CO-TRANSCRIPTIONAL PROCESSES: Pol II CTD

Total Page:16

File Type:pdf, Size:1020Kb

CO-TRANSCRIPTIONAL PROCESSES: Pol II CTD All RNAs great and small Institute of Genetics and Biotechnology University of Warsaw HISTORY OF RNA Rinn and Chang, Ann. Rev. Biochem, 2012 RNA – aka My Favorite Molecule RNA form A helix - narrow inaccessible major groove (red) - shallow minor groove (green) - versatile and flexible - catalytically active (splicing, translation, modification) - self-sufficient? - labile (regulation of expression) - create complex 3D structures - specific and unspecific interactions with proteins and other RNAs „THE RNA WORLD” hypothesis „primordial soup” „prebiotic soup” pre-RNA world RNA world RNA+DNA+ proteins RNA+proteins RNA made via condensation RNA evolution- molecules RNA starts to join aminoacids from ribose and other organic learns to replicate and synthesises polypeptides substances and proteins Proteins aid RNA to replicate and make DNA and proteins take over major roles proteins. dsRNA evolves into stable DNA. as genetic information and enzymes RNA capacity - CATALYTIC RNAs Nobel 1989 RNA enzymes – RIBOZYMES -1981/82 Tom Cech - self-splicing in Tetrahymena rRNA -1982 Sidney Altman - bacterial RNaseP RNA subunit Thomas Cech Sidney Altman Tetrahymena group I self-splicing intron Escherichia coli RNaseP RNA mRNA SPLICING Nobel 1993 Phil Sharp Richard Roberts RNAi Nobel 2006 Andrew Fire Craig Mello RNAs – STRUCTURE AND FUNCTION Nobel 2009 Elizabeth Blackburn Venkatraman Ramakrishnan Jack Szostak Ada Yonath Carol Greider Thomas Steitz Telomerase - maintaing chromosome ends Crystal structure of the ribosome Hammerhead, RIBOZYMES Hairpin, HDV viroids, eukaryotes plant satellite RNA, 2007 viruses Nat. Rev. Genet., Nat. Rev. mRNA splicing-like , l organelles (fungi, plants), bacteria, archea Serganov and Pate and Serganov organelles (fungi, plants), bacteria, mitochondria (animals) 2+ Mechanism: nucleophilic attack of the ribose -OH group (H2O, Me ) on the phosphate Serganov and Patel, Nat Rev Genet, 2007; Evans et al, TiBS, 2006 RNase P RNA – a true enzyme enzyme a true – RNA P RNase tRNA processing,multiple turnover tRNA RNase P RNA RNA P RNase coli E. MODERN RNA WORLD RNA vestiges- catalytic RNAs with active centres made of RNA RIBOSOME - protein synthesis SPLICEOSOME - pre-mRNA splicing 5 snRNAs U1, U2, U4, U5, U6 active snRNP center U6 catalytic activity Ribosome, crystal structure Cryo EM Ditlev Brodersen, Venki Ramakrishnan C complex, Cryo EM Galej et al, Nature, 2016 SPLICEOSOME: pre-mRNA SPLICING pre-mRNA::snRNA D3 B Sm/Lsm G Luhrmann and Stark, Curr. Op. Str. Biol., 2009 base-pairing E D1 D2 F snRNPs SPLICEOSOME -ribonucleoprotein complex (RNP) organised around snRNAs RIBOSOME: TRANSLATION - mRNA - messenger, informative - tRNA - transfer, transport of aminoacids - rRNA - ribosome, translation machinery REGULATION OF GENE EXPRESSION translation 6 1) chromatin 5 degradation 2) transcription 7 splicing 4 3) RNA processing processing transcription 2 3 4) RNA export 5) translation (mRNA) 3 ncRNAs 1 6) protein stability 7) RNA degradation RNA • coding: mRNAs • non-coding: ncRNAs • stable • unstable • structural (rRNA, tRNA) • regulatory (si/miRNA) • polyadenylated • non-polyadenylated There are no „free” RNAs in the cell All cellular RNAs exist as ribonucleoprotein particles (RNPs) All RNA types are synthesised as precursors and undergo processing TRANSCRIPTION RNA Pol I RNA Pol II RNA Pol III A135 Rpb2 C128 AC40 Rpb3 AC40 Core subunits AC Rpb (similar in all) A190 Rpb1 C160 AC 19 11 19 5 Common 5 10 5 6 10 6 6 10 subunits 9 9 9 8 (same in all) 8 8 + 4 others + 2 others + 5 others tRNA, 5S rRNA, U6 ribosomal RNA mRNA , most snRNAs (U1, U2, U3, U4, U5, snRNA, U6atac snRNA, 35S precursor contains 7SK RNA, 7SL RNA, 18S, 5.8S and 25S subunits U11, U12, U4atac), snoRNAs, microRNAs, RNase P RNA, telomerase RNA RNase MRP RNA Zbigniew Dominski, lectures 2008 CO-TRANSCRIPTIONAL PROCESSES: Pol II CTD CTD posphorylation status Phospho-CTD Phatnani and Greenleaf, 2006 Associated Proteins - transcription - chromatin structure - RNA processing (splicing, 3’ end formation) - RNA export - RNA degradation - snRNA modification - snoRNP biogenesis - DNA metabolism - protein synthesis and degradation Nucleosome positioning The length of typical internal exons (grey boxes) is comparable to the DNA wrapped around a nucleosome. Nucleosome positioning relative to the transcription start site (TSS), transcription termination site (TTS) and, to a lesser extent, exons helps to define the boundaries of these elements, providing a platform for crosstalk between chromatin, transcription and splicing. Nucleosomes at introns are less stable (dased lines). A sleeping Pol II represents pausing events at splice sites (AG and GT). Consistent with nucleosome phasing over exons, slower transcription elongation has been measured over exonic sequences CO-TRANSCRIPTIONAL PROCESSES O CAPPING N NH OH OH N O O O N NH2 O O P O P O P O O γ - β - α - H2N N N O O O OH OH N N+ - O CH3 7-methylguanosine 5’-5’-triphosphate bridge (m7G) Co-transcriptional capping - occurs after the synthesis of 10-15 nt of RNA - CE recruitment to CTD requires high Ser5-P GT/Ceg1-guanylyltransferase MT/Abd1-methyltransferase (promote early elongation) Cet1-RNA triphopshatase (inhibits re-initiation) CBC-cap binding complex Guo and Lima, Cur. Op.Str.Biol., 2005 CO-TRANSCRIPTIONAL PROCESSES SPLICING Exon1 Exon2 Intron - spliceosome assembly (Ser5-P) - majority of splicing (up to 70-80%) cap Spliceosome Munoz et al., TiBS, 2009 pre-mRNA Wong et al., TiG, 2014 CO-TRANSCRIPTIONAL PROCESSES PRE-rRNA PROCESSING AND MODIFCATION nucleolus 70-80% of cellular transcription is for rRNA by Pol I 50% of Pol II transcription is for RP genes co-trx coupled co-trx cleavage Rnt1 cleavage and termination Granemman and Baserga, Curr.Op.CellBiol., 2005; Kos and Tollervey, Mol.Cell’10 40S small 60S large subunit subunit Co-transcriptional: - association of SSU subcomplexes 80S ribosome - pre-rRNA cleavages dividing small and large subunits (70%) - ribose modification (2’-O-methylation) CO-TRANSCRIPTIONAL PROCESSES sn/snoRNA processing AAAAAAAAAAA AAAAAAAAAAA Exosome: 3’- 5’ exo/endo-nuclease • complex; 10 core components (RNA BP) • catalytically active hydrolytic Dis3/Rrp44 (RNase II) • nuclear cofactors- RNA BP Rrp47, nuclease Rrp6 (RNase D), RNA helicase Mtr4 • cytoplasmic cofactors- Ski2-3-8 complex (RNA helicase Ski2), GTPase Ski7 • subtrates- processing and/or degradation of almost all RNAs TRAMP: nuclear surveillance Trf4/5 + Air1/2 + Mtr4 poly(A) RNA binding RNA DEVH polymerase proteins helicase CO-TRANSCRIPTIONAL PROCESSES POL II TRANSCRIPTION TERMINATION mRNA hybrid allosteric- torpedo model ncRNA CP Cleavage and polyadenylation complex (CP) (recruited at Ser2-P CTD) Pap1 Luo and Bentley, Gene Dev, 2006 Nrd1/Nab3/Sen1-dependent termination (recruited at Ser5-P) ncRNA mRNA • sn/snoRNAs • CUTs • short mRNAs (< 600 nt) Jacquier, Nat. Rev. Genet 2009 CO-TRANSCRIPTIONAL PROCESSES POL I TRANSCRIPTION TERMINATION Nsi1/Re yeast Rnt1 b1 Pol I termination factors: Pol I 25S • DNA-binding protein Nsi1/Reb1 • Pol I subunit Rpa12 • endonuclease Rnt1 5’ • RFB binding protein Fob1 • 5’-3’ exonuclease Rat1/Rai1 Rat1/ Rai1 (torpedo mechanism) • RNA helicase Sen1 • Nrd1/Nab3 complex (??) mammalian transcript release element PTRF – release factor T-stretch + TTF-I pause site SETX – helicase, Sen1 homolog Richard and Manley, GeneDev., 2009 TTF-I – transcription termination factor I CO-TRANSCRIPTIONAL PROCESSES POL III TRANSCRIPTION TERMINATION Landrieux et al., EMBO J., al., et2006 Landrieux Richard and Manley, Gene Dev., 2009 C1, C2 core subunits Pol III EM structure (Pol pausing) C37-C53 subcomplex is situated across the cleft near RNA exit C11 (TFIIS) subunit of Pol III has intrinsic RNA cleavage activity important for Pol lll termination Fernadez-Tornero et al., Mol. Cell, 2007 CO-TRANSCRIPTIONAL PROCESSES mRNA EXPORT: GENE GATING in yeast Iglesias and Stutz, Stutz, Lett,FEBS2008 and Iglesias nucleus NUCLEAR PORE COMPLEX cytoplasm SAGA histone acetyltransferase complex (including Spt, Ada, Gcn5); trx activation THO mRNP biogenesis and export: Hpr1, Mft1, Tho2 and Thp2 (human THOC1-7) TREX transcription-export complex: THO/Sub2/Yra1, interacts with NPC via Mex67-Mtr2 TREX-2 transcription-export complex: Cdc31/Thp1/Sac3 and Sus1 from SAGA TREX-2 and TREX complexes link transcription (Pol II via THO, initiation complex SAGA via Sus1) to export receptors (Mex67, Yra1) and Nuclear Pore Complex POST-TRANSCRIPTIONAL PROCESSES Rex1 tRNA PROCESSING (yeast) Rrp6 tRNA precursors: 5’ leader 3’ leader - 5’ end by RNAse P D tRNase Z - 3’ end by tRNase Z RNase P acceptor stem - alternative 3’ pathway: exonucleolytic by Rex1 and Rrp6 anticodon 5’-3’ ligation pathway tRNA SPLICING yeast In the cytoplasm on the mitochondrial membrane cytoplasm splicing aminoacylation Hopper and Shaheen, TiBS,2008; Lopes et al, WIREsRNA, 2015 3’-5’ ligation pathway Archaea, vertebratesx POST-TRANSCRIPTIONAL PROCESSES tRNA can occur in the nucleus Functions of modifications: and in the cytoplasm • contributeMODIFICATION to folding • provide stability • facilitate alternative structures 2003 , GeneGev. • affect codon recognition (wobble bp) • (frameshifting) contribute to translation Phizicky tRNA CCA ADDITION Hopper and Hopper by tRNA nucleotidyl- transferase tRNA AMINOACYLATION by tRNA aminoacyl synthetases two classes: class I and class II 2001 etBiol.Chem., al, rer (aminoacylate 2’-OH or 3’-OH of A) u Sch COORDINATION: ALTERNATIVE SPLICING, CHROMATIN, ncRNAs, SPLICING FACTORS Luco and Misteli, Curr Op Gene Dev, 2011 Dev, Gene Op Curr Misteli, and Luco COORDINATION: SPLICING AND RNA DECAY Kilchert et al, Nat Rev Mol Cell biol, 2016 .
Recommended publications
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Date: To: September 22, 1 997 Mr Ian Johnston©
    22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A.
    [Show full text]
  • The Protein That Wasn't There: the Discovery of Ribozymes
    The Protein that Wasn't There: The Discovery of Ribozymes Introduction If we were challenged to describe, in layman's terms, what makes living matter different from non-living matter, I suspect that many of us would focus on nucleic acids. Their ability to encode information, to replicate, and their passage from one generation to the next is part and parcel of what makes life special. Ironically, if one examines an organism carefully and observes what makes it "alive," nucleic acids turn out to have very little direct effect on living matter. Whether an animal moves, breathes, digests, turns its head to look, or just blinks an eye, its actions depend far more on enzymes than they do on DNA. Enzymes in muscle produce movement, in nerve cells they open membrane channels that produce message-carrying impulses, throughout the body enzymes produce, store, and convert chemical energy from one form to another. Enzymes are biological catalysts. Enzymes, which lower the activation energies of chemical reaction, are responsible for just about every activity that we associate with living things. Indeed, enzymes even control the synthesis, replication, folding, and activation of DNA itself. What kinds of molecules are there marvelous enzymes? They are proteins, of course. Look at any biology text, high school or college (including pp. 74-76 of Biology by Miller and Levine), and you will find that they devote a generous amount of space (and lots of pictures) to the structure of proteins. They are loaded with terms like a- helix, b- sheet, prosthetic group, secondary structure, and so forth.
    [Show full text]
  • Open Letter to the American People
    FOR IMMEDIATE RELEASE: October 18, 2016 AN OPEN LETTER TO THE AMERICAN PEOPLE The coming Presidential election will have profound consequences for the future of our country and the world. To preserve our freedoms, protect our constitutional government, safeguard our national security, and ensure that all members of our nation will be able to work together for a better future, it is imperative that Hillary Clinton be elected as the next President of the United States. Some of the most pressing problems that the new President will face — the devastating effects of debilitating diseases such as Alzheimer’s disease and cancer, the need for alternative sources of energy, and climate change and its consequences — require vigorous support for science and technology and the assurance that scientific knowledge will inform public policy. Such support is essential to this country’s economic future, its health, its security, and its prestige. Strong advocacy for science agencies, initiatives to promote innovation, and sensible immigration and education policies are crucial to the continued preeminence of the U.S. scientific work force. We need a President who will support and advance policies that will enable science and technology to flourish in our country and to provide the basis of important policy decisions. For these reasons and others, we, as U.S. Nobel Laureates concerned about the future of our nation, strongly and fully support Hillary Clinton to be the President of the United States. Peter Agre, Chemistry 2003 Carol W. Greider, Medicine 2009 Sidney Altman, Chemistry 1989 David J. Gross, Physics 2004 Philip W. Anderson, Physics 1977 Roger Guillemin, Medicine 1977 Kenneth J.
    [Show full text]
  • Federation of American Scientists
    FEDERATION OF AMERICAN SCIENTISTS T: 202/546-3300 1717 K Street NW #209 Washington, DC 20036 www.fas.org F: 202/675-1010 [email protected] Board of Sponsors (Partial List) November 12, 2001 *Sidney Altman *Philip W. Anderson Hon Tom Daschle Hon J. Dennis Hastert *Kenneth J. Arrow *Julius Axelrod Senate Majority Leader Speaker of the House *David Baltimore *Baruj Benacerraf *Hans A. Bethe *J. Michael Bishop Hon Trent Lott Hon Richard Gephardt *Nicolaas Bloembergen *Norman Borlaug Senate Minority Leader House Minority Leader *Paul Boyer Ann Pitts Carter *Owen Chamberlain In the interest of national security we urge you to deny funding for any program, project, or Morris Cohen *Stanley Cohen activity that is inconsistent with the Anti-Ballistic Missile (ABM) Treaty. The tragic events Mildred Cohn *Leon N. Cooper of September 11 eliminated any doubt that America faces security needs far more substantial *E. J. Corey *James Cronin than a technically improbable defense against a strategically improbable Third World *Johann Deisenhofer ballistic missile attack. Ann Druyan *Renato Dulbecco John T. Edsall Paul R. Ehrlich Regarding the probable threat, the September 11 attacks have dramatized what has been George Field obvious for years: A primitive ICBM, with its dubious accuracy and reliability and bearing *Val L. Fitch *Jerome I. Friedman a clear return address, is unattractive to a terrorist and a most improbable delivery system for John Kenneth Galbraith *Walter Gilbert a terrorist weapon. Devoting massive effort and expense to countering the least probable *Donald Glaser and least effective threat would be unwise. *Sheldon L. Glashow Marvin L. Goldberger *Joseph L.
    [Show full text]
  • The 1989 Nobel Prize in Chemistry Goes to Sidney Altman and Thomas
    current eammsnts’ EUGENE GARFIELD IFJSI(TUTE FOR SC16NT(F(L lNf C) HMATl ON~ 3501 MA FIK6T ST PHILADELPHIA PA 19104 The 1989 Nobel Prize in Chemistry Goes to Sidney Alhmm and Thomas R. Cech for the Discovery of Enzymatic RNA Numt3er zy JUIY lb, IYYU The 1989 Nobel Prize in chemistry has been awarded to Sidney Altrnan and Thomas R. Cech for their discovery that RNA in living cells can function not onfy as a molecule of heredity, but also as a biocatalyst. A brief historical overview of the laureates’ work is presented, and citation data for their most-cited publications are examined. Research-front analysis highlights both scientists’ cen- trafit y to the field of RNA enzymology studies. The effect of the finding of RNA catafysis on origin- of-iife theories is also covered. In the late 1970s and early 1980s, two and cell timction have had to be rethought. researchers, working independently, made In the words of the Swedish Academy, a discovery that reversed a 50-year-old “Many chapters in our textbooks have to be dogma in biochemistry-that the triggering revised. ” 1 and acceleration (catalysis) of chemicrd reac- Future applications of catalytic RNA tions within living cells were the exclusive could include its use as gene shears to domain of protein molecules called en- destroy RNA molecules involved in viral zymes. Biophysicist Sidney Altman, Yale infections such as the common cold or University, New Haven, Connecticut, and AIDS, in producing genetically engineered, chemist Thomas R. Cech, University of disease-resistant agricultural plants, and, at Colorado, Boulder, found that ribonucleic some date, correcting certain hereditag dis- acid (RNA), traditionally considered to be eases in both animals and humans.
    [Show full text]
  • From MRC-Cambridge to Madison, Wisconsin
    C HA P TER 5 From MRC-Cambridge to Madison, Wisconsin William Dove and Alexandra Shedlovsky McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI Figure 5.1. Bill Dove. Figure 5.2. Alexandra Shedlovsky. PROLOGue – a STYLE OF DOING SCIENCE Our experience in the early 1960s as postdoctoral fellows in the MRC Unit for Molecular Biology led to our understanding the following principle: science is effectively driven by an idea when the seed is nourished by dialogue between con- trasting outlooks. We shall share our experiences that illustrate this ‘core principle’ 57 MC.indd 57 07/05/2013 16:36:27 M E M ORIES AND C ONSEQUEN C ES by which the MRC unit thrived in that era. Since science does not function in a vacuum we include our perceptions of the cultural context that stimulated the growth of ideas through dialogue. This dialogue led to the remarkable edifice of molecular biology that emerged from the unit and its progeny around the world. Our comments are strictly matters of personal perception; however, Horace Judson’s Eighth Day of Creation gives a more global view of this and surrounding eras,1 while Sidney Altman wrote from a personal perspective of his experiences in the unit a decade later [‘RNA processing: a postdoc in a great laboratory’2]. Finally, the core principle is revealed in the essay written by the physical chemist John Platt [‘Strong Inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others’3]. The messenger RNA experiments, the demonstration of the ‘triplet code’, and Marshall Nirenberg’s polyU encoding polyPhe experiment were all published by the middle of 1961.
    [Show full text]
  • List of Nobel Laureates 1
    List of Nobel laureates 1 List of Nobel laureates The Nobel Prizes (Swedish: Nobelpriset, Norwegian: Nobelprisen) are awarded annually by the Royal Swedish Academy of Sciences, the Swedish Academy, the Karolinska Institute, and the Norwegian Nobel Committee to individuals and organizations who make outstanding contributions in the fields of chemistry, physics, literature, peace, and physiology or medicine.[1] They were established by the 1895 will of Alfred Nobel, which dictates that the awards should be administered by the Nobel Foundation. Another prize, the Nobel Memorial Prize in Economic Sciences, was established in 1968 by the Sveriges Riksbank, the central bank of Sweden, for contributors to the field of economics.[2] Each prize is awarded by a separate committee; the Royal Swedish Academy of Sciences awards the Prizes in Physics, Chemistry, and Economics, the Karolinska Institute awards the Prize in Physiology or Medicine, and the Norwegian Nobel Committee awards the Prize in Peace.[3] Each recipient receives a medal, a diploma and a monetary award that has varied throughout the years.[2] In 1901, the recipients of the first Nobel Prizes were given 150,782 SEK, which is equal to 7,731,004 SEK in December 2007. In 2008, the winners were awarded a prize amount of 10,000,000 SEK.[4] The awards are presented in Stockholm in an annual ceremony on December 10, the anniversary of Nobel's death.[5] As of 2011, 826 individuals and 20 organizations have been awarded a Nobel Prize, including 69 winners of the Nobel Memorial Prize in Economic Sciences.[6] Four Nobel laureates were not permitted by their governments to accept the Nobel Prize.
    [Show full text]
  • Johnson.Speakers to 2017.17
    Johnson Symposia 1986-2018 1986 ALEXANDER KLIBANOV KONRAD BLOCH STEPHEN FODOR ALBERT ESCHENMOSER GEORGE OLAH SIR DEREK BARTON CHI-HUEY WONG JOHN D. ROBERTS REINHARD HOFFMANN GILBERT STORK BRUCE AMES WILLIAM S. JOHNSON 1995 1987 DEREK BARTON DUILIO ARIGONI RON BRESLOW STEPHEN BENKOVIC ALBERT ESCHENMOSER RONALD BRESLOW ROBERT GRUBBS E. J. COREY RALPH HIRSCHMANN GILBERT STORK GEORGE OLAH PETER DERVAN RYOJI NOYORI E. THOMAS KAISER BARRY SHARPLESS JEAN-MARIE LEHN GILBERT STORK 1988 JOHN ROBERTS SAMUEL DANISHEFSKY 1996 DUDLEY WILLIAMS MARYE ANNE FOX PAUL BARTLETT JOEL HUFF KOJI NAKANISHI ERIC JACOBSEN DUILIO ARIGONI LARRY OVERMAN JEREMY KNOWLES GEORGE PETTIT K. BARRY SHARPLESS PETER SCHULTZ DONALD CRAM GREGORY VERDINE 1989 MAXINE SINGER JACK BALDWIN 1997 A. R. BATTERSBY STEPHEN BUCHWALD DAVID EVANS CHARLES CASEY ROBERT GRUBBS STEPHEN FESIK CLAYTON HEATHCOCK M. REZA GHADIRI KOJI NAKANISHI STEPHEN HANESSIAN R. NOYORI DANIEL KAHNE CHARLES SIH MARY LOWE GOOD 1990 JOANNE STUBBE ROBERT BERGMAN 1998 THOMAS CECH KEN HOUK ROALD HOFFMANN NED PORTER STUART SCHREIBER ANDREAS PFALTZ HERBERT BROWN MAURICE BROOKHART HENRY ERLICH SEAN LANCE K. C. NICOLAOU WILLIAM FENICAL E. VOGEL SIDNEY ALTMAN 1991 DUILIO ARIGONI HARRY ALLCOCK 1999 JEROME BERSON STEVEN BOXER DALE BOGER JOHN BRAUMAN WILLIAM JORGENSEN JAMES COLLMAN RALPH RAPHAEL CARL DJERASSI PETER SCHULTZ CHAITAN KHOSLA DIETER SEEBACH BARRY TROST CHRISTOPER WALSH ROBERT WAYMOUTH 1992 THOMAS WANDLESS JACQUELINE BARTON PAUL WENDER KLAUS BIEMANN 2000 RICHARD LERNER SCOTT DENMARK MANFRED REETZ JANINE COSSY ALEJANDRO ZAFFARONI DENNIS DOUGHERTY CLARK STILL JONATHAN ELLMAN J. FRASER STODDART JERROLD MEINWALD HISASHI YAMAMOTO EI-ICHI NEGISHI 1993 MASAKATSU SHIBASAKI PAUL EHRLICH BERND GIESE LOUIS HEGEDUS 2001 STEVEN LEY ROB ARMSTRONG JULIUS REBEK JON CLARDY F.
    [Show full text]
  • Thomas Cech CV
    CURRICULUM VITAE Thomas R. Cech Education and Training B.A. in Chemistry, Grinnell College, Grinnell, Iowa 1970 Ph.D. in Chemistry, University of California, Berkeley with Prof. John E. Hearst 1975 Postdoctoral Fellow, Dept. of Biology, Massachusetts Institute of Technology with Prof. Mary Lou Pardue 1975-77 Positions University of Colorado Boulder Assistant Professor of Chemistry 1978-82 Associate Professor of Chemistry 1982-83 Professor of Chemistry and Biochemistry 1983- Professor of Molecular, Cellular and Developmental Biology (joint appointment) 1983- American Cancer Society Professor 1987- University of Colorado Anschutz Medical Campus Professor of Biochemistry and Molecular Genetics Member, CU Cancer Center 1988- Investigator, Howard Hughes Medical Institute 1988-99; 2009- University of Colorado Distinguished Professor 1990- President, Howard Hughes Medical Institute 2000-09 Director, University of Colorado BioFrontiers Institute (formerly the 2009- Colorado Initiative in Molecular Biotechnology) Honors and Awards National Science Foundation Graduate Fellow 1970-75 Public Health Service Research Fellow, National Cancer Institute 1975-77 Research Career Development Award, National Cancer Institute 1980-85 Passano Foundation Young Scientist Award 1984 Harrison Howe Award 1984 Guggenheim Fellow 1985-86 Pfizer Award in Enzyme Chemistry 1985 Esquire Magazine Register 1985 Denver Post Westerner of the Year 1986 U. S. Steel Award in Molecular Biology 1987 Member, National Academy of Sciences 1987 Honorary Degree, Doctor of Science, Grinnell College 1987 V. D. Mattia Award 1987 Member, American Academy of Arts and Sciences 1988 Newcombe-Cleveland Award, AAAS (with Arthur J. Zaug) 1988 Heineken Prize, Royal Netherlands Academy of Sciences 1988 Gairdner Foundation International Award 1988 Louisa Gross Horwitz Prize (with Phillip A.
    [Show full text]
  • Teenie Matlock Wins Young Investigator Award
    September-October 2011 · Volume 20, Number 5 Teenie Matlock From the President Wins Young Investigator Award Research Conference in Transition igma Xi’s In my last letter I presented a Framework for Action that briefly 2011 Young described three core actions needed to enable long-term growth SInvestigator and achievements consistent with our Society’s mission and vision. Award goes to One of these core actions is the transition of our annual meeting and international cognitive scientist research conference format. I am very pleased that the transition of Sigma Xi that began Teenie Matlock at at the grassroots level of our chapters and regional meetings has positively impacted the the University of format for our November 2011 meeting and research conference. California, Merced. With your continued support, the time is indeed at hand when our proceedings at these She is an associate professor whose main line events will be re-focused on our core values of fostering cooperation among scientists of research is psycholinguistics. and engineers, promoting honor, integrity and honesty in all scientific activities, and Matlock is best known for her work on nurturing the next generation of zealous companions in research around the world. spatial language, especially motion verbs, The core of our Annual Meeting and International Research Conference in Raleigh, but in her latest research, she is investigating North Carolina, November 10-13, 2011 will include speakers and panels, featuring language in the political realm, specifically, prominent leaders in, institutions of higher education, government and private enterprise. how the linguistic details of campaign ads influence attitudes about electability.
    [Show full text]
  • Image-Brochure-LNLM-2020-LQ.Pdf
    NOBEL LAUREATES PARTICIPATING IN LINDAU EVENTS SINCE 1951 Peter Agre | George A. Akerlof | Kurt Alder | Zhores I. Alferov | Hannes Alfvén | Sidney Altman | Hiroshi Amano | Philip W. Anderson | Christian B. Anfinsen | Edward V. Appleton | Werner Arber | Frances H. Arnold | Robert J. Aumann | Julius Axelrod | Abhijit Banerjee | John Bardeen | Barry C. Barish | Françoise Barré-Sinoussi | Derek H. R. Barton | Nicolay G. Basov | George W. Beadle | J. Georg Bednorz | Georg von Békésy |Eric Betzig | Bruce A. Beutler | Gerd Binnig | J. Michael Bishop | James W. Black | Elizabeth H. Blackburn | Patrick M. S. Blackett | Günter Blobel | Konrad Bloch | Felix Bloch | Nicolaas Bloembergen | Baruch S. Blumberg | Niels Bohr | Max Born | Paul Boyer | William Lawrence Bragg | Willy Brandt | Walter H. Brattain | Bertram N. Brockhouse | Herbert C. Brown | James M. Buchanan Jr. | Frank Burnet | Adolf F. Butenandt | Melvin Calvin Thomas R. Cech | Martin Chalfie | Subrahmanyan Chandrasekhar | Pavel A. Cherenkov | Steven Chu | Aaron Ciechanover | Albert Claude | John Cockcroft | Claude Cohen- Tannoudji | Leon N. Cooper | Carl Cori | Allan M. Cormack | John Cornforth André F. Cournand | Francis Crick | James Cronin | Paul J. Crutzen | Robert F. Curl Jr. | Henrik Dam | Jean Dausset | Angus S. Deaton | Gérard Debreu | Petrus Debye | Hans G. Dehmelt | Johann Deisenhofer Peter A. Diamond | Paul A. M. Dirac | Peter C. Doherty | Gerhard Domagk | Esther Duflo | Renato Dulbecco | Christian de Duve John Eccles | Gerald M. Edelman | Manfred Eigen | Gertrude B. Elion | Robert F. Engle III | François Englert | Richard R. Ernst Gerhard Ertl | Leo Esaki | Ulf von Euler | Hans von Euler- Chelpin | Martin J. Evans | John B. Fenn | Bernard L. Feringa Albert Fert | Ernst O. Fischer | Edmond H. Fischer | Val Fitch | Paul J.
    [Show full text]