Hydropower Vision Chapter 2

Total Page:16

File Type:pdf, Size:1020Kb

Hydropower Vision Chapter 2 Chapter 2: State of Hydropower in the United States Hydropower A New Chapter for America’s Renewable Electricity Source STATE OF HYDROPOWER 2 in the United States Photo from 65681751. Illustration by Joshua Bauer/NREL 70 2 Overview OVERVIEW Hydropower is the primary source of renewable energy generation in the United States, delivering 48% of total renewable electricity sector generation in 2015, and roughly 62% of total cumulative renewable generation over the past decade (2006-2015) [1]. The approximately 101 gigawatts1 (GW) of hydropower capacity installed as of 2014 included ~79.6 GW from hydropower gener ation2 facilities and ~21.6 GW from pumped storage hydro- power3 facilities [2]. Reliable generation and grid support services from hydropower help meet the nation’s require- ments for the electrical bulk power system, and hydro- power pro vides a long-term, renewable source of energy that is essentially free of hazardous waste and is low in carbon emissions. Hydropower also supports national energy security, as its fuel supply is largely domestic. % 48 HYDROPOWER PUMPED CAPACITY STORAGE OF TOTAL CAPACITY RENEWABLE GENERATION Hydropower is the largest renewable energy resource in the United States and has been an esta blished, reliable contributor to the nation’s supply of elec­ tricity for more than 100 years. In the early 20th century, the environmental conse- quences of hydropower were not well characterized, in part because national priorities were focused on economic development and national defense. By the latter half of the 20th century, however, there was greater awareness of the environmental impacts of dams, reservoirs, and hydropower operations. 71 2 As a result, the federal government passed Development of these potential resources laws that have led to safer and more environ- will require sustainable5 development and mentally aware operation of dams, reservoirs, opera tions practices. Future hydropower OVERVIEW and hydropower facilities throughout the must integrate environmental stewardship, nation. econo mic performance, and availability of critical water resources for production of Decades of evolution in engineering tech- clean energy. nologies, environmental mitigation and protection methods, and regulatory frame- Chapter 2, State of Hydropower in the United works provide a foundation for future States, summarizes the status of hydropower hydro power. Five primary potential resource in the United States as of year-end 2015 classes4 exist for new hydropower capacity within eight important topic areas: history, in the United States: contributions, and context; role in the grid; markets and project development economics; 1. Upgrades and optimization, i.e., opportunities for development; design, rehabilitating, expanding, upgrading, infrastructure, and technology; operations and improving efficiency, of existing and maintenance; pumped storage; and hydropower facilities; economic impact. 2. Powering non­powered dams (NPDs); These eight topic areas provide key contextual 3. Installing hydropower in existing water and technical information— including trends, conveyance infrastructure, such as opportunities, and challenges—that was used conduits and canals; in developing the Hydropower Vision and that 4. Developing hydropower projects on new is fundamental to the future concepts, growth stream ­reaches (NSD); and potential, and roadmap actions explored in 5. Increasing pumped storage hydropower Chapters 1, 3, and 4. (PSH). 1. As of 2014. 2. Hydropower as discussed in this report includes new or conventional technologies that use diverted or impounded water to create hydraulic head to power turbines, and PSH facilities in which stored water is released to generate electricity and then pumped back during periods of excess generation to replenish a reservoir. 3. Throughout this report, the term “hydropower” generally encompasses all categories of hydropower. If a distinction needs to be made, the term “hydropower generation” distinguishes other types of projects from “pumped storage hydropower,” or “PSH.” 4. This report does not address marine (wave, current, and tidal) and river hydrokinetic technologies, as marine and hydrokinetic tech- nologies are defined by Congress as separate and distinct from hydropower (Energy Policy Act of 2005. Public Law No: 109-58. 42 U.S.C. § 931 (a)(2)(D) Hydropower and 42 U.S.C. § 931 (a)(2)(E)(i) Miscellaneous Projects. https://www.congress.gov/109/plaws/publ58/PLAW- 109publ58.pdf). 5. In the Hydropower Vision, the term sustainable hydropower describes a hydropower project or interrelated projects that are sited, designed, constructed, and operated to balance social, environmental, and economic objectives at multiple geographic scales (e.g., national, regional, basin, site). 72 2 2.0 Introduction 2.0 INTRODUCTION History, Contributions, and Context grid planning and operations is expected to increase of Hydropower through improved quantification and valuation of The world’s first hydropower plant began to generate hydropower’s flexibility. In addition, small hydropower electrical energy in 1882 in Appleton, Wisconsin. The (defined in theHydropower Vision as 0.5 to <10 MW) boom years for construction of hydropower facilities— has the potential to increase deployment of distrib- from 1940 to 1970—responded to a rapidly growing uted generation resources. As variable generation economy with intense electricity demands. Hydro- increases in the foreseeable future, the use of hydro- power development has waned since the 1990s due to power’s flexibility—accounting for multiple water use rebalancing of water use priorities, market conditions, requirements—to reduce system operating cost is an deregulation in the electricity industry, and other fac- important trend. tors. As a result, the existing fleet of facilities—owned Markets and Project Economics and operated by federal, public, and private enti- Compensation for hydropower generation comes ties6—is aging. Many of these facilities, including their from two primary sources: power markets and dams and reservoirs, have multiple purposes beyond environmental markets.8 In power markets, value is water storage and hydropower generation, including derived from power production and from flexibility recreation, flood management, navigation, irrigation, to provide a wide range of power market services. municipal and industrial water supply, fish and wildlife, Increasing penetration of variable generation, how- and cooling water for thermal plants. ever, is changing how hydropower is compensated. Hydropower’s effects on the environment7 are recog- Ownership also plays a key role in determining access nized by facility owners and operators and, working to revenue streams and the investment perspective with resource and regulatory agencies, they imple- underlying how hydropower is valued. The structure ment measures to avoid, minimize, or mitigate these and operation of hydropower markets varies region- effects. Balancing the needs of society in a manner ally across the nation; some power markets are are that leads to more sustainable hydropower requires organized day-ahead type markets, while others are advanced planning that incorporates potential effects bilateral, based on longer term agreements. Improved of climate change on water availability patterns and alignment of hydropower valuation across power encompasses multi-stakeholder approaches. and environmental markets could decrease market variability and uncertainty. Electricity markets in the Role of Hydropower in the Grid United States are also influenced by the increasing Hydropower is capable of the full range of services role of Canadian hydropower. required by electricity transmission grid, including system regulation and supply/demand balance, Opportunities for Hydropower Development voltage and frequency support, stability, and black Opportunity exists to support growth of hydropower start capability. In particular, hydropower’s flexibility as an economically competitive source of low-carbon to rapidly ramp generation up and down in response renewable energy. The challenge, however, is to incor- to changes in the balance between electrical loads porate environmental performance9 and sustainability and generators facilitates integration of renewable principles, while balancing public energy needs and variable generation, such as wind and solar energy, water resources—especially in the context of multiple into the grid. The contribution of hydropower to 6. Federal agencies operate about 49% of the total installed hydropower capacity, with about 10% of the total number of installations. Public ownership, such as public utility districts and rural cooperatives, comprise about 24% of total installed U.S. capacity and 27% of the total number of hydropower facilities. Private owners, including investor-owned utilities and independent power producers, control about 25% of total installed capacity and 63% of the total number of plants. 7. Hydropower facilities can affect flow regimes, water quality, sediment transport, habitat connectivity, fish passage, and other factors. 8. Environmental markets include renewables markets, such as Renewable Portfolio Standards, and emissions markets, such as those associ- ated with trading of allowances for certain pollutants. 9. Environmental performance refers to hydropower's effects on ecosystem structures, processes, and functions. 73 2 objectives for water use. Toward this end, improved Refinement of O&M methods can support hydro- communication
Recommended publications
  • Investigating Hidden Flexibilities Provided by Power-To-X Consid- Ering Grid Support Strategies
    InVESTIGATING Hidden FleXIBILITIES ProVIDED BY Power-to-X Consid- ERING Grid Support StrATEGIES Master Thesis B. Caner YAgcı˘ Intelligent Electrical POWER Grids Investigating Hidden Flexibilities Provided by Power-to-X Considering Grid Support Strategies Master Thesis by B. Caner Yağcı to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Tuesday September 14, 2020 at 9:30. Student number: 4857089 Project duration: December 2, 2019 – September 14, 2020 Thesis committee: Dr. Milos Cvetkovic, TU Delft, supervisor Dr. ir. J. L. Rueda Torres, TU Delft Dr. L. M. Ramirez Elizando TU Delft This thesis is confidential and cannot be made public until September 14, 2020. An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface First of all, I would like to thank PhD. Digvijay Gusain and Dr. Milos Cvetkovic for not only teaching me the answers through this journey, but also giving me the perception of asking the right questions that lead simple ideas into unique values. I would also like to thank my family Alican, Huriye, U˘gur, Gökhan who have been supporting me from the beginning of this journey and more. You continue inspiring me to find my own path and soul, even from miles away. Your blessing is my treasure in life... My friends, Onurhan and Berke. You encourage me and give me confidence to be my best in any scene. You are two extraordinary men who, I know, will always be there when I need. Finally, I would like to thank TU Delft staff and my colleagues in TU Delft for making this journey enter- taining and illuminative for me.
    [Show full text]
  • A US Strategy for Sustainable Energy Security
    A US Strategy for Sustainable Energy Security David Koranyi Foreword by Chuck Hagel A US Strategy for Sustainable Energy Security Atlantic Council Strategy Paper No. 2 © 2016 The Atlantic Council of the United States. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from the Atlantic Council, except in the case of brief quotations in news articles, critical articles, or reviews. Please direct inquiries to: Atlantic Council 1030 15th Street, NW, 12th Floor Washington, DC 20005 ISBN: 978-1-61977-953-2 Cover art credit: The Metropolitan Museum of Art. The Mill of Montmartre by Georges Michel, ca. 1820. This report is written and published in accordance with the Atlantic Council Policy on Intellectual Independence. The authors are solely responsible for its analysis and recommendations. The Atlantic Council, its partners, and funders do not determine, nor do they necessarily endorse or advocate for, any of this report’s particular conclusions. March 2016 Atlantic Council Strategy Papers Editorial Board Executive Editors Mr. Frederick Kempe Dr. Alexander V. Mirtchev Editor-in-Chief Mr. Barry Pavel Managing Editor Dr. Daniel Chiu Table of Contents Foreword ......................................................................i Executive Summary ...................................................iii Introduction .................................................................1 The Need for a US Sustainable Energy Strategy .................. 2 Ten Key Trends Affecting US Energy Security ...................... 3 A US Strategy for Sustainable Energy Security........ 17 Pillar 1. Accelerate the Energy Sector Transition and Solidify the American Innovative Advantage ..................... 22 Pillar 2. Lead on Global Climate Action and Sustain Robust Energy Diplomacy Capabilities ................. 26 Pillar 3. Promote a Liberalized and Rules-based Global Energy Trade System and Build a Functioning Global Energy and Climate Governance Network .............
    [Show full text]
  • Net Zero by 2050 a Roadmap for the Global Energy Sector Net Zero by 2050
    Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 A Roadmap for the Global Energy Sector Net Zero by 2050 Interactive iea.li/nzeroadmap Net Zero by 2050 Data iea.li/nzedata INTERNATIONAL ENERGY AGENCY The IEA examines the IEA member IEA association full spectrum countries: countries: of energy issues including oil, gas and Australia Brazil coal supply and Austria China demand, renewable Belgium India energy technologies, Canada Indonesia electricity markets, Czech Republic Morocco energy efficiency, Denmark Singapore access to energy, Estonia South Africa demand side Finland Thailand management and France much more. Through Germany its work, the IEA Greece advocates policies Hungary that will enhance the Ireland reliability, affordability Italy and sustainability of Japan energy in its Korea 30 member Luxembourg countries, Mexico 8 association Netherlands countries and New Zealand beyond. Norway Poland Portugal Slovak Republic Spain Sweden Please note that this publication is subject to Switzerland specific restrictions that limit Turkey its use and distribution. The United Kingdom terms and conditions are available online at United States www.iea.org/t&c/ This publication and any The European map included herein are without prejudice to the Commission also status of or sovereignty over participates in the any territory, to the work of the IEA delimitation of international frontiers and boundaries and to the name of any territory, city or area. Source: IEA. All rights reserved. International Energy Agency Website: www.iea.org Foreword We are approaching a decisive moment for international efforts to tackle the climate crisis – a great challenge of our times.
    [Show full text]
  • Trends in Electricity Prices During the Transition Away from Coal by William B
    May 2021 | Vol. 10 / No. 10 PRICES AND SPENDING Trends in electricity prices during the transition away from coal By William B. McClain The electric power sector of the United States has undergone several major shifts since the deregulation of wholesale electricity markets began in the 1990s. One interesting shift is the transition away from coal-powered plants toward a greater mix of natural gas and renewable sources. This transition has been spurred by three major factors: rising costs of prepared coal for use in power generation, a significant expansion of economical domestic natural gas production coupled with a corresponding decline in prices, and rapid advances in technology for renewable power generation.1 The transition from coal, which included the early retirement of coal plants, has affected major price-determining factors within the electric power sector such as operation and maintenance costs, 1 U.S. BUREAU OF LABOR STATISTICS capital investment, and fuel costs. Through these effects, the decline of coal as the primary fuel source in American electricity production has affected both wholesale and retail electricity prices. Identifying specific price effects from the transition away from coal is challenging; however the producer price indexes (PPIs) for electric power can be used to compare general trends in price development across generator types and regions, and can be used to learn valuable insights into the early effects of fuel switching in the electric power sector from coal to natural gas and renewable sources. The PPI program measures the average change in prices for industries based on the North American Industry Classification System (NAICS).
    [Show full text]
  • Overview of Electric Power Supply Systems
    Overview of Electric Power Supply Systems Why are electric power systems studied? What are the characteristics of power systems that justify spending a whole course on them? There are many answers to each of these questions; this course will touch on a few of them. You will recall that ECE370 gave an overview of the circuit theory associated with electrical power and it is worth recalling that most power systems are three-phase and that when balanced systems are being analyzed these are usually drawn in terms of a one-line diagram, i.e. a single line is used to denote the three phases, which may or may not also have a neutral. The US Electric Power System The main aspects that describe power systems are: size, complexity and economic impact. Utility power systems cover vast territory, are subject to the whims of nature, are interconnected to each other, the quality of their commodity affects the ability of industry to produce effectively, and the price of their commodity has a significant impact on the economy of their service area. Controlling power systems requires that electricity be supplied at the correct frequency, satisfactory voltage, with its phases balanced, have low harmonic content, and with all protection systems coordinated. The foregoing has to be achieved without overloading equipment and at the lowest cost to the consumer (after the utility makes a reasonable profit.) All this is complicated by the fact that demand for electricity changes throughout the day (and week, and season) and that electricity can not be readily stored in a practical manner.
    [Show full text]
  • Lecture 09 Closing Switches.Pdf
    High-voltage Pulsed Power Engineering, Fall 2018 Closing Switches Fall, 2018 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Switch fundamentals The importance of switches in pulsed power systems In high power pulse applications, switches capable of handling tera-watt power and having jitter time in the nanosecond range are frequently needed. The rise time, shape, and amplitude of the generator output pulse depend strongly on the properties of the switches. The basic principle of switching is simple: at a proper time, change the property of the switch medium from that of an insulator to that of a conductor or the reverse. To achieve this effectively and precisely, however, is rather a complex and difficult task. It involves not only the parameters of the switch and circuit but also many physical and chemical processes. 2/44 High-voltage Pulsed Power Engineering, Fall 2018 Switch fundamentals Design of a switch requires knowledge in many areas. The property of the medium employed between the switch electrodes is the most important factor that determines the performance of the switch. Classification Medium: gas switch, liquid switch, solid switch Triggering mechanism: self-breakdown or externally triggered switches Charging mode: Statically charged or pulse charged switches No. of conducting channels: single channel or multi-channel switches Discharge property: volume discharge or surface discharge switches 3/44 High-voltage Pulsed Power Engineering, Fall 2018 Characteristics of typical switches A. Trigger pulse: a fast pulse supplied externally to initiate the action of switching, the nature of which may be voltage, laser beam or charged particle beam.
    [Show full text]
  • Energy and Training Module ITU Competitive Coach
    37 energy and training module ITU Competitive Coach Produced by the International Triathlon Union, 2007 38 39 energy & training Have you ever wondered why some athletes shoot off the start line while others take a moment to react? Have you every experienced a “burning” sensation in your muscles on the bike? Have athletes ever claimed they could ‘keep going forever!’? All of these situations involve the use of energy in the body. Any activity the body performs requires work and work requires energy. A molecule called ATP (adenosine triphosphate) is the “energy currency” of the body. ATP powers most cellular processes that require energy including muscle contraction required for sport performance. Where does ATP come from and how is it used? ATP is produced by the breakdown of fuel molecules—carbohydrates, fats, and proteins. During physical activity, three different processes work to split ATP molecules, which release energy for muscles to use in contraction, force production, and ultimately sport performance. These processes, or “energy systems”, act as pathways for the production of energy in sport. The intensity and duration of physical activity determines which pathway acts as the dominant fuel source. Immediate energy system Fuel sources ATP Sport E.g. carbohydrates, energy performance proteins, fats “currency” Short term energy system E.g. swimming, cycling, running, transitions Long term energy system During what parts of a triathlon might athletes use powerful, short, bursts of speed? 1 2 What duration, intensity, and type of activities in a triathlon cause muscles to “burn”? When in a triathlon do athletes have to perform an action repeatedly for longer than 10 or 15 3 minutes at a moderate pace? 40 energy systems Long Term (Aerobic) System The long term system produces energy through aerobic (with oxygen) pathways.
    [Show full text]
  • Contribution of Renewables to Energy Security
    INTERNATIONAL ENERGY AGENCY AGENCE INTERNATIONALE DE L’ENERGIE CONTRIBUTION OF RENEWABLES TO ENERGY SECURITY IEA INFORMATION PAPER S AMANTHA ÖLZ, R ALPH SIMS AND N ICOLAI KIRCHNER I NTERNATIONAL E NERGY A GENCY © OECD/IEA, April 2007 Table of contents Acknowledgements............................................................................................................... 3 Foreword .............................................................................................................................. 5 Executive Summary.............................................................................................................. 7 1. Risks to energy security ............................................................................................... 13 1.1 Risks for developing countries............................................................................. 15 1.2 Policy responses to energy security risks ............................................................ 15 1.3 Energy security implications of renewable energy technologies........................... 16 2. Current energy use by market segment........................................................................ 19 2.1. Electricity production ........................................................................................... 19 2.2. Heat .................................................................................................................... 21 2.3. Transport............................................................................................................
    [Show full text]
  • Today's Missouri River
    DID YOU KNOW? The Missouri River is the longest river in North America. The Missouri is the world’s 15th- TODAY’S longest river. The Missouri has the nickname MISSOURI RIVER “Big Muddy,” because of the large The Missouri River has been an important resource for amount of silt that it carries. people living along or near it for thousands of years. As time went on and the corridor of the Missouri River was developed and populations increased, efforts have been There are approximately 150 fish made to control flows, create storage, and prevent flooding. species in the Missouri River, and As a result, six mainstem dams have been in place for more about 300 species of birds live in the than half a century, with the goal of bringing substantial Missouri River’s region. economic, environmental, and social benefits to the people of North Dakota and nine other states. The Missouri’s aquatic and riparian Since the building of the mainstem dams, it has been habitats also support several species realized that for all of the benefits that were provided, the of mammals, such as mink, river dams have also brought controversy. They have created otter, beaver, muskrat, and raccoon. competition between water users, loss of riparian habitat, impacts to endangered species, stream bank erosion, and delta formation - which are only a few of the complex issues The major dams built on the river related to today’s Missouri River management. were Fort Peck, Garrison, Oahe, Big Bend, Fort Randall, and Gavin’s Point. This educational booklet will outline the many benefits that the Missouri River provides, and also summarize some of the biggest issues that are facing river managers and residents within the basin today.
    [Show full text]
  • Use of Cogeneration in Large Industrial Projects
    COGENERATION USE OF COGENERATION IN LARGE INDUSTRIAL PROJECTS (RECENT ADVANCES IN COGENERATION?) PRESENTER: JIM LONEY, PE [email protected] 281-295-7606 COGENERATION • WHAT IS COGENERATION? • Simultaneous generation of electricity and useful thermal energy (steam in most cases) • WHY COGENERATION? • Cogeneration is more efficient • Rankine Cycle – about 40% efficiency • Combined Cycle – about 60% efficiency • Cogeneration – about 87% efficiency • Why doesn’t everyone use only cogeneration? COGENERATION By Heinrich-Böll-Stiftung - https://www.flickr.com/photos/boellstiftung/38359636032, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=79343425 COGENERATION GENERATION SYSTEM LOSSES • Rankine Cycle – about 40% efficiency • Steam turbine cycle using fossil fuel • Most of the heat loss is from the STG exhaust • Some heat losses via boiler flue gas • Simple Cycle Gas Turbine– about 40% efficiency • The heat loss is from the gas turbine exhaust • Combined Cycle – about 60% efficiency • Recover the heat from the gas turbine exhaust and run a Rankine cycle • Cogeneration – about 87% efficiency COGENERATION • What is the problem with cogeneration? • Reality Strikes • In order to get to 87% efficiency, the heating load has to closely match the thermal energy left over from the generation of electricity. • Utility electricity demand typically follows a nocturnal/diurnal sine pattern • Steam heating loads follow a summer/winter cycle • With industrial users, electrical and heating loads are typically more stable COGENERATION • What factors determine if cogeneration makes sense? • ECONOMICS! • Not just the economics of the cogeneration unit, but the impact on the entire facility. • Fuel cost • Electricity cost, including stand-by charges • Operational flexibility including turndown ability • Reliability impacts • Possibly the largest influence • If the cogeneration unit has an outage then this may (will?) bring the entire facility down.
    [Show full text]
  • Innovation to Reality-Introducing State-Of-The-Art Protection And
    INNOVATION TO REALITY – INTRODUCING STATE-OF-THE-ART PROTECTION AND MONITORING TO EXISTING LOW-VOLTAGE SWITCHGEAR Sherwood Reber Michael Pintar Christopher Eaves Lafarge North America General Electric General Electric Abstract – A large array of components with communications capabilities exists for constructing I. INTRODUCTION protection, monitoring, and control systems for A. Background power distribution equipment (switchgear). While most of these components or devices perform Communicating devices and associated multiple functions, a typical application will contain networks are increasingly common in electrical at least several different devices that must be power distribution equipment. The networks interconnected to function as a complete system. provide the important connection among individual An example might be multifunction meters coupled devices, such as trip units, meters, and protective with multifunction protective relays, and a relays, for gathering and reporting critical power programmable logic controller for a complete system information. In low-voltage power systems system. Could it be possible to take the functions (600 V and below), a network of communicating of multiple microprocessor-based devices and devices can provide supervisory control functions, combine those functions into a single-processor gather substation electrical data, and report event system? Would the new system be able to status to a central control computer. execute instructions for fast acting overcurrent protection while gathering simultaneous
    [Show full text]
  • Developments in Permanent Stainless Steel Cathodes Within the Copper Industry
    DEVELOPMENTS IN PERMANENT STAINLESS STEEL CATHODES WITHIN THE COPPER INDUSTRY K.L. Eastwood and G.W. Whebell Xstrata Technology Hunter Street Townsville, Australia 4811 [email protected] ABSTRACT The ISA PROCESS™ cathode plate is characterised by its copper coated suspension bar, coupled with a blade employing austenitic stainless steel alloy 316L. The blade material has become the mainstay of the technology and has been closely copied by competing cathode designs. Improvement to the cathode plate design remains a key area for research, and ongoing developments by Xstrata Technology’s ISA PROCESS™ have recently been commercialised. Two such developments are the ISA Cathode BR™ and ISA 2000 AB Cathode. The ISA BR cathode is a lower resistance cathode that has proven to enhance operating efficiencies. The AB cathode was designed to improve stripping inefficiencies in the ISA 2000 technology. These developments have now had time to mature and their long term performance will be discussed. Rising material costs and the desire to extend the operating boundaries of the standard 316L cathode plate has triggered a number of significant advances. These involve the use of different stainless steels as alternatives in some operational situations. The technical aspects and results of commercial trials on this development will also be discussed in this paper. INTRODUCTION The introduction of permanent stainless steel cathode technology was pioneered in the copper industry by IJ Perry and colleagues in 1978, with the introduction of the ISA PROCESSTM in the Townsville Copper Refinery, Perry [1]. While a number of parallel processes have emerged since its introduction, ISA Process Technology (IPT) has continued to be the mainstay electrolytic copper process with consistent improvements and superior operational performance.
    [Show full text]