Thomas Cech CV
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department. -
Nobel Laureates Endorse Joe Biden
Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S. -
Five Great Ideas of Biology
GREATGREAT IDEASIDEAS OFOF BIOLOGYBIOLOGY Paul Nurse KITP Public Lecture, Feb 24, 2010 THETHE CELLCELL The basic unit of life ROBERTROBERT HOOKEHOOKE’’SS MICROSCOPEMICROSCOPE Cork Image: Past Present STEMSTEM IMAGES:IMAGES: PASTPAST ANDAND PRESENTPRESENT Nehemiah Grew (1682) ANTONIANTONI VANVAN LEEUWENHOEKLEEUWENHOEK MICROORGANISMSMICROORGANISMS VANVAN LEEUWENHOEK?LEEUWENHOEK? THEODORTHEODOR SCHWANNSCHWANN “We have seen that all organisms are composed of essentially like parts, namely, of cells.” (1839) RUDOLFRUDOLF VIRCHOWVIRCHOW “Every animal appears as a sum of vital units, each of which bears in itself the complete characteristics of life.” (1858) CELLCELL Rockefeller Nobel Prize Winners in Cell Biology George E. Palade (1974) Christian de Duve (1974) Albert Claude (1974) Günter Blobel (1999) MAMMALIANMAMMALIAN EMBRYOEMBRYO SPERMSPERM ANDAND EGGEGG THETHE CELLCELL The basic unit of life Underpins all reproduction and development Stem cells THETHE GENEGENE Basis of heredity GREGORGREGOR MENDELMENDEL MENDELMENDEL’’SS GARDENGARDEN PEASPEAS PEASPEAS 1919TH CENTURYCENTURY CHROMOSOMESCHROMOSOMES EDOUARDEDOUARD VANVAN BENEDENBENEDEN’’SS NEMATODENEMATODE CHROMOSOMESCHROMOSOMES PNEUMOCOCCUSPNEUMOCOCCUS Avery, MacLeod and McCarty, Rockefeller University (1944) DNADNA MOLECULEMOLECULE CENTRALCENTRAL DOGMADOGMA THETHE GENEGENE Basis of heredity Genotype to phenotype Implications for what we are EVOLUTIONEVOLUTION BYBY NATURALNATURAL SELECTIONSELECTION Life evolves Mechanism of natural selection ERASMUSERASMUS ANDAND CHARLESCHARLES DARWINDARWIN -
Albert A. Bowers, Ph.D
CURRICULUM VITAE Albert A. Bowers, Ph.D. A) PERSONAL INFORMATION Division of Chemical Biology and Medicinal Chemistry Phone: 919-962-4336 Eshelman School of Pharmacy Email : [email protected] 3107 Marsico Hall WeB: http://bowerslab.web.unc.edu 125 Mason Farm Rd. Twitter: @BowersRangers Chapel Hill, NC 27599 B) EDUCATION 2007 Doctor of Philosophy (Ph.D.) in Chemistry The University of Illinois at Chicago, Chicago, IL. 2001 Bachelor of Arts (B.A.) in Art History University of Chicago, Chicago, IL. C) PROFESSIONAL EXPERIENCE 06/2018-present Associate Professor, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 08/2012-05/2018 Assistant Professor, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 08/2011-07/2012 Assistant Professor, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 2011 Visiting scholar, National Institutes of Health, Bethesda, MD Host: Dr. David L. Levens 2005 Visiting scholar, Kyoto University, Kyoto, Japan Host: Prof. Jun-Ichi Yoshida 01/2009-07/2011 Post-doctoral Fellow, Dept. of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA. Advisor: Prof. Christopher T. Walsh 08/2007-12/2008 Post-doctoral Fellow, Dept. of Chemistry, Colorado State University, Fort Collins, CO. Advisor: Prof. RoBert M. Williams D) HONORS AND AWARDS 2018 U. Tokyo/Japan Society for the Promotion of Science Tateshina Young Investigator Award 2016 Boulder Peptide Society Young Investigator Award 2014 Beckman Young Investigator Award 2013 American Association of Colleges of Pharmacy New Investigator Award 2013 Junior Faculty Development Award (UNC) 2008 NIH (NCI) Ruth L Kirschstein Postdoctoral Fellowship (F32) 2006 RoBert M. -
9-Deoxy-A9,A12-13,14
Proc. Natl. Acad. Sci. USA Vol. 81, pp. 1317-1321, March 1984 Biochemistry 9-Deoxy-A9,A12-13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma (dehydration product of prostaglandin D2/serum albumin/cell growth inhibition) YOSHIHARU KIKAWA*, SHUH NARUMIYA*, MASANORI FUKUSHIMAt, HIROHISA WAKATSUKAt, AND OSAMU HAYAISHI§ *Department of Medical Chemistry, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606, Japan; tDepartment of Internal Medicine and Laboratory of Chemotherapy, Aichi Cancer Center, Chikusa-ku, Nagoya 464, Japan; tResearch Institute, Ono Pharmaceutical Co., Shimamoto, Mishima, Osaka 618, Japan; and §Osaka Medical College, Daigaku-cho, Takatsuki, Osaka 569, Japan Contributed by Osamu Hayaishi, November 8, 1983 ABSTRACT Incubation of prostaglandin D2 (PGD2) with from Sigma. Dimethylisopropylsilyl (Me2iPrSi) imidazole human plasma yielded a product that has been identified as 9- and methoxyamine hydrochloride were from Tokyo Kasei deoxy-9,10-didehydro-12,13-cdidehydro-13,14-dihydro-PGD2 (Tokyo). Sep-pak silica and Sep-pak C18 cartridges were (9-deoxy-_9,9'2-13,14-dihydro-PGD2). The identification was from Waters Associates. Precoated silica gel plates [G60- based on mass spectrometry, UV spectrometry, mobilities and (F254)] with concentration zones and silica gel 60 for column retention time on TLC and HPLC, and NMR. The conversion chromatography were from Merck. Sephadex LH-20 was a of PGD2 to this product was dependent on the incubation time product of Pharmacia. Solvents used in the extraction of and the amount of plasma added to a reaction mixture and was PGD2 metabolites for identification were distilled before use. abolished by prior boiling. -
MAY 03 Nucleus Sp-LAST
DED UN 18 O 98 F yyyy N yyyy Y O T R E I T H C E O yyyyN A E S S S L T A E A C R C I yyyyN S M S E E H C C T N IO A May 2003 Vol. LXXXI, No. 9 yyyyC N • AMERI Monthly Meeting Education Night at B.U. Guy Crosby speaks on Chemistry of Nutrition Election 2003 Election of candidates for 2004 Book Review Quantum Leaps in the Wrong Direction, by C. M. Wynn and A. W. Wiggins Historical Note Edward Frankland’s Crusade for Clean Water in the 19th Century template group. If this were true, then this end, a simple molecular modeling Meeting virtually any ring system which ful- exercise was undertaken to compare filled this requirement would lead to a the differences between our best com- series of potent inhibitors pound and those reported by Merck. Report We selected the 1H-pyrrole ring The simple overlay of these molecules From the April 10, 2003 Esselen system as our starting template to test revealed the presence of a methyl Award Address this hypothesis, primarily because group in the Merck compound in a these could readily be prepared from region of space not occupied by our The Discovery And 1,4-diketones through the classical inhibitors. Development Of Lipitor‚ Paal-Knorr condensation and these 1,4- To determine the importance of (Atorvastatin Calcium) diketones, in turn, were potentially occupying this space, bromine and available possessing a wide variety of chlorines were introduced into the 3- Bruce D. -
Scripps Florida Funding Corporation Annual Report
SCRIPPS FLORIDA FUNDING CORPORATION ANNUAL REPORT FOR THE YEAR ENDED SEPTEMBER 30, 2020 Scripps Florida Funding Corporation Annual Report For Year Ended September 30, 2020 INTRODUCTION Florida Statute 288.955 (the “Enabling Statute”) created Scripps Florida Funding Corporation (“SFFC”) to facilitate the establishment and operation of a biomedical research institution for the purposes of enhancing education and research and promoting economic development and diversity. In addition, the Enabling Statute charged SFFC with the obligation to assure the compliance by The Scripps Research Institute (“TSRI”) with the Enabling Statute and the agreement between SFFC and TSRI (the “Operating and Funding Agreement”). The Enabling Statute provides that SFFC shall prepare or obtain certain reports, audits, and evaluations of TSRI’s compliance with the performance expectations and disbursement conditions contained in the Enabling Statute. As such, SFFC is submitting this Annual Report to the Governor, the President of the Senate, and the Speaker of the House, as required by the Enabling Statute to be submitted by December 1 of each year. This SFFC Annual Report addresses the activities and outcomes of SFFC and Scripps Florida (“SF”) for the fiscal year ended September 30, 2020 (“Fiscal 2020”). The Scripps Florida Annual Report addressed the activities and outcomes of Scripps Florida for the year ended June 30, 2020, and the information in the Scripps Florida Annual Report was informally updated for this SFFC Annual Report. The SFFC Annual Report is presented in two parts: first, a summary that highlights the substantial events that have occurred during the year ended September 30, 2020; and second, an itemized report that corresponds with the applicable sections of the Enabling Statute. -
Date: To: September 22, 1 997 Mr Ian Johnston©
22-SEP-1997 16:36 NOBELSTIFTELSEN 4& 8 6603847 SID 01 NOBELSTIFTELSEN The Nobel Foundation TELEFAX Date: September 22, 1 997 To: Mr Ian Johnston© Company: Executive Office of the Secretary-General Fax no: 0091-2129633511 From: The Nobel Foundation Total number of pages: olO MESSAGE DearMrJohnstone, With reference to your fax and to our telephone conversation, I am enclosing the address list of all Nobel Prize laureates. Yours sincerely, Ingr BergstrSm Mailing address: Bos StU S-102 45 Stockholm. Sweden Strat itddrtSMi Suircfatan 14 Teleptelrtts: (-MB S) 663 » 20 Fsuc (*-«>!) «W Jg 47 22-SEP-1997 16:36 NOBELSTIFTELSEN 46 B S603847 SID 02 22-SEP-1997 16:35 NOBELSTIFTELSEN 46 8 6603847 SID 03 Professor Willis E, Lamb Jr Prof. Aleksandre M. Prokhorov Dr. Leo EsaJki 848 North Norris Avenue Russian Academy of Sciences University of Tsukuba TUCSON, AZ 857 19 Leninskii Prospect 14 Tsukuba USA MSOCOWV71 Ibaraki Ru s s I a 305 Japan 59* c>io Dr. Tsung Dao Lee Professor Hans A. Bethe Professor Antony Hewlsh Department of Physics Cornell University Cavendish Laboratory Columbia University ITHACA, NY 14853 University of Cambridge 538 West I20th Street USA CAMBRIDGE CB3 OHE NEW YORK, NY 10027 England USA S96 014 S ' Dr. Chen Ning Yang Professor Murray Gell-Mann ^ Professor Aage Bohr The Institute for Department of Physics Niels Bohr Institutet Theoretical Physics California Institute of Technology Blegdamsvej 17 State University of New York PASADENA, CA91125 DK-2100 KOPENHAMN 0 STONY BROOK, NY 11794 USA D anni ark USA 595 600 613 Professor Owen Chamberlain Professor Louis Neel ' Professor Ben Mottelson 6068 Margarldo Drive Membre de rinstitute Nordita OAKLAND, CA 946 IS 15 Rue Marcel-Allegot Blegdamsvej 17 USA F-92190 MEUDON-BELLEVUE DK-2100 KOPENHAMN 0 Frankrike D an m ar k 599 615 Professor Donald A. -
Innate Immunity and Dendritic Cells in Kidney Disease and the Nobel Prize
EDITORIALS www.jasn.org Innate Immunity and Dendritic nately, Janeway died in 2003 and was no longer eligible to receive the prize. Cells in Kidney Disease and the The discoveries of Hoffmann and Janeway alerted immu- nologists all over the world to the possibility of a new signal- Nobel Prize ing pathway, and in 1998, Bruce Beutler and colleagues at the † Howard Hughes Medical Institute in Dallas first identified Hans-Joachim Anders* and Christian Kurts TLR4 as recognizing bacterial endotoxin.5 Beutler’s approach *Medizinische Poliklinik, Klinikum der Universita¨t Mu¨ nchen-LMU, Campus Innenstadt, Munich, Germany; and †Institutes of Molecu- was as clever as simple. He took advantage of two well-known lar Medicine and Experimental Immunology (IMMEI), University lipopolysaccharide-resistant mouse strains to map the newly Clinic of Bonn, Bonn, Germany discovered loci of the Toll genes. In doing so, he realized that J Am Soc Nephrol 22: ●●●–●●●, 2011. endotoxin resistance was linked to loss-of-function muta- doi: 10.1681/ASN.2011100975 tions in the Tlr4 gene. Two more circumstances encouraged researchers from many disciplines to rush into this new area of science, pro- On December 10, 2011, the Nobel Prize for Physiology or ducing more than 18,000 related publications within the last Medicine will honor the work of Jules Hoffmann, Bruce 15 years: first, Tlr4 mutant mice as well as suitable immuno- Beutler, and Ralph Steinman for their landmark discoveries stimulatory compounds, now discovered as agonists for dis- in the field of immunology. This recognition brings wide at- tinct TLRs, became available at relatively low costs to every- tention to a paradigm shift in understanding how multicel- one, and second, Shizou Akira, in Osaka, produced null mice lular organisms sense and interpret their external and inter- for most TLRs and many other related genes, and did not nal environments in maintaining homeostasis or initiating hesitate to share them with collaborators and competitors. -
Balcomk41251.Pdf (558.9Kb)
Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr. -
Guidelines and Information for Feodor Lynen Research Fellows Contents Page
Guidelines and Information for Feodor Lynen Research Fellows Contents Page PREFACE 4 A. FEODOR LYNEN RESEARCH FELLOWSHIP GUIDELINES 6 A.1. The Feodor Lynen Research Fellowship ....................................... 7 A.1.1. Acceptance ............................................................................. 7 A.1.2. Commencement ...................................................................... 8 A.1.3. Duration .................................................................................. 8 A.1.4. Extension ................................................................................ 8 A.1.5. Calculation of monthly fellowship grant ................................... 9 A.1.5.1. Base fellowship ................................................................. 9 A.1.5.2. Foreign allowance ............................................................. 9 A.1.5.3. Family allowance for marital partners .............................. 11 A.1.5.4. Family allowance for children .......................................... 11 A.1.5.4.1. Child allowance ......................................................... 11 A.1.5.4.2. Substitutional payment for child benefit according to the German Income Tax Act (Einkommensteuergesetz, EStG) . 12 A.1.5.5. Allowance for direct research costs ................................. 13 A.1.6. Host contribution ................................................................... 13 A.1.7. Additional earnings ................................................................ 13 A.1.8. Change of circumstances -
Kalypsys to Provide the Florida Scripps Research Institute with Next- Generation Lead Discovery Technology
KALYPSYS TO PROVIDE THE FLORIDA SCRIPPS RESEARCH INSTITUTE WITH NEXT- GENERATION LEAD DISCOVERY TECHNOLOGY 6/15/2005 San Diego, June 16, 2005 — Kalypsys, Inc., a privately owned drug discovery and development company and The Scripps Research Institute (TSRI) entered into an agreement in which Scripps will access Kalypsys' proprietary ultra-high throughput screening technologies as a key enablement for the newly created TSRI site in Florida. "We are pleased to be selected for this Florida initiative," stated John P. McKearn, president and CEO of Kalypsys. "Developing a state-of-the-art research center will have a significant impact on Florida's economic development in the area of biotechnology and biomedical research and we are honored our technology has been selected to assist in this endeavor." The Kalypsys technology platform is designed and manufactured to meet the specific needs of each partner. The platform is comprised of a suite of lead discovery solutions, including a highly automated, robotic, ultra-high throughput screening technology capable of screening a variety of biochemical and biologically relevant cellular assays in 1536-well formats. The power and robustness of the Kalypsys technologies make it ideally suited to probe a large number of diverse targets rapidly. With the Kalypsys system, Scripps Florida is developing leading-edge technologies to enable scientists to examine the basic biology of human health and find better treatments for a variety of devastating human diseases. A team of accomplished scientists is implementing research programs addressing diseases such as AIDS, cancer, diabetes, obesity, prion diseases, Parkinson's disease and schizophrenia among others. The research programs focus on genetic disease informatics, cancer biology, infectology, genetics, proteomics, drug metabolism and pharmacokinetics.