Eaton Switchgear Power Center Construction Features

Total Page:16

File Type:pdf, Size:1020Kb

Eaton Switchgear Power Center Construction Features Effective March 2018 Technical Data TD02104001E Supersedes June 2012 Eaton Switchgear Power Center construction features Introducing the Eaton Switchgear Power Center The Eaton Switchgear Power Center is a state-of-the-art solution for integrating 5 kV through 38 kV metal-clad switchgear and other electrical control and protection equipment into a single outdoor enclosure. The Eaton Switchgear Power Center enclosure can be provided with additional space for control and protection panels, dc battery systems, security equipment, communications panels, local HMI, accessory and spare parts storage, and other equipment, as specified. The Power Center enclosure, along with the switchgear and other equipment, is designed, manufactured, and tested as a combined assembly at Eaton’s Omaha, NE, facility. One of the many benefits of an Eaton Switchgear Power Center is its thermal insulation and HVAC system, which are included to maintain a safe, climate-controlled environment for maintenance and operations personnel. For proven performance and pioneering technology, choose an Eaton Switchgear Power Center. Technical Data TD02104001E Eaton Switchgear Power Center Effective March 2018 construction features Autodesk Inventor Design of an Eaton Switchgear Power Center begins with the use of the best available design tools. Eaton uses Autodesk InventorT for development of its mechanical designs. Autodesk Inventor is a three-dimensional modeling program that will automatically check interferences to ensure that all components and subassemblies fit together properly. It allows Eaton to view the complete assembly from any angle so the design can be optimized to take advantage of the most efficient fabrication and assembly methods. Customer drawings can be prepared in AutoCADT or MicroStationT format and can be supplied in the medium desired by the customer, including drawing files transmitted electronically or on a compact disc. Eaton can also use an FTP site for efficient exchange of technical information during the life of a project. Bill-of-material callouts Eaton’s Omaha Power Center uses bill-of-material callouts on drawings so that customers can easily identify installed components. The callouts reference the bill-of-material item number so that technical information relating to operation or maintenance can be easily located. Operation and Maintenance manuals can be provided on CD in fully indexed pdf format for easy access from any computer. Bill-of-material item description Item Qty Description 50 1 Communications Processor Schweitzer SEL2032/T1 Cat. No. 203233X344XXXX Standard with SCADA RTU functions, remote access, and plug-in protocol cards. Horizontal panel mount. Standard memory for database and settings storage with archive storage memory. Power supply input 85–140 Vac, output 38–200 Vdc, I/O board with four outputs, 16 inputs, and input voltage of 125 Vdc. 2 EATON www.eaton.com Eaton Switchgear Power Center Technical Data TD02104001E construction features Effective March 2018 Fabrication Each Eaton Switchgear Power Center and every switchgear enclosure manufactured in Eaton’s Omaha facility is fabricated from 11-gauge steel. All steel is cut on a fully automated high- energy laser. Programming is downloaded directly from the Eaton engineering server. The precision of the laser ensures that all pieces are cut to the correct size every time. The net result is that pieces fit to exacting tolerances to ensure weatherproof integrity of the Power Center enclosure. The smooth edges left by laser cutting allow excellent adhesion of the protective powder coating and prevent possible damage to wiring. Angle iron longitudinal bracing Eaton Switchgear Power Center equipment bases are fabricated from structural steel channel. This allows the switchgear to be installed cantilevered over a concrete pad or on piers, without the need for additional bracing. Floors are fabricated from 7-gauge plate steel with structural steel angles installed along the entire length of the base on 12-inch centers. This system provides superior performance over 1/4-inch plate steel floors and ensures that breakers battery systems, test equipment, and other materials located in the aisle or work areas are properly supported at all times. EATON www.eaton.com 3 Technical Data TD02104001E Eaton Switchgear Power Center Effective March 2018 construction features Protective coatings An amine-cured, coal tar epoxy protective coating is applied to the bottom of each Eaton Switchgear Power Center base to prevent corrosion after installation. Spray-on foam insulation is applied to meet building codes and customer specifications. The outside perimeter of each base is protected with a corrosion-resistant, black epoxy coating that adheres well to structural steel and is resistant to damage from impact. Permanent lifting eyes are integrally welded at the corners of each shipping section to facilitate unloading at the job site. Access for shipping split The floor is protected by a non-skid epoxy coating that resists marring and scratches. This coating is allowed to fully cure prior to the start of assembly. Cutouts are provided in the floor for entry of control or power cables, as required. A steel or aluminum cover plate is installed over each cutout. Access cutouts are provided at shipping splits, when required, to allow bolting of the base sections together. Cover plates for access openings are installed flush with the floor and held in place with countersunk screws that are level with the floor surface to eliminate any possible tripping hazard. 4 EATON www.eaton.com Eaton Switchgear Power Center Technical Data TD02104001E construction features Effective March 2018 After fabrication is complete, all metal parts are cleaned under high pressure, followed by an application of a protective phosphate coating to improve corrosion inhibition. Each piece is then electrostatically coated with a polyester powder. The powder coating is fully cured in a baking oven so that parts can be assembled immediately after cool-down. Powder coating provides superior coverage on edges and hard-to-reach areas and is very resistant to high temperatures. A high- gloss finish prevents absorption of dust and dirt and is easy to clean. The Eaton powder coat provides superior performance and resistance to the following conditions: • Marring and scratching • Direct impact • Reverse impact • Chipping • Corrosive atmospheres • Cracking from bending • Ultraviolet radiation • Extreme heat • Wind-borne snow and rain • Wind-borne dust and sand Following are results of actual ASTM tests that compare performance of the powder coat to polyurethane and acrylic enamel finishes commonly used by other manufacturers. Pencil hardness (ASTM D3363) (resistance to marring and scratches) 6B … 5B … 4B … 3B … 2B … B … HB … F … H … 2H … 3H … 4H … 5H … 6H … Softer Harder Polyester powder Polyurethane Acrylic enamel 2H–4H F–H B–HB Chip resistance (ASTM D3170) (resistance to chipping by impact) Flexibility (ASTM D522) (cracking under bending) 3A–3D … 4A–4D … 5A–5D … 6A–6D … 7A–7D … 8A–8D … 9A–9D … Polyester powder Polyurethane Acrylic enamel Worse Better Pass Pass Fail Polyester powder Polyurethane Acrylic enamel 5A 4A 3B Salt spray (ASTM B117) (resistance to corrosion) Polyester Powder Polyurethane Acrylic enamel Impact resistance (ASTM D2794) (resistance to cracking under 2X 1X 1X impact) Direct impact Polyester powder Polyurethane Acrylic enamel Accelerated weathering (QUV340A) (gloss retention and color fastness) +160 in-lb +75 in-lb +30 in-lb Polyester powder Polyurethane Acrylic enamel 10% loss at 2000 hours 10% loss at 1000 hours 10% loss at 1000 hours Reverse impact Polyester powder Polyurethane Acrylic enamel +160 in-lb +40 in-lb +10 in-lb EATON www.eaton.com 5 Technical Data TD02104001E Eaton Switchgear Power Center Effective March 2018 construction features Interior coating and floor protection After fabrication, each switchgear cubicle receives a high-visibility white polyester powder coat inside and out. Cubicles are then assembled onto a base and bolted together to form the switchgear lineup. Masonite sheets are installed over all open floor areas to protect the floor surface during assembly and wiring. The masonite sheets are left in place to continue to protect the floor during installation and testing at the job site. As a result, floor surfaces stay in perfect condition, without the need for touchup or re-coating prior to placing the equipment into service. Masonite sheets Walls Eaton Switchgear Power Center walls are fabricated from 11-gauge steel and coated on both sides with a polyester powder. Each panel is fabricated with a double-return flange. When bolted together, they create an I-beam shape (as shown below) for added strength. 11-gauge steel Double-return flange Walls are thermally insulated with rigid, closed-cell foam to meet customer specifications or any applicable state building codes. This material has a higher insulation value than fiberglass batting and will not sag once installed. The rigid foam is easy to form around cutouts and other shapes in order to insulate all spaces, and will not absorb moisture should condensation be present. After installation, insulation is protected by 14-gauge steel wall panels. 6 EATON www.eaton.com Eaton Switchgear Power Center Technical Data TD02104001E construction features Effective March 2018 Tapered roof channel Roof After the walls of the Eaton Switchgear Power Center have been erected, full-depth tapered roof channels, spaced every 36 inches, are bolted
Recommended publications
  • Innovation to Reality-Introducing State-Of-The-Art Protection And
    INNOVATION TO REALITY – INTRODUCING STATE-OF-THE-ART PROTECTION AND MONITORING TO EXISTING LOW-VOLTAGE SWITCHGEAR Sherwood Reber Michael Pintar Christopher Eaves Lafarge North America General Electric General Electric Abstract – A large array of components with communications capabilities exists for constructing I. INTRODUCTION protection, monitoring, and control systems for A. Background power distribution equipment (switchgear). While most of these components or devices perform Communicating devices and associated multiple functions, a typical application will contain networks are increasingly common in electrical at least several different devices that must be power distribution equipment. The networks interconnected to function as a complete system. provide the important connection among individual An example might be multifunction meters coupled devices, such as trip units, meters, and protective with multifunction protective relays, and a relays, for gathering and reporting critical power programmable logic controller for a complete system information. In low-voltage power systems system. Could it be possible to take the functions (600 V and below), a network of communicating of multiple microprocessor-based devices and devices can provide supervisory control functions, combine those functions into a single-processor gather substation electrical data, and report event system? Would the new system be able to status to a central control computer. execute instructions for fast acting overcurrent protection while gathering simultaneous
    [Show full text]
  • Electrical Balance of Plant Solutions for Power Generation
    GE Grid Solutions Electrical Balance of Plant Solutions for Power Generation g imagination at work Today’s Environment Todays power plants, whether heavy duty gas turbines, a distributed mobile “power plant on wheels”, or a remote wind farm, are becoming increasingly complex, especially when connecting different disparate systems seamlessly together. This is resulting in increasing industry challenges including: Demand Management Emergency Power Supplementing power to the grid for peak Support during natural disasters due to shaving or managing seasonal demands. unpredictable global weather patterns as well as support in politically volatile regions of the world. Constraint Management Regulatory Environment Overcoming generation constraints with Rapidly changing regulations, standards and impact increasing demand. on grid stability due to a variety of power generation sources on the grid. Back-up Power Power Quality Supporting maintenance, overhauls, or Managing changed network load profiles, larger outages at power plants. switched or dynamic loads, missing or overloaded interconnections. Rural Demand Energy Savings Population growth in large cities creating Reduce production cost through energy savings and increase in electrification of rural areas. increase process efficiency. With one of the largest installed base of turbine generators in the world, coupled with more than a century of experience delivering innovative, high voltage solutions in generation, transmission, and distribution networks, GE helps utilities solve these challenges with its versatile and robust suite of solutions for Electrical Balance of Plant (EBoP) applications offering best-in-class manufactured products with engineering and installation services. Providing a broad range of solutions to suit customer’s specific EBoP requirements, GE’s solutions are designed with scalability in mind to support a large scope of projects ranging from heavy duty turbine generation to hydro pump storage, renewable wind and solar applications.
    [Show full text]
  • Basics in Low Voltage Distribution Equipment
    Thought leadership White paper Basics in low voltage distribution equipment Mark Rumpel Basics of electricity generation Product line manager Eaton In the U.S., as elsewhere, electricity has historically been generated from precious natural resources including coal, oil or natural gas. Nuclear energy and hydropower innovations advanced electrical Executive summary generation capabilities at the end of the 20th century. Today, Depending on their unique needs, multi-family, commercial and alternative and renewable fuels such as geothermal energy, wind industrial sites typically rely upon either low or medium voltage power, biomass and solar energy are gradually becoming more service entrance equipment to control or cut off the electrical readily available; these sources are popular both for their higher supply of their buildings from a single point. Low voltage efficiency and long-term sustainability. distribution equipment typically operates at less than 600 volts; Once harvested, natural resources and mechanical energy sources in contrast, medium voltage equipment affords a wider range must first be converted into electrical energy to make it transmis- of 600 to 38,000 volts. sible and usable. Power plants complete this function using steam This paper provides a basic overview of the definitions, turbines. components, applications and other details associated Water is heated in a massive boiler to produce steam, which is used with low voltage distribution equipment. It covers electrical to turn a series of blades mounted on a shaft turbine. The force of panelboards, switchboards and switchgear operating at the steam rotates a shaft connected to a generator. The spinning 600 volts alternating current (AC) or direct current (DC) or below.
    [Show full text]
  • Circuit Breaker Control Guidelines for Vacclad-W Metal-Clad Switchgear
    Application Paper AP083012EN Circuit breaker control guidelines for VacClad-W metal-clad switchgear Circuit breaker control Control breaker control equipment Relays Eaton’s VCP-W circuit breaker has a motor charged Microprocessor-based or solid-state relays spring type stored energy closing mechanism. would generally require dc power or reliable Closing the breaker charges accelerating springs. uninterruptible ac supply for their logic circuits. Protective relays or the control switch will energize a shunt trip coil to release the accelerating springs Auxiliary switches and open the breaker. This requires a reliable Optional circuit breaker and cell auxiliary switches source of control power for the breaker to function are available where needed for interlocking or as a protective device. Figure 2 and Figure 3 control of auxiliary devices. Typical applications and show typical ac and dc control schematics for type operation are described in Figure 1 and Table 1. VCP-W circuit breakers. Breaker auxiliary switches and MOC switches For ac control, a capacitor trip device is used are used for breaker open/close status and with each circuit breaker shunt trip to ensure that interlocking. energy will be available for tripping during fault conditions. A control power transformer is required Auxiliary contacts available for controls or external on the source side of each incoming line breaker. use from auxiliary switch located on the circuit Closing bus tie or bus sectionalizing breakers breaker are typically limited in number by the will require automatic transfer of control power. breaker control requirements as follows: This control power transformer may also supply • Breakers with ac control voltage: 1NO and 3NC other ac auxiliary power requirements for the switchgear.
    [Show full text]
  • WL Arc Resistant Low Voltage Switchgear Product Guide
    WL Arc Resistant Low Voltage Switchgear Product guide usa.siemens.com/switchgear WL Arc Resistant Low Voltage Switchgear Features, Benefits and Ratings Enhanced safety • One piece circuit breaker compartment doors with insert panels Siemens now offers arc resistant, metal-enclosed, low for control devices such as fuses, indicating lights and circuit voltage switchgear designed to provide an additional degree breaker control switches when required. of protection for personnel performing normal operating duties • Reinforced bolted rear covers. in proximity to the energized equipment. Such duties include • Insulated/Isolated bus bar system. opening or closing circuit breakers, closed door circuit breaker • Integrally designed circuit breaker door sealing frame that racking, reading instruments, or other activities that do not allows the user to rack a circuit breaker to connect, test or require cover removal or opening doors (other than auxiliary/ disconnect position without having to install additional instrument compartment doors). hardware (bellows, shrouds, etc) and still maintain arc resistant rating of the apparatus. Why arc resistant switchgear • Shutters in circuit breaker compartments. Standard metal-enclosed switchgear is designed to withstand the mechanical forces generated by bolted faults on the load • Riser Base with integrated arc plenum. terminals until a power circuit breaker or other protective device • Four high power circuit breaker stacking capability. No can interrupt the flow of fault current. This capability is verified additional stacking/configuration restrictions. by short-circuit and short-time withstand tests on the equipment • All section configurations available. Available in solidly and interruption tests on the power circuit breakers. During grounded or resistance grounded configurations. a bolted fault, the voltage at the fault location is essentially • Non-fused non current-limiting circuit breakers allow full zero and the fault energy is dissipated throughout the power power coordination.
    [Show full text]
  • VFI Transformer Vs. Switchgear Information
    Distribution Transformers Reference Data COOPER POWER Effective March 2015 TD202003EN Supersedes R210-90-2 August 2012 SERIES VFI transformer vs switchgear At issue Simplified installation A comparison of operating capabilities and costs Because there is only one piece of low-profile demonstrates that a transformer equipped with equipment to install, the installation is faster, an integral vacuum fault interrupter (VFI) can be simpler, cheaper, and more aesthetically pleasing. a superior alternative to a non-VFI transformer in Lower operating and maintenance costs combination with stand-alone switchgear. There is one piece of equipment to maintain Recommendation instead of two. Substation units reduce inventory and maintenance costs associated with insulators Eaton combines a conventional distribution or barriers. The sealed tank design protects transformer with the VFI vacuum fault interrupter the oil-immersed VFI breaker so that operation – the same advanced technology used in VFI is unimpaired by contaminated or hazardous pad-mounted switchgear in its Cooper Power™ environments or flood conditions. Breaker series VFI transformer. This combination provides maintenance is virtually eliminated. both voltage transformation and overcurrent Transformer or loop overcurrent protection protection in one space-saving, money-saving up to 35 kV package. When a transformer fault or overload condition The VFI transformer is practical for application occurs, the VFI breaker trips and isolates the on all distribution systems—new or existing, transformer, leaving the feeder uninterrupted. outdoor or indoor (Envirotemp™ FR3™ fluid-filled), When a fault occurs downstream, the VFI breaker commercial or industrial. It is vital for installations trips and isolates the fault, leaving the transformer where conventional protective equipment doesn't load uninterrupted.
    [Show full text]
  • Schulz Electric Hydroelectric
    Hydroelectric Services Turnkey Services and Maintenance Programs 24-Hour Emergency Service ©2016 Schulz Group, a brand of Timken Gears & Services Inc. All rights reserved. Complete Mechanical and Electrical Services for the Hydroelectric Industry Schulz Group’s hydroelectric specialists at Maine Industrial Repair provide comprehensive maintenance programs and repair services for hydroelectric generation facilities. Our experience can help minimize downtime, reduce annual maintenance expenses, and prolong the life of hydroelectric equipment. Schulz Electric and Maine Industrial Repair Services are ISO 9001:2008 Certified. Schulz Group’s attention to detail and quality standards are second to none in the industry. Now part of the Timken Company, Schulz Group is dedicated to expanding its proven reputation as the leader in hydroelectric generator services. Schulz Group offers complete services for both horizontal and vertical units. Schulz Group has the capability to service customers’ equipment, from On-site crews disassemble a generator waterline to exciter, as well as controls, switchgear and mechanical parts. prior to repair. Industries served • Waste Water Treatment • Municipalities • Hydroelectric Power Generation • Fresh Water Treatment • Building Maintenance • Nuclear Power Generation • Manufacturing • Schools and Universities • Engineering Support • Paper Mills • Power Generation • Renewable Energy Applications ©2016 Schulz Group, a brand of Timken Gears & Services Inc. All rights reserved. Maintenance Programs On-site inspection of a generator as part of a On-site inspection of a horizontal unit Technicians have the capability to perform complete preventive maintenance program. prior to mechanical repairs. in-place repairs to generator coils and poles. Do you know the true cost commitment to customers and plays • Complete mechanical inspections of unplanned downtime? a vital role in providing solutions of guide bearings, head covers, designed to return equipment to linkage eccentrics, wicket gates, How long can you go without your like new condition.
    [Show full text]
  • Hydropower Vision Chapter 2
    Chapter 2: State of Hydropower in the United States Hydropower A New Chapter for America’s Renewable Electricity Source STATE OF HYDROPOWER 2 in the United States Photo from 65681751. Illustration by Joshua Bauer/NREL 70 2 Overview OVERVIEW Hydropower is the primary source of renewable energy generation in the United States, delivering 48% of total renewable electricity sector generation in 2015, and roughly 62% of total cumulative renewable generation over the past decade (2006-2015) [1]. The approximately 101 gigawatts1 (GW) of hydropower capacity installed as of 2014 included ~79.6 GW from hydropower gener ation2 facilities and ~21.6 GW from pumped storage hydro- power3 facilities [2]. Reliable generation and grid support services from hydropower help meet the nation’s require- ments for the electrical bulk power system, and hydro- power pro vides a long-term, renewable source of energy that is essentially free of hazardous waste and is low in carbon emissions. Hydropower also supports national energy security, as its fuel supply is largely domestic. % 48 HYDROPOWER PUMPED CAPACITY STORAGE OF TOTAL CAPACITY RENEWABLE GENERATION Hydropower is the largest renewable energy resource in the United States and has been an esta blished, reliable contributor to the nation’s supply of elec­ tricity for more than 100 years. In the early 20th century, the environmental conse- quences of hydropower were not well characterized, in part because national priorities were focused on economic development and national defense. By the latter half of the 20th century, however, there was greater awareness of the environmental impacts of dams, reservoirs, and hydropower operations.
    [Show full text]
  • Wastewater Treatment Cogeneration Fact Sheet
    Wastewater Treatment Cogeneration Fact Sheet Cogeneration at West Point Treatment Plant The West Point Treatment Plant captures renewable energy to maximize value from a green energy resource – biogas from the wastewater treatment process. Biogas from the plant’s digesters contains about 60 percent methane (the combustible component of natural gas). The cogeneration system creates electricity from this gas and captures the heat generated from the engines. The system reduces West Point’s demand for electricity supplied from the grid, and will provide a significant portion of West Point’s heat demand for most of the year. West Point’s cogeneration facility is the latest upgrade in a long history of energy recovery from biogas at West Point. West Point has been using digester gas in the treatment process since it opened in 1966 to run raw sewage pump engines and generate heat, and it first began creating electricity from biogas in 1983. This new cogeneration system is the largest combined heat and power facility in the State of Washington that uses biogas from digesters. Internal Combustion Engines The cogeneration of power and heat at West Point uses internal combustion engines. Internal combustion cogeneration systems use an engine similar to an automobile engine. In this case, renewable digester gas is used as the energy source instead of gasoline, and the output of the engine drives a generator. At West Point, two internal combustion engines fueled by digester gas provide power to generators that produce electricity for the plant. The heat from several parts of the engines including the jacket water, lube oil, after cooler, and exhaust, is used to heat water which is then sent to heat digesters, and occupied spaces.
    [Show full text]
  • WL Low Voltage Metal-Enclosed Switchgear
    WL Low Voltage Metal-Enclosed Switchgear Selection and Application Guide usa.siemens.com/switchgear Type WL Low Voltage Metal-Enclosed Switchgear Table of Contents General Information 2 Construction Details 3-5 WL Circuit Breaker 6-8 Electronic Trip Unit 9-15 Breaker Technical Data 16-17 WL Secondary Terminal Assisgnments 18 Section Configurations 19-20 Shipping Weights and Dimensional Information 21-29 VT, CPT, CT Data 30 1 Type WL Low Voltage Metal-Enclosed Switchgear General Information Siemens Type WL low voltage metal- enclosed switchgear is designed, constructed and tested to provide superior power distribution, power monitoring and control. At the heart of the Type WL low voltage switchgear is the World Class Siemens WL breaker. Siemens Type WL low voltage switchgear can be utilized in the following applications: • Industrial Heavy assembly Semiconductor Petrochemical Automotive Biotech Pharmaceutical • Institutional Type WL Low Voltage Metal-Enclosed Switchgear Water treatment Airports Industry Standards Universities • ANSI C37.17 – Trip Devices for AC Type WL switchgear with power circuit Medical facilities and General Purpose DC Low-Voltage breakers are designed, tested and Correctional facilities Power Circuit Breakers constructed in accordance with: • NEMA SG3 - Low Voltage Power • Critical Power • UL 1558 – Metal-Enclosed Low Circuit Breakers Data Processing Voltage Power Circuit Breaker Continuous industrial process Switchgear Features and modifications required by Hospitals • ANSI C37.20.1 – Metal-Enclosed NEC are incorporated
    [Show full text]
  • Hydropower Plants As Black Start Resources
    Hydropower Plants as Black Start Resources May 2019 Jose R. Gracia Patrick W. O’Connor Lawrence C. Markel Rui Shan D. Thomas Rizy Alfonso Tarditi ORNL/SPR-2018/1077 Approved for public release. Distribution is unlimited. Acknowledgments This work was authored by Oak Ridge National Laboratory, managed by UT-Battelle for the US Department of Energy, under contract DE-AC05-00OR22725 and supported by the HydroWIRES Initiative of the Energy Department’s Water Power Technologies Office (WPTO), under contract number DE-AC05-00OR22725. The authors would like to thank Stephen Signore of Oak Ridge National Laboratory for his help in determining the makeup of current black start units in the United States. Additional thanks go to Alejandro Moreno, Samuel Bockenhauer, and Rebecca O’Neil for their thoughtful comments on drafts of the white paper. HydroWIRES The US electricity system is changing rapidly with the large-scale addition of variable renewables, and the flexible capabilities of hydropower (including pumped storage hydropower) make it well-positioned to aid in integrating these variable resources while supporting grid reliability and resilience. Recognizing these challenges and opportunities, WPTO has launched a new initiative known as HydroWIRES: Water Innovation for a Resilient Electricity System. HydroWIRES is principally focused on understanding and supporting the changing role of hydropower in the evolving US electricity system. Through the HydroWIRES initiative, WPTO seeks to understand and drive utilization of the full potential of hydropower resources to contribute to electricity system reliability and resilience, now and into the future. HydroWIRES is distinguished in its close engagement with the US Department of Energy (DOE) national laboratories.
    [Show full text]
  • And Medium-Voltage Arc Flash Mitigation Solutions for Greater Protection and Productivity
    — Smarter safety IEC low- and medium-voltage arc flash mitigation solutions for greater protection and productivity • Maximum protection • Maximum uptime • Maximum peace of mind — The occurrence of an arc flash is the most serious fault within a power system. Its destructive impacts can lead to severe personnel injuries, costly equipment damage and long outages. ABB offers a wide range of solutions to prevent and mitigate the effects of arc flash events, thus enhancing safety, minimizing damage and reducing downtime. — Table of contents 004 – 005 The business case for arc flash mitigation solutions 006 – 007 What is an arc flash? 008 – 013 Passive, active and preventive solutions 014 – 015 Portfolio overview 016 – 019 Passive arc flash protection product range 020 – 023 Active arc flash mitigation product range 024 – 026 Preventive arc flash protection product range 4 SMARTER SAFETY ARC FLASH MITIGATION SOLUTIONS FOR GREATER PROTECTION AND PRODUCTIVITY — SMARTER SAFETY There is a real business case for arc flash protection and mitigation and at ABB we are proud that our wide range of solutions goes beyond compliance with standards and regulations to bring you the best possible value. PUTTING THE PROTECTION OF YOUR PEOPLE FIRST 5 — Putting the protection of your people first is a smart choice. Because safety is not a cost, it is an investment. It goes without saying that safety should be a Maximum protection. Protect personnel with priority for every business. Arc flash mitigation solutions ranging from passive protection to solutions are essential because they save lives. ultra-fast arc mitigation solutions. ABB’s portfolio But that’s not all.
    [Show full text]