Feasibility and Benefits of Converting the Iranian Heavy Water Reactor IR-40 to a More Proliferation-Resistant Reactor
Total Page:16
File Type:pdf, Size:1020Kb
Feasibility and benefits of converting the Iranian heavy water reactor IR-40 to a more proliferation-resistant reactor Thomas Mo Willig Master Thesis 30 credits 2011 Department of Mathematical Sciences and Technology This page is left blank intentionally Feasibility and benefits of converting the Iranian heavy water research reactor IR-40 to a more proliferation-resistant reactor Thomas Mo Willig 14. December 2011 "You could not even think without electricity, though I realize that even with electricity some of you may have a problem with that" Walter Lewin, MIT 2 Summary This thesis examines a policy proposal presented by former Deputy Director-General for Safeguards in the International Atomic Energy Agency, Olli Heinonen, as a means to get Iran back to the negotiation table over its nuclear program [1]. He proposes modifying the Iranian heavy water research reactor IR-40, so that it uses low enriched uranium instead of natural uranium as fuel, thereby making the reactor less suitable for weapons-grade plutonium production, and more suitable for useful radioisotope production. This thesis concretizes Heinonen’s proposal, suggesting a conversion of the IR-40 reactor from using natural uranium to using low enriched uranium fuel. The original reactor, as well as the proposed modified reactor is modeled using SCALE 6.1, a reactor simulation program developed by Oak Ridge National, to determine if this conversion is feasible, and to estimate the potential for plutonium and radioisotope production in both configurations. Various methods are used to estimate the current design of the reactor and use the parameters deduced for that reactor as a basis for a converted reactor. A proposal is also made to cap Iran’s enrichment capacity to a level where Iran can replace the yearly demand for the converted IR-40 reactor with enriched uranium. This could ease tensions regarding Iran’s enrichment program and the focus of diplomacy could shift to confidence building between Iran and the IAEA. 3 Samandrag Denne masteroppgåva vil ta utgangspunkt i eit innspel frå tidligare direktør for beskytelse i det internasjonale atomenergibyrået Olli Heinonen, for å få Iran tilbake til forhandlingsbordet vedrørande atomprogrammet deira. Olli Heinonen foreslår å modifisera den Iranske forskingsreaktoren IR-40 til å ta i bruk låganrika uran framfor naturlig uran, dermed gjera reaktoren mindre eigna til plutoniumsproduksjon av våpenkvalitet og meir eigna til radioisotopproduksjon. Denne oppgåva vil konkretisera Heinonens forslag og foreslår ein konvertering av IR-40 til å ta i bruk låganrika uranbrensel. Den originale og konverterte reaktoren blir modellert i SCALE 6.1, eit reaktor simuleringsprogram utvikla av Oak Ridge National, for å finna ut om konverteringa er mogleg, og estimera potensialet for plutoniumsproduksjon og radioisotopproduksjon i begge konfigurasjonane. Det blir også foreslått å putta eit tak på Irans anrikingsmoglegheiter slik at dei dekke det årlige behovet til den konverterte IR-40 reaktoren med anrika uran. Dette kan løysa opp spenning angåande Irans anrikingsprogram og diplomatiet kan skifta fokus til betre samarbeid mellom IAEA og Iran. 4 Contents List of figures 10 List of tables 12 Preface 13 1 Introduction 14 1.1 Challenges facing Iran 14 1.2 Iran’s nuclear program 15 1.2.1 Iran’s secret nuclear program 16 1.2.2 The IR-40 heavy water research reactor 18 1.2.3 A new proposal 18 1.2.4 Thesis outline 19 2 Nuclear physics 20 2.1 Nuclear energy 20 2.1.1 Atomic structure 20 2.1.2 Isotopes 20 2.1.3 Nuclear forces 20 2.1.4 Radioactivity 21 2.2 Neutron reactions 21 2.2.1 Scattering 21 2.2.2 Capture 22 2.2.3 Fission 22 2.3 Neutron physics 24 2.3.1 Microscopic cross section 24 5 2.3.2 Macroscopic cross section 25 2.3.3 Varying cross section with neutron energy 25 2.3.4 Reaction rate 26 3 Reactor physics 27 3.1 Neutron moderation 27 3.2 Neutron life cycle 27 3.2.1 Four factor formula 27 3.3 Neutron transport 29 3.3.1 One-group diffusion theory 29 3.3.2 Two-group theory 30 3.3.3 Reflector savings 31 3.4 Reactor power 31 4 Nuclear reactors 32 4.1 Nuclear core 32 4.2 Light water reactors (LWRs) 33 4.3 Heavy water reactors (HWRs) 34 4.4 Graphite reactors 35 4.5 Fuel consumption 35 4.6 Criticality control 35 4.6.1 Prompt neutrons 36 4.6.2 Doppler broadening 36 4.6.3 Reactor poisons 36 4.6.4 Control rods 36 6 5 Nuclear weapons 38 5.1 Nuclear weapons material 38 5.2 Basic nuclear weapons design 38 5.2.1 Gun-type design 38 5.2.2 Implosion design 39 6 Plutonium production 41 6.1 Plutonium production 41 6.2 Plutonium quality 42 6.3 Plutonium production in HWRs 43 6.4 Reprocessing 43 7 Isotope production 45 7.1 Radioisotopes 45 7.2 Radioisotope production 45 7.2.1 Activity 45 7.2.2 Targets 46 7.2.3 Logistics 46 7.3 Radioisotope production in Iran 46 7.3.1 Molybdenum-99 production 46 7.3.2 Radioisotope production at the IR-40 reactor 49 8 The IR-40 heavy water research reactor 50 8.1 IR-40 specifications 50 8.2 Origin of the IR-40 design 51 8.2.1 Russian origin 51 7 8.3 Estimating the dimensions of the IR-40 reactor 54 8.3.1 Energy density comparison 54 8.3.2 Similar reactors 55 8.3.3 RBMK dimensions 56 8.3.4 Diffusion theory and buckling factor 57 8.3.5 Satellite images 58 8.3.6 Scientific publications 58 8.4 A possible IR-40 design 60 9 Modeling and modification of the IR-40 reactor 61 9.1 Monte Carlo methods 61 9.2 SCALE 61 9.2.1 CSAS6 62 9.2.2 TRITON 63 9.3 IR-40 reactor fueled by natural uranium 64 9.3.1 SCALE output 66 9.3.2 Plutonium production 67 9.3.3 Radioisotope production 69 9.4 Modified IR-40 reactor with LEU core 70 9.4.1 Fuel limitations 71 9.4.2 SCALE output 72 9.4.3 Plutonium production 74 9.4.4 Radioisotope production 79 9.4.5 Fuel consumption 79 8 9.4.6 Advantages 80 10 Discussion 81 References 82 Appendix A 93 Appendix B 98 RBMK dimensions 98 Cooling considerations for LEU fuel. 98 Corresponding enrichment requirements for the LEU core 98 Mo-99 activity 99 Appendix C 101 9 List of figures Figure 1-1. A map of Iran. The 40 MW heavy water reactor built in Arak, 240 km south west from Tehran [7]. .......................................................................................................................................... 15 Figure 2-1. The fission process. ................................................................................................................ 22 Figure 2-2. An illustration of a chain reaction, where one neutron initiates fission in a nucleus, which leads to three new neutrons which can then initiate fission in three new nuclei [30] (illustration used with permission from Wiley). ............................................................... 23 Figure 2-3. Fission yield for thermal neutrons [31] (modified by the author). .................... 24 Figure 2-4. Varying cross sections for in (a) and (b) at different neutron energies [28]. ......................................................................................................................................... 25 Figure 4-1. A fuel pellet, a stack of fuel pellets and a 9 x 9 PWR fuel assembly. The figure was created in KENO3D. The 9 x 9 assembly consists of 72 pink UO2 rods encapsulated in cyan Zircaloy. The nine gray rods are made of the burnable poison rods made out of boron carbide. 32 Figure 4-2. An illustration of a Russian VVER reactor. 1 – Control rods; 2 – reactor cover; 3 – pressure vessel; 4 – inlet and outlet nozzles; 5 – reactor vessel; 6 – active reactor zone; 7 – fuel rods [35]. ....................................................................................................................................................... 33 Figure 5-1. A gun barrel design [40]. ..................................................................................................... 39 Figure 5-2. A sketch of an implosion design NW [43]. .................................................................... 40 Figure 6-1. The buildup of various plutonium isotopes [46]. ...................................................... 41 Figure 7-1. The activity of as a function of irradiation time. ........................................... 48 Figure 7-2. An Iranian-produced technetium generator displayed by the AEOI during the 55th Annual Regular Session of the IAEA General Conference in Vienna 2011. (Photo: Halvor Kippe.) 48 Figure 8-1. An overview of the IR-40 complex with the reactor located under the concrete dome in the center, and mechanical draft cooling towers in the lower right hand corner [70] . 51 Figure 8-2. Left. President Mahmoud Ahmadinejad interviewed next to an RBMK– resembling fuel assembly in the spring of 2009 [73]. Right. A graphical representation of an RBMK fuel assembly. The fuel assembly is composed of two concentric circles of fuel rods and a central support rod [74]. ........................................................................................................................ 52 Figure 8-3. An RBMK-resembling fuel assembly displayed in a brochure from the AEOI about the nuclear industry in Iran [21]. ....................................................................................................... 53 Figure 8-4. Setup of a 40 MW HWR core with Standard Hydride Fuel [96]. The color code is, dark gray: black absorber, blue: reflector, light blue: fuel assemblies, cyan: light water [99]. The articles does not describe what a black absorber is. ........................................................... 59 Figure 9-1. The flow chart of a CSAS6 sequence [101]. .................................................................. 62 Figure 9-2. The flow chart of a TRITON depletion sequence [109] . ......................................... 63 Figure 9-3. A model of the fuel assembly used in the IR-40 reactor, produced by KENO3D. The figure to the left shows the end plug of the fuel assembly. Yellow is D2O while cyan is Zircaloy. The figure to the right shows 18 fuel pins arranged inside an assembly. The four fuel rods in the front have had their cladding removed for illustrative purposes.