Dicyemid Mesozoans: a Unique Parasitic Lifestyle and a Reduced Genome

Total Page:16

File Type:pdf, Size:1020Kb

Dicyemid Mesozoans: a Unique Parasitic Lifestyle and a Reduced Genome GBE Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome Tsai-Ming Lu1,4,*, Miyuki Kanda2, Hidetaka Furuya3,andNoriyukiSatoh1,* 1Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan 2DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan 3Department of Biology, Graduate School of Science, Osaka University, Japan 4Present address: Sars International Centre for Marine Molecular Biology, University of Bergen, Norway *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: July 16, 2019 Data deposition: This genome project has been registered at NCBI under BioProject accession PRJNA496385. Sequencing reads of the genome and transcriptomes have been deposited at the NCBI Sequence Read Archive (SRR8079359, SRR8079349-52, SRR8079348, SRR8079591, SRR8061618, SRR8061630-3). Genome and transcriptome assemblies have been deposited at DDBJ/ENA/GenBank (RDEW00000000) and NCBI Transcriptome Shotgun Assembly Sequence Database (GHAB00000000), respectively. A genome browser is available at https:// marinegenomics.oist.jp. Abstract Dicyemids, previously called “mesozoans” (intermediates between unicellular protozoans and multicellular metazoans), are an enigmatic animal group. They have a highly simplified adult body, comprising only 30 cells, and they have a unique parasitic lifestyle. Recently, dicyemids were shown to be spiralians, with affinities to the Platyhelminthes. In order to understand molecular mechanisms involved in evolution of this odd animal, we sequenced the genome of Dicyema japonicum and a reference tran- scriptome assembly using mixed-stage samples. The D. japonicum genome features a high proportion of repetitive sequences that account for 49% of the genome. The dicyemid genome is reduced to 67.5 Mb with 5,012 protein-coding genes. Only four Hox genes exist in the genome, with no clustering. Gene distribution in KEGG pathways shows that D. japonicum has fewer genes in most pathways. Instead of eliminating entire critical metabolic pathways, parasitic lineages likely simplify pathways by eliminating pathway-specific genes, while genes with fundamental functions may be retained in multiple pathways. In principle, parasites can stand to lose genes that are unnecessary, in order to conserve energy. However, whether retained genes in incomplete pathways serve intermediate functions and how parasites overcome the physiological needs served by lost genes, remain to be investigated in future studies. Key words: mesozoan, dicyemids, unique parasite, genome, reduction. Introduction are used mainly for reproduction, where vermiform or infu- Dicyemids, together with orthonectids, were previously called soriform embryos develop. Ciliated epidermal cells absorb “mesozoans,” an animal group of intermediate complexity nutrients directly from host urine via endocytosis (Ridley between unicellular protozoans and multicellular metazoans 1968; Furuya and Tsuneki 2003). Dicyemids lack a digestive (Stunkard 1954; Lapan and Morowitz 1972; Furuya and tract, coelom, circulatory system, and other differentiated Tsuneki 2003; Brusca et al. 2016). Adults consist of only tissues (fig. 1A). This is probably the most extreme case of 30 cells (fig. 1A), and are parasitic in renal sacs of cephalo- secondary reduction of body plan complexity in spiralian pods. Their simplified bodies consist of three regions: a collate, parasites. a central axial cell, and ciliated epidermal cells (fig. 1A). The In contrast to the simple body plan, the life cycle of dicye- collate region (the most anterior eight cells) is used to attach mids is characterized by two reproductive modes (asexual and to the surface of octopus renal tissues. The central axial cell is sexual) and there are larva and adult stages in each mode surrounded by an outer layer of ciliated epidermal cells that (fig. 1A). After infecting an octopus host, the germinal cell ß The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 2232 Genome Biol. Evol. 11(8):2232–2243. doi:10.1093/gbe/evz157 Advance Access publication July 26, 2019 Dicyemid Mesozoans GBE A IN THE RENAL SAC B nematogen rhombogen Ecdysozoa PP C MP Orthonectida AX IN Dicyemida DV E Platyhelminthes AN AN Gastrotricha AG DI AX Mollusca Spiralia Annelida vermiform infusoriform embryo embryo IN THE SEA FIG.1.—The mesozoan, Dicyema japonicum, with a unique life cycle. (A) Life cycle of dicyemids. See the text for details. AG, agamete; AN, axial cell nucleus; AX, axial cell; C, calotte; DI, developing infusoriform embryo; DV, developing vermiform embryo; E, epidermal cell; IN, infusorigen; MP, metapolar cell; PP, propolar cell; Adapted and modified from Furuya and Tsuneki 2003.(B) Dicyemida is a member of Spiralia. develops into an asexual reproductive adult nematogen have recently been categorized as two independent taxa (fig. 1A). Then, inside the central axial cell of the nematogen, (Stunkard 1954; Mikhailov et al. 2016). The Mesozoa has the agamete (axoblast) develops into asexual reproductive affinity for the Rouphozoa (Platyhelminths and vermiform embryos (Furuya et al. 2003)(fig. 1A). While em- Gastrotricha), rather than for mollusks and annelids bryos mature, the vermiform larvae escape from the axial cell (fig. 1B)(Lu et al. 2017). The possession of a “spiralian of the nematogen and develop to new nematogens that at- peptide” by dicyemids also supports the position that tach to renal tissue of the same host, which increases the dicyemids are morphologically simplified spiralians population density. Once the population density inside a (Kobayashi et al. 1999; Lu et al. 2017). host reaches a certain threshold or if nematogens receive cer- Parasitism is more common in animals than previously tain chemical cues from the environment, nematogens trans- noted and has been reported in 15 of the 35 generally rec- form into sexually reproductive adults, called rhombogens ognized animal phyla (Weinstein and Kuris 2016). Parasitism is (fig. 1A)(Lapan and Morowitz 1972). Inside the central axial likely to have evolved independently >200 times (Wang et al. cell of a rhombogen, the hermaphroditic gonad (infusorigen) 2011). Each parasitism event reflects the interaction of a given generates sperm and eggs. Released gametes fertilize and host–parasite pair, and adaptations to a parasitic lifestyle vary develop into mature, free-swimming infusoriform larvae case by case. Parasites usually exhibit convergence, such as (fig. 1A)(Furuya et al. 1992),whichhavetosenseandlocate simplified morphology and complex lifecycles, reflecting se- new hosts in the open sea. lective pressures common to parasitism. Molecular conver- The phylogenetic position of this enigmatic group gence has also been reported across parasitic lineages, for remained controversial for a long time (Giribet 2008; example, in relation to gene expansions associated with par- Edgecombe et al. 2011). Due to an extremely high rate of asite surface modifications to avoid triggering host immune molecular changes in mesozoans, molecular phylogenetic systems (Wang et al. 2011). In addition, many unique adap- approaches did not always produce reasonable conclu- tations have been observed at the genomic level that enable sions (Katayama et al. 1995; Pawlowski et al. 1996; flatworm parasites to exploit specific niches (Zarowiecki and Petrov et al. 2010; Suzuki et al. 2010). A recent molecular Berriman 2015). Thus, to understand evolution of parasitism, phylogenetic analysis with sequence information for 348 it is necessary to examine genomic innovations that make it nuclear genes showed that dicyemids have close affinities possible. Comparative studies between parasites and closely to orthonectids (fig. 1B)(Lu et al. 2017), although these related nonparasitic species could provide an opportunity to Genome Biol. Evol. 11(8):2232–2243 doi:10.1093/gbe/evz157 Advance Access publication July 26, 2019 2233 Lu et al. GBE test long-standing hypotheses of genome reduction and The Contamination-Removing Assembly Pipeline molecular changes for adaptation to a parasitic lifestyle Eight runs of MiSeq sequencing generated 207 million read (Jackson 2015). pairs of paired-end library (supplementary table S1, As mentioned earlier, dicyemids are microscopic endopar- Supplementary Material online). The quality-trimming process asites inhabiting renal sacs of cephalopods. Although more employed Trimmomatic (v0.33) (Bolger et al. 2014)witha than one dicyemid species can inhabit an individual host quality threshold of 20 and a minimum length of 50 bases (Furuya et al. 2003), dicyemids tend to be highly host- (SLIDINGWINDOW: 4: 20, LEADING: 20, TRAILING: 20, specific (Catalano 2013). Histological studies suggest that MINLEN: 50). In addition, the sequencing of four mate-pair dicyemids employ endocytosis to absorb nutrients from host libraries generated 76.3 million read pairs (supplementary ta- urine via epithelial cell membranes (Ridley 1969). However, ble S1, Supplementary Material online). NextClip (Leggett there are many questions regarding the enigmatic lifestyle of et al. 2014) was used to categorize mate-pair reads by check- dicyemids, especially, what genomic adaptations enable ing
Recommended publications
  • Systema Naturae∗
    Systema Naturae∗ c Alexey B. Shipunov v. 5.802 (June 29, 2008) 7 Regnum Monera [ Bacillus ] /Bacteria Subregnum Bacteria [ 6:8Bacillus ]1 Superphylum Posibacteria [ 6:2Bacillus ] stat.m. Phylum 1. Firmicutes [ 6Bacillus ]2 Classis 1(1). Thermotogae [ 5Thermotoga ] i.s. 2(2). Mollicutes [ 5Mycoplasma ] 3(3). Clostridia [ 5Clostridium ]3 4(4). Bacilli [ 5Bacillus ] 5(5). Symbiobacteres [ 5Symbiobacterium ] Phylum 2. Actinobacteria [ 6Actynomyces ] Classis 1(6). Actinobacteres [ 5Actinomyces ] Phylum 3. Hadobacteria [ 6Deinococcus ] sed.m. Classis 1(7). Hadobacteres [ 5Deinococcus ]4 Superphylum Negibacteria [ 6:2Rhodospirillum ] stat.m. Phylum 4. Chlorobacteria [ 6Chloroflexus ]5 Classis 1(8). Ktedonobacteres [ 5Ktedonobacter ] sed.m. 2(9). Thermomicrobia [ 5Thermomicrobium ] 3(10). Chloroflexi [ 5Chloroflexus ] ∗Only recent taxa. Viruses are not included. Abbreviations and signs: sed.m. (sedis mutabilis); stat.m. (status mutabilis): s., aut i. (superior, aut interior); i.s. (incertae sedis); sed.p. (sedis possibilis); s.str. (sensu stricto); s.l. (sensu lato); incl. (inclusum); excl. (exclusum); \quotes" for environmental groups; * (asterisk) for paraphyletic taxa; / (slash) at margins for major clades (\domains"). 1Incl. \Nanobacteria" i.s. et dubitativa, \OP11 group" i.s. 2Incl. \TM7" i.s., \OP9", \OP10". 3Incl. Dictyoglomi sed.m., Fusobacteria, Thermolithobacteria. 4= Deinococcus{Thermus. 5Incl. Thermobaculum i.s. 1 4(11). Dehalococcoidetes [ 5Dehalococcoides ] 5(12). Anaerolineae [ 5Anaerolinea ]6 Phylum 5. Cyanobacteria [ 6Nostoc ] Classis 1(13). Gloeobacteres [ 5Gloeobacter ] 2(14). Chroobacteres [ 5Chroococcus ]7 3(15). Hormogoneae [ 5Nostoc ] Phylum 6. Bacteroidobacteria [ 6Bacteroides ]8 Classis 1(16). Fibrobacteres [ 5Fibrobacter ] 2(17). Chlorobi [ 5Chlorobium ] 3(18). Salinibacteres [ 5Salinibacter ] 4(19). Bacteroidetes [ 5Bacteroides ]9 Phylum 7. Spirobacteria [ 6Spirochaeta ] Classis 1(20). Spirochaetes [ 5Spirochaeta ] s.l.10 Phylum 8. Planctobacteria [ 6Planctomyces ]11 Classis 1(21).
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Metabarcoding in the Abyss: Uncovering Deep-Sea Biodiversity Through Environmental
    Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA Miriam Isabelle Brandt To cite this version: Miriam Isabelle Brandt. Metabarcoding in the abyss : uncovering deep-sea biodiversity through environmental DNA. Agricultural sciences. Université Montpellier, 2020. English. NNT : 2020MONTG033. tel-03197842 HAL Id: tel-03197842 https://tel.archives-ouvertes.fr/tel-03197842 Submitted on 14 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE M ONTPELLIER En Sciences de l'Évolution et de la Biodiversité École doctorale GAIA Unité mixte de recherche MARBEC Pourquoi Pas les Abysses ? L’ADN environnemental pour l’étude de la biodiversité des grands fonds marins Metabarcoding in the abyss: uncovering deep - sea biodiversity through environmental DNA Présentée par Miriam Isabelle BRANDT Le 10 juillet 2020 Sous la direction de Sophie ARNAUD-HAOND et Daniela ZEPPILLI Devant le jury composé de Sofie DERYCKE, Senior researcher/Professeur rang A, ILVO, Belgique Rapporteur
    [Show full text]
  • Evidence That Nuclear Receptors Evolved from Terpene Synthases
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.29.450438; this version posted July 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Evidence that nuclear receptors evolved from terpene synthases Douglas R. Houstona, Jane G. Hannaa,e, J. Constance Lathea,f, Stephen G. Hillierc,1, and Richard Lathed,1 aInstitute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK; bProgram in Neuroscience, University of Glasgow, Glasgow, UK; cMedical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK; dDivision of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK; ePresent address: Arab Academy for Science, Technology, and Maritime Transport (AASTMT), Cairo Campus, Cairo, Egypt; fPresent address: Ashfield MedComms, Glasgow, UK 1To whom correspondence may be addressed. Email: [email protected] or [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.29.450438; this version posted July 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Ligand-activated nuclear receptors (NRs) including steroid receptors orchestrate development, growth, and reproduction across all animal lifeforms – the Metazoa – but how NRs evolved remains mysterious. Given the universality of terpenoids – including steroids and retinoids – as activating NR ligands, we asked if NRs might have evolved from enzymes that catalyze terpene synthesis and metabolism. We provide evidence suggesting that NRs are a sub-branch of the terpene synthase (TS) enzyme superfamily.
    [Show full text]
  • A Tale of Two Biodiversity Levels Inferred from DNA Barcoding Of
    UNIVERSITÉ DU QUÉBEC À RIMOUSKI A TALE OF TWO BIODIVERSITY LEVELS INFERRED FROM DNA BARCODING OF SELECTED NORTH ATLANTIC CRUSTACEANS DISSERTATION PRESENTED AS PARTIAL REQUIREMENT OF THE DOCTORATE OF BIOLOGY EXTENDED FROM UNIVERSITÉ DU QUÉBEC À MONTRÉAL BY ADRIANA E. RADULOVICI MARCH 2012 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de cette thèse se fait dans le rèspect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522- Rév.01-2006). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusive d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'lnternE?t. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» UNIVERSITÉ DU QUÉBEC À RIMOUSKI L'HISTOIRE DE DEUX NIVEAUX DE BIODIVERSITÉ DEMONTRÉE PAR LE CODE-BARRE D'ADN CHEZ LES CRUSTACÉS DE L'ATLANTIQUE DU NORD THÉ SE PRÉSENTÉE COMME EXIGENCE PARTIELLE DU DOCTORAT EN BIOLOGIE EXTENSIONNÉ DE L'UNIVERSITÉ DU QUÉBEC À MONTRÉAL PAR ADRIANA E.
    [Show full text]
  • The Genera of the Phylum Orthonectida
    Cah. Biol. Mar. (1992),33 : 377-406 Roscoff The genera of the phylum Orthonectida. E.N. Kozloff Friday Harbor Laboratories, University of Washington Friday Harbor, Washington, 98250, USA Résumé: Sept espèces d'orthonectides ont été étudiées par techniques d'imprégnation argentique, qui montrent avec précision l'arrangement des cellules épidermiques et leurs cils. Ces caractéristiques, et la dispoSition des sper­ matozoïdes et des ovocytes, sont à la base des distinctions entre les quatre genres, dont les espèces types sont Rhopalura ophiocomae, /ntoshia linei, CilioCÎncta sabellariae, et Stoecharthrwll giardi. Également, Rhopalura granosa, /ntoshia leptoplanae, et Ciliocùlcta julini sont classées définitivement, et quelques autres, parmi les 18 espèces décrites depuis 1877, peuvent être classées provisoirement. Une liste des hôtes d'orthonectides ni décrits ni identifiés est assemblée. Abstract : Seven species of orthonectids have been studied with the aid of techniques of sil ver impregnation, which demonstrate the arrangement of epidemlal cells and the pattern of ciliation. The four recognized genera, who se type species are Rhopalura ophiocomae, /Ilfoshia linei, Ciliocincta sabellariae, and Stoecharthrul11 giardi, are distinguished on the basis of these features and the disposition of sperm and oocytes. RllOpalura granosa, /ntoshia leptoplanae, and Ci/ocineta juLini are also assigned definitively to genus. A few other species, among the 18 that have been named since 1877, are classified tentatively. Hosts for orthonectids that have not been described or identified are listed. INTRODUCTION The first orthonectid to be given a name was Rhopalura ophiocomae Giard (1877), a parasite of the ophiuroid Amphipholis squamata (= Ophiocoma neglecta) at Wimereux, France. In the same paper, Giard proposed names for two other species.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • OEB51: the Biology and Evolu on of Invertebrate Animals
    OEB51: The Biology and Evoluon of Invertebrate Animals Lectures: BioLabs 2062 Labs: BioLabs 5088 Instructor: Cassandra Extavour BioLabs 4103 (un:l Feb. 11) BioLabs2087 (aer Feb. 11) 617 496 1935 [email protected] Teaching Assistant: Tauana Cunha MCZ Labs 5th Floor [email protected] Basic Info about OEB 51 • Lecture Structure: • Tuesdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes “Tech Talk” • the lecturer will explain some of the key techniques used in the primary literature paper we will be discussing that week • Wednesdays: • By the end of lab (6pm), submit at least one quesBon(s) for discussion of the primary literature paper for that week • Thursdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes Paper discussion • Either the lecturer or teams of 2 students will lead the class in a discussion of the primary literature paper for that week • There Will be a total of 7 Paper discussions led by students • On Thursday January 28, We Will have the list of Papers to be discussed, and teams can sign uP to Present Basic Info about OEB 51 • Bocas del Toro, Panama Field Trip: • Saturday March 12 to Sunday March 20, 2016: • This field triP takes Place during sPring break! • It is mandatory to aend the field triP but… • …OEB51 Will not meet during the Week folloWing the field triP • Saturday March 12: • fly to Panama City, stay there overnight • Sunday March 13: • fly to Bocas del Toro, head out for our first collec:on! • Monday March 14 – Saturday March 19: • breakfast, field collec:ng (lunch on the boat), animal care at sea tables,
    [Show full text]
  • Costa-Paiva Et Al. 2017)
    GBE Broad Phylogenetic Occurrence of the Oxygen-Binding Hemerythrins in Bilaterians Elisa M. Costa-Paiva1,2,*, Carlos G. Schrago1,andKennethM.Halanych2 1Laboratorio de Biologia Evolutiva Teorica e Aplicada, Departamento de Gene´ tica, Universidade Federal do Rio de Janeiro, Brazil 2Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University *Corresponding author: E-mail: [email protected]. Accepted: September 5, 2017 Data deposition: This project has been deposited at GenBank under accession numbers KY929214 to KY929271. Abstract Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that “Hrs” reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages.
    [Show full text]