONAL STEAM POWER FLOWSERVE PRODUCTS IN CONVENTIONAL PLANT LANDSCAPE . 3 STEAM POWER . 16 A Closer Look at Conventional Steam Conventional Steam Applications Power Technology . 5 Overview . 16 Basics . 5 Pumps for Conventional Steam Plants . 18 Plant Configurations and Sizes . 7 Valves for Conventional Steam Plants . 24 Flue Gas Desulfurization (FGD) . 8 Actuators for Conventional Steam Plants . 30 Conventional Steam Project Models . 11 Seals for Conventional Power Plants . 31 Seals for Wet Limestone Flue Gas THE CONVENTIONAL STEAM POWER- Desulfurization . 33 FLOWSERVE INTERFACE . 13 Business Impact and Focus Areas . 13 COMMUNICATING OUR VALUE . 34 The Big Picture . 13 Innovative Ways Flowserve Addresses The Flowserve Fit in Conventional Customer Challenges . 34 Steam Power . 13 APPENDIX . 35 PRODUCTS FOR STEAM POWER — Flowserve Value Proposition in Conventional Steam . 35 AT A GLANCE . 14 Sub-critical Versus Supercritical Pumps . 14 Power Plant . 36 Valves . 14 Reheat . 37 Seals . 14 Terminology . 38 Estimated Values by Plant Size . 15 Acronyms . 39 2 Application Solutions Guide — Conventional Steam THE GLOBAL CONVENTIONAL STEAM POWER PLANT LANDSCAPE Thermal power generation involves the conversion Combined cycle plants have become the preferred of heat energy into electric power. Fossil fuel power technology for gas-fired power generation for several plants as well as nuclear, biomass, geothermal reasons. The USC plant takes 40 to 50 months to and concentrated solar power (CSP) plants are all build; a combined cycle plant can be built in 20 to examples of thermal power generation.
    [Show full text]
  • Generation Unit Basics Power System Elements
    Power System Elements Generation Unit Basics PJM State & Member Training Dept. PJM©2018 10/2/2018 Objectives • Provide an overview of: ‒ Major components of a Generator ‒ Excitation ‒ Governor Control ‒ Rotational Speed ‒ Generator limitations ‒ VAR/voltage relationship ‒ MW’s and Power Angle PJM©2018 2 10/2/2018 Basic Operating Principles • Electromagnetic induction is the principle used for a generator to convert mechanical energy to electrical energy • D.C. excitation is applied to the rotor field winding producing a magnetic field ‒ Output voltage and VAR flow are controlled by changing the strength of the magnetic field • The field winding (rotor) spins, at synchronous speed, within the armature windings (stator) providing relative motion between the magnetic field and the stationary conductor windings (stator) ‒ A.C. output voltage is induced in the stator armature windings • The changing polarity of the rotor produces the alternating characteristics of the current PJM©2018 3 10/2/2018 PJM©2018 4 10/2/2018 A.C. Generator Components • Rotating Magnetic Field (Rotor) • Series of Stationary Conductors (Stator) • Source of D.C. Voltage (Exciter) PJM©2018 5 10/2/2018 Rotor • The generated voltage is proportional to the: ‒ Strength of the magnetic field ‒ Number of coils and number of windings on each coil ‒ Speed at which the rotor turns • Rotor winding is a multi-coil, single circuit, energized with DC power fed through the shaft from the collector rings ‒ The rotor is a low voltage, low power circuit; a major factor in building a generator
    [Show full text]
  • Ships Heat Generation Plant Heat Generation Plant Heat
    SHIPS HEAT GENERATION PLANT Boilers Water Treatment 2014.07.14 Pag |1 - 94 REPORT: ALVARO SARDINHA BOILERS WATER TREATMENT MARINE ENGINEER DATE: 2014.07.14 [email protected] INDEX 1. Introduction 2. BoilerBoilerssss water treatment ––– three factors 3. Boilers water fundamental knowledge 444.4. Ships heat generation plant 555.5. BoilerBoilerss water treatment 666.6. Main problems in boilers caused by water 777.7. Unex boilerboilerssss water recommendations 888.8. Lessons learned 999.9. Water chemistry terms Pag |2 - 94 REPORT: ALVARO SARDINHA BOILERS WATER TREATMENT MARINE ENGINEER DATE: 2014.07.14 [email protected] 1. INTRODUCTION If boilers water doesn’t receive proper treatment, the boiler will suffer from carryover, sludging, scale and corrosion, leading to weak and dangerous machinery. Long before the boiler fails, water-related problems will cause: ● Growing safety hazard ● Increased maintenance cost ● Additional fuel required - higher energy costs ● Lower boiler efficiency Correct boiler water treatment and follow-up of the water and steam condition, are of utmost importance for keeping the heat generation systems in good condition. By implementing a rigorous program of boiler water treatment, a vessel can greatly extend equipment life, reduce maintenance and enable thermal efficiency to be maintained at the designed level. The present report characterizes a ship heat generation system, its water treatment procedures and maintenance required. The main objective is to document the system and to establish optimal and standard operation processes. It is also an important piece of digital information, part of the ship information system, shareable and available for present and future crews, and a helpful tool to support company management.
    [Show full text]
  • PREFERRED INSTRUMENTS a Division of Preferred Utilities Manufacturing Corporation SYSTEM OVERVIEW
    • Control VFDs to Save Electricity • Communicate Important Plant Information • Improve Water Quality and Extend Boiler Life PREFERRED INSTRUMENTS A Division of Preferred Utilities Manufacturing Corporation SYSTEM OVERVIEW The Preferred Feedwater Center Control System Boiler feedwater control systems are often the most archaic controls in the steam plant. Poor boiler waterside control contributes to scaling, corrosion, and eventually hot spots and tube failures. The Preferred Feedwater Center is designed to improve the control of boiler feedwater by modulating up to four feedwater pumps and three transfer pumps. Deaerator temperature, level, and chemical pumps are controlled to improve boiler feedwater quality. Local feedwater monitoring is available by LCD keypad, or optional 10” color touch screen. Remote monitoring is available by RS232 Modbus, or Modbus over Ethernet if the touch screen is purchased. “Combustion Technology Since 1920” Preferred Instruments has been in business continuously since 1920. Located in Danbury Connecticut, our products are proudly made and supported in the United States of America. Our staff of service engineers, field service technicians, and service trained sales engineers are dedicated to making all of your projects a major success. FEEDWATER CENTER BENEFITS ENSURE CONSISTENT FEEDWATER TEMPERATURE AND PRESSURE MAINTAIN PROPER OXYGEN REMOVAL AT ALL FIRING RATES INTEGRATED MODEM FOR OFF-SITE MONITORING FIELD ADJUSTABLE PARAMETERS PLUG-IN OPTION BOARDS AVAILABLE FOR INSTANT FIELD UPGRADES Deaerator Control • Ensures a steady flow of properly treated boiler feedwater by precisely controlling deaerator temperature, pressure, and level. • Secure a continuous supply of make up water to the deaerator by controlling surge tank level. • Deaerator control allows the user to minimize deaerator venting and boiler blowdown and improve plant efficiency.
    [Show full text]
  • Watts Bar Nuclear Plant, Unit 2
    WATTS BAR TABLE OF CONTENTS Section Title Page 10.0 MAIN STEAM AND POWER CONVERSION SYSTEMS 10.1 SUMMARY DESCRIPTION 10.1-1 10.2 TURBINE-GENERATOR 10.2-1 10.2.1 DESIGN BASES 10.2-1 10.2.2 DESCRIPTION 10.2-1 10.2.3 TURBINE ROTOR AND DISC INTEGRITY 10.2-5 10.2.3.1 MATERIALS SELECTION 10.2-5 10.2.3.2 FRACTURE TOUGHNESS 10.2-8 10.2.3.3 HIGH TEMPERATURE PROPERTIES 10.2-9 10.2.3.4 TURBINE DISC DESIGN 10.2-10 10.2.3.5 PRESERVICE INSPECTION 10.2-10 10.2.3.6 INSERVICE INSPECTION 10.2-11 10.2.4 EVALUATION 10.2-13 10.3 MAIN STEAM SUPPLY SYSTEM 10.3-1 10.3.1 DESIGN BASES 10.3-1 10.3.2 SYSTEM DESCRIPTION 10.3-1 10.3.2.1 SYSTEM DESIGN 10.3-1 10.3.2.2 MATERIAL COMPATIBILITY, CODES, AND STANDARDS 10.3-2 10.3.3 DESIGN EVALUATION 10.3-2 10.3.4 INSPECTION AND TESTING REQUIREMENTS 10.3-3 10.3.5 WATER CHEMISTRY 10.3-4 10.3.5.1 PURPOSE 10.3-4 10.3.5.2 FEEDWATER CHEMISTRY SPECIFICATIONS 10.3-4 10.3.5.3 OPERATING MODES 10.3-4 10.3.5.4 EFFECT OF WATER CHEMISTRY ON THE RADIOACTIVE IODINE PARTITION COEFFICIENT 10.3-5 10.3.6 STEAM AND FEEDWATER SYSTEM MATERIALS 10.3-6 10.3.6.1 FRACTURE TOUGHNESS 10.3-6 10.3.6.2 MATERIALS SELECTION AND FABRICATION 10.3-6 10.4 OTHER FEATURES OF STEAM AND POWER CONVERSION SYSTEM 10.4-1 10.4.1 MAIN CONDENSER 10.4-1 10.4.1.1 DESIGN BASES 10.4-1 10.4.1.2 SYSTEM DESCRIPTION 10.4-1 10.4.1.3 SAFETY EVALUATION 10.4-4 10.4.1.4 INSPECTION AND TESTING 10.4-5 10.4.1.5 INSTRUMENTATION 10.4-5 10.4.2 MAIN CONDENSER EVACUATION SYSTEM 10.4-5 10.4.2.1 DESIGN BASES 10.4-5 10.4.2.2 SYSTEM DESCRIPTION 10.4-5 10.4.2.3 SAFETY EVALUATION 10.4-6 Table of
    [Show full text]
  • Power System Fundamentals
    Power System Fundamentals Generation Unit Basics PJM State & Member Training Dept. PJM©2015 02/02/2015 Objectives •Given a generating unit, describe the basic steps involved in the energy conversion process •Describe the overall design and function of plant systems that are common to most facilities • Steam/condensate/feedwater systems • Turbine support systems • Start‐up Systems PJM©2015 02/02/2015 Objectives • Circulating water/Cooling water Systems • Sealing systems • Air Systems •Given a generating unit, list some possible Environmental limitations that may restrict unit output •Given a generating unit, list some possible Operational limitations that may restrict unit output PJM©2015 02/02/2015 Objectives •Describe the major design elements of a Fossil Unit •Describe the major design elements of a Nuclear Unit •Describe the major design elements of a Hydroelectric Unit •Describe the major design elements of a Combustion Turbine Unit PJM©2015 02/02/2015 Objectives •Describe the major design elements of a Combined Cycle Unit •Describe the major design elements of a Wind Unit •Describe the major design elements of a Solar Unit PJM©2015 02/02/2015 Agenda •Elements of the Energy Conversion Process •Provide an overview of: • Steam/Condensate/Feedwater and other Common Systems • Describe the various types of units: • Fossil generating units • Nuclear generating units • Hydroelectric generating units • Combustion turbines • Combined Cycle Power Plants (CCPP) • Wind Units • Solar Units PJM©2015 02/02/2015 Generation Unit Basics Basic Energy
    [Show full text]
  • UFGS 23 52 33.03 20 Water-Tube Boilers, Oil/Gas Or
    ************************************************************************** USACE / NAVFAC / AFCEC / NASA UFGS-23 52 33.03 20 (November 2008) Change 3 - 08/18 ------------------------------------ Preparing Activity: NAVFAC Superseding UFGS-23 52 33.03 20 (July 2007) UNIFIED FACILITIES GUIDE SPECIFICATIONS References are in agreement with UMRL dated July 2021 ************************************************************************** SECTION TABLE OF CONTENTS DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC) SECTION 23 52 33.03 20 WATER-TUBE BOILERS, OIL/GAS OR OIL 11/08, CHG 3: 08/18 PART 1 GENERAL 1.1 REFERENCES 1.2 RELATED REQUIREMENTS 1.3 SYSTEM DESCRIPTION 1.3.1 Design Requirements 1.3.1.1 Boiler Design and Service Conditions 1.3.1.2 Economizer 1.3.1.3 Fans 1.3.1.4 Expansion Joints and Stacks 1.3.1.5 Vertical Fuel Oil Storage Tanks 1.3.1.6 Fuel Oil Pump and Heater Set 1.3.1.7 Deaerating Heater 1.3.2 Detail Drawings 1.3.2.1 Boiler 1.3.2.2 Boiler Room Auxiliary Equipment 1.3.2.3 Burners 1.3.2.4 Dampers, Stacks, and Breechings 1.3.2.5 Fuel Oil Equipment 1.3.2.6 Piping and Specialty Items 1.3.2.7 Ball Joint Installation Details 1.3.2.8 Reproducible Drawings 1.3.3 Design Data 1.3.3.1 Engineering Calculations 1.3.4 Test Reports 1.3.5 Performance Requirements 1.3.5.1 Boiler 1.3.5.2 Economizer 1.3.5.3 Oil Burner/Windbox Package 1.3.5.4 Oil and Gas Burner/Windbox Package 1.4 SUBMITTALS 1.5 QUALITY ASSURANCE 1.5.1 Experience 1.5.1.1 Experience Requirements SECTION 23 52 33.03 20 Page 1 1.5.2 Responsibility of the Boiler Manufacturer
    [Show full text]
  • Steam Turbine Performance Improvements Through R&M
    Steam Turbine Performance Improvements Through R&M EEC WORKSHOP 16.09.2013-17.09.2013 PERFORMANCE ENHANCEMENT THROUGH TECHNOLOGY UPGRADATION On average Coal fired units have a life term of 25-30 years. Units which are older than 30 years are in the capacity range of 60 -110 MW and mostly are being phased out. A good number of 200 MW units would have completed 30 years & operate at efficiency levels less than 30%. Performance of these units can be improved by retrofitting improved technologies. General Comments Utilities must upgrade old plants to improve efficiencies to reduce (O&M) costs. Overall efficiency of a Thermal power plant strongly depends on the turbine’s performance. For some aging steam-turbine power plants, it may be more cost-effective to upgrade existing steam turbines rather than replace them. Turbine Cycle Improvements. Turbine Performance degrades with time. Machines with a higher VWO Capability are operated at nominal loads under degraded conditions. Deterioration in efficiency would be known only from specific assessment tests. Many a Capital Overhauls scheduled for Turbine refurbishment go unused due to non availability of spares for recovery of Heat rate loss. Scope of Improvements in Boiler Island Coal transport, conveying and grinding Boiler operation. Overhaul with new heat transfer surface Neural network (NN) control system Intelligent soot blower (ISB) system Air heaters Variable-frequency drive (VFD) motors on all major rotating equipment (usually improves efficiencies at lower than full load). Scope of Improvements Turbine Island Turbine Feed water heater Condenser Turbine drive/motor-driven feed pump. Water treatment system Boiler water treatment Cooling tower Boiler Furnace Modifications The furnace of a power plant boiler is the most significant component of a power plant affecting the thermal performance, apart from the steam turbine generator.
    [Show full text]
  • Feedwater Pump Maintenance Guide
    (35, 3RZHULQJ3URJUHVV 5(3257 6800$5< 0DLQ)HHGZDWHU3XPS0DLQWHQDQFH*XLGH /266RIDPDLQIHHGZDWHUSXPSFDQKDYHVHYHUHHFRQRPLFLPSDFWRQ DQXFOHDUXWLOLW\7KHPDMRULW\RIIRUFHGRXWDJHVRUSRZHUUHGXFWLRQVLV EHOLHYHGWREHDWWULEXWHGWRQRQGHVLJQLVVXHV&DVHOHDNVH[FHVVLYH YLEUDWLRQVHDOOHDNVDQGOXEULFDWLRQV\VWHPSUREOHPVDUHVKRZQWR VLJQLILFDQWO\LPSDFWIHHGZDWHUSXPSDYDLODELOLW\,PSURYHGPDLQWH QDQFHSUDFWLFHVDQGLQFUHDVHGDWWHQWLRQWRWKHVHLVVXHVLVFULWLFDOIRU UHDOL]LQJORQJHYLW\2IPDLQIHHGZDWHUSXPSV %$&.*5281'0DLQIHHGZDWHUSXPSVSURYLGHWKHUHTXLUHGIORZDQGSUHVVXUH WRQXFOHDUIHHGZDWHUV\VWHPV)RURYHUWZRGHFDGHV(35,UHVHDUFKKDVEHHQ XQGHUWDNHQWRLQFUHDVHWKHUHOLDELOLW\DQGRSHUDWLRQRIIHHGZDWHUSXPSV3ODQW SRZHURXWDJHVDQGSRZHUUHGXFWLRQVKDYHUHVXOWHGLQVLJQLILFDQWORVVLQSODQW FDSDFLW\GXHWRPDLQIHHGZDWHUSXPSXQDYDLODELOLW\$VLQJOH\HDU VORVWFDSDFLW\ ,17(5(67&$7(*25,(6 KDVUHVXOWHGLQDVKLJKDVSODQWFDSDFLW\IDFWRUORVV 0DLQWDQDQFHSUDFWLFHV 2%-(&7,9(67RSURYLGHJXLGDQFHRQEDVLFPDLQWHQDQFHRIQXFOHDUPDLQIHHG 1XFOHDUSODQWRSHUDWLRQV ZDWHUSXPSVIRU86SODQWLQVWDOODWLRQVDQGWRLQFUHDVHSXPSUHOLDELOLW\ DQGPDLQWHQDQFH (QJLQHHULQJDQGWHFKQLFDO VXSSRUW $3352$&+7KLVJXLGHZDVGHYHORSHGE\DWHDPRISXPSLQGXVWU\IRVVLODQG QXFOHDUIHHGSXPSGHVLJQILHOGVHUYLFHDQGPDLQWHQDQFHSHUVRQQHO7KHLU .(<:25'6 H[SHUWLVHDQGIDPLOLDULW\ZDVDXJPHQWHGE\XWLOLW\UHYLHZDQGZDVRYHUVHHQE\ DWHFKQLFDODGYLVRU\JURXSWKDWLQFOXGHGXWLOLW\PDQXIDFWXUHUDQGUHJXODWRU\ UHSUHVHQWDWLYHV 0DLQWHQDQFH 3XPSV 5(68/767KLVGRFXPHQWSURYLGHVDVXPPDU\RIPDLQIHHGZDWHUSXPSSURE 6HDOV OHPVDQGWKHLUDVVRFLDWHGIDLOXUHPRGHVDQGDQDO\VLV3URJUDPVRISUHYHQWLYH DQGSUHGLFWLYHPDLQWHQDQFHDUHUHFRPPHQGHG0DLQWHQDQFHSUDFWLFHVWR
    [Show full text]
  • Influence of Feed Water Heaters on the Performance of Coal Fired Power Plants
    Volume V, Issue III, March 2016 IJLTEMAS ISSN 2278 – 2540 Influence of Feed Water Heaters on the Performance of Coal Fired Power Plants E. Devandiran1, V. S. Shaisundaram2, P.Sabari Ganesh3, S.Vivek4 1,2 Assistant Professor , Department of Mechanical Engineering, Easwari Engineering College, Chennai – 89,Tamil Nadu, India. 3,4U.G student, Department of Mechanical Engineering, Easwari Engineering College, Chennai – 89,Tamil Nadu, India. Abstract: This paper shows the effects of the feed water heaters The heat recovery system has become an effective method to on the performance of coal fired power plants. By adding the increase the thermal efficiency in modern thermal power plant feed water heaters in power plant cycle, the overall efficiency of [1]. The Feedwater heaters increase the Rankine cycle the power plant is increased by 2.4 %. Improving the power efficiency by raising the temperature of feed water that is plant efficiency could alleviate the negative effect of coal piped into the steam generator, in such a way that the consumption on CO2 emission. By means of thermodynamic optimization it is propose to include the feed water heaters in necessary thermal energy transferred to the steam to increase power plant cycle, achieving optimum power plant efficiency. the enthalpy of the system will be lower. Simulations have been carried out using HMBD software. Results show a feasible improvement of the overall power plant In closed feedwater heater, the heat is transferred from the efficiency. This implies a direct reduction of CO2 emission of extracted steam of steam turbine to the feedwater heater about 1.3 %.
    [Show full text]