Energy Security and the Energy Transition: a Classic Framework for a New Challenge

Total Page:16

File Type:pdf, Size:1020Kb

Energy Security and the Energy Transition: a Classic Framework for a New Challenge REPORT 11.25.19 Energy Security and the Energy Transition: A Classic Framework for a New Challenge Mark Finley, Fellow in Energy and Global Oil their political leaders during the oil shocks of SUMMARY the 1970s. While these considerations have Policymakers in the US and around the world historically been motivated by consumers are grappling with how to understand the worried about access to uninterrupted security implications of an energy system supplies of oil, producing countries can in transition—and if they aren’t, they equally raise concerns about shocks to— should be. Recent attacks on Saudi facilities and the security of—demand. show that oil supply remains vulnerable In addition to geopolitical risk, the to disruption. New energy forms can help reliability of energy supplies has recently reduce vulnerability to oil supply outages, been threatened by factors ranging from but they also have the potential to introduce weather events (the frequency and intensity new vulnerabilities and risks. The US and its of which are exacerbated by climate allies have spent the past 50 years building a change) to terrorist activities, industrial robust domestic and international response accidents, and cyberattacks. The recent system to mitigate risks to oil supplies, but attack on Saudi oil facilities and resulting disruption of oil supplies,1 hurricanes on similar arrangements for other energy forms Policymakers are remain limited. This paper offers a framework the Gulf Coast (which disrupted oil and gas for assessing energy security based on an production and distribution, as well as the grappling with the evaluation of vulnerability, risk, and offsets; electrical grid), and high winds in California security implications this approach has been a useful tool for that caused widespread power outages of an energy system in assessing oil security for the past 50 years, have brought energy security once again transition—and if they into the global headlines. and it can be relevant for assessing energy aren't, they should be. security in an energy system in transition. Even with the US now on a trajectory to achieve the long-sought goal of energy self- sufficiency, global energy security remains INTRODUCTION a strategic and economic challenge. While self-sufficiency would alleviate some of the Energy security considerations are not traditional concerns about global supply new phenomena. More than a century ago, disruptions, the fact that many energy addressing the risks in switching the Royal forms remain traded commodities means Navy’s main source of fuel from coal to oil, that foreign disturbances will continue to Winston Churchill famously argued that impact domestic markets. Rapid growth in “safety and certainty in oil lie in variety the use of renewable energy (and use of and variety alone.” Access to oil supplies batteries for electric vehicles and power was a major strategic consideration for all grid management) may help mitigate the major actors during World War II, and conventional security concerns with regard it became a focus of individual citizens and BAKER INSTITUTE REPORT // 11.25.19 to fossil fuels, although these changes may In addition, risk assesses the chances also reveal new risks. Moreover, the US of a shock. Considerations must include not and its allies have a cooperative system only the probability of a disruption but also for dealing with oil supply disruptions— an assessment of the potential magnitude including both commercial and strategic oil and duration. A large but brief shock (such stockpiles—but the framework for dealing as the one seen recently in Saudi Arabia) with risks arising from the growing use of may be less disruptive than a small but other fuels is very limited. long-lasting one. There are many approaches to appraising Finally, offsets include the capacity energy security. As a young energy security and timeline to counter a shock. This could specialist in the US government in the 1980s, include the ability to increase production I learned an approach based on assessing elsewhere, draw supply from inventories, vulnerability, risk, and offsets that I’ve found switch to other energy sources, and/or useful in evaluating oil security. In this paper, reduce demand by conserving energy. I argue that this framework can be useful for The purpose of these interventions is to assessing the security of an energy system cushion the impact of the shock while giving in transition—in particular, a transition away markets—both producers and consumers—a from coal and oil toward natural gas and chance to respond in a more orderly fashion. renewables in part due to climate change. Energy security policy can aim to I will apply this framework of vulnerability, address any of these dimensions. For risk, and offsets to the current oil market and example, vulnerability can be reduced a potential future energy system in transition by diversifying the fuel mix, risk can be to renewable energy and natural gas. This managed via diplomacy or military power, discussion is not intended to be an exhaustive and a strategic stockpile can be used to review of all potential facets of the issue, offset lost supply. but as an illustration of the framework’s application. I primarily focus on the US, but with some consideration of other key energy APPLYING THE FRAMEWORK TO OIL players and the world as a whole. Vulnerability Global—and US—vulnerability to oil shocks THE FRAMEWORK has improved significantly in recent years, but it still remains a significant concern. The The first element of the framework is shale revolution has put the longstanding vulnerability, which is how exposed the US goal of energy self-sufficiency within US and global energy systems are to a reach. The US recorded the world’s largest shock. This could include the size of the ever increases in production of both oil and energy input to the economy (in absolute natural gas in 2018, and it is the world’s terms and especially in financial value), largest producer of both fuels. In addition, the degree of substitutability, and the the country is now a net exporter of natural concentration in key sectors, such as the gas and has seen net oil imports as a share importance of oil in transport. Vulnerability of domestic consumption fall from a high of has loomed in public perceptions as an 60% in 2005 to just 11% last year.2 The US economic consideration, experienced Department of Energy’s Energy Information as either price spikes and/or physical Administration (EIA) projects that the US shortages. Other vectors of vulnerability could become a net oil exporter as soon as can include potential adverse effects from 2020.3 Rising oil and gas production have a disruption for diplomatic, strategic, boosted the US economy via higher levels or military objectives. In recent years, of investment, employment, and corporate/ environmental objectives—especially climate individual taxes, as well as the resulting change—have emerged as increasingly decline in energy prices for consumers important to assessing vulnerability. and businesses.4 2 ENERGY SECURITY AND THE ENERGY TRANSITION: A CLASSIC FRAMEWORK FOR A NEW CHALLENGE Broader changes in the US energy consumption). China is also an increasingly system have also impacted US vulnerability. large importer of natural gas (over 40% On the demand side, growing energy of its 2018 energy consumption), and the diversity and significant improvements in country even imports coal. Furthermore, the efficiency of energy use have reduced Europe depended on imports of oil and America’s vulnerability to supply disruptions. natural gas in 2018 to meet roughly three- Oil’s share of the US energy mix has declined quarters and 55% of its consumption, from a peak of 48% in 1977 to just 36% last respectively. Japan is almost entirely reliant year; the share of oil in the global oil mix on imported oil and natural gas, while India has also declined.5 In addition, the amount imports about 80% of the oil consumed and of energy needed to produce a (real) dollar half of the natural gas used.11 of GDP has fallen by more than 50% since While the impact of higher oil prices 1980. As a result of greater efficiency and on the US economy is now more balanced, lower prices, spending on energy as a with producing regions benefiting even share of GDP has fallen from 13% in 1980 as consumers are adversely impacted, to roughly 5%.6 The shale revolution potential price spikes—and increased price and growing use of renewables have also volatility—stemming from global oil outages contributed to reduced US CO2 emissions still pose risks to both households and from energy use by allowing natural gas to industry. Oil remains the dominant energy displace coal in power generation; emissions source for the global economy, accounting have fallen by 12% since 2007 (although for 36% and 34% of US and global energy they increased in 2018).7 consumption, respectively. Moreover, oil The US shale revolution has also (and increasingly other energy forms) impacted global energy markets and energy are global commodities, meaning that US Vulnerability, risk, security beyond the nation’s borders.8 markets remain vulnerable to the price and offsets can be a Rising US oil production (and OPEC’s desire effects of supply disruptions abroad, even useful framework for to maintain market share) led to a sharp as domestic production increases. decline in oil prices in recent years: crude While net oil imports have fallen sharply, assessing the security prices averaged above $100 per barrel the US remains a significant importer due to of an energy system during 2011-14 but now stand near $60.9 a mismatch between the configuration of US in transition. While benefiting consumers, lower prices refineries favoring heavy imported crudes have created large budget deficits in oil- and the light quality of domestic crude oil exporting countries and have prompted production.
Recommended publications
  • A US Strategy for Sustainable Energy Security
    A US Strategy for Sustainable Energy Security David Koranyi Foreword by Chuck Hagel A US Strategy for Sustainable Energy Security Atlantic Council Strategy Paper No. 2 © 2016 The Atlantic Council of the United States. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from the Atlantic Council, except in the case of brief quotations in news articles, critical articles, or reviews. Please direct inquiries to: Atlantic Council 1030 15th Street, NW, 12th Floor Washington, DC 20005 ISBN: 978-1-61977-953-2 Cover art credit: The Metropolitan Museum of Art. The Mill of Montmartre by Georges Michel, ca. 1820. This report is written and published in accordance with the Atlantic Council Policy on Intellectual Independence. The authors are solely responsible for its analysis and recommendations. The Atlantic Council, its partners, and funders do not determine, nor do they necessarily endorse or advocate for, any of this report’s particular conclusions. March 2016 Atlantic Council Strategy Papers Editorial Board Executive Editors Mr. Frederick Kempe Dr. Alexander V. Mirtchev Editor-in-Chief Mr. Barry Pavel Managing Editor Dr. Daniel Chiu Table of Contents Foreword ......................................................................i Executive Summary ...................................................iii Introduction .................................................................1 The Need for a US Sustainable Energy Strategy .................. 2 Ten Key Trends Affecting US Energy Security ...................... 3 A US Strategy for Sustainable Energy Security........ 17 Pillar 1. Accelerate the Energy Sector Transition and Solidify the American Innovative Advantage ..................... 22 Pillar 2. Lead on Global Climate Action and Sustain Robust Energy Diplomacy Capabilities ................. 26 Pillar 3. Promote a Liberalized and Rules-based Global Energy Trade System and Build a Functioning Global Energy and Climate Governance Network .............
    [Show full text]
  • Contribution of Renewables to Energy Security
    INTERNATIONAL ENERGY AGENCY AGENCE INTERNATIONALE DE L’ENERGIE CONTRIBUTION OF RENEWABLES TO ENERGY SECURITY IEA INFORMATION PAPER S AMANTHA ÖLZ, R ALPH SIMS AND N ICOLAI KIRCHNER I NTERNATIONAL E NERGY A GENCY © OECD/IEA, April 2007 Table of contents Acknowledgements............................................................................................................... 3 Foreword .............................................................................................................................. 5 Executive Summary.............................................................................................................. 7 1. Risks to energy security ............................................................................................... 13 1.1 Risks for developing countries............................................................................. 15 1.2 Policy responses to energy security risks ............................................................ 15 1.3 Energy security implications of renewable energy technologies........................... 16 2. Current energy use by market segment........................................................................ 19 2.1. Electricity production ........................................................................................... 19 2.2. Heat .................................................................................................................... 21 2.3. Transport............................................................................................................
    [Show full text]
  • Technology Innovation to Accelerate Energy Transitions
    Technology Innovation to Accelerate Energy Transitions June 2019 Technology Innovation to Accelerate Energy Transitions Abstract Abstract Japan’s G20 presidency 2019 asked the International Energy Agency to analyse progress in G20 countries towards technology innovation to accelerate energy transitions. The Japan presidency, which began on 1 December 2018 and runs through 30 November 2019, has placed a strong focus on innovation, business and finance.1 In the areas of energy and the environment, Japan wishes to create a “virtuous cycle between the environment and growth”, which is the core theme of the G20 Ministerial Meeting on Energy Transitions and Global Environment for Sustainable Growth in Karuizawa, Japan, 15-16 June 2019. A first draft report was presented to the 2nd meeting of the G20 Energy Transitions Working Group (ETWG), held through 18-19 April 2019. This final report incorporates feedback and comments submitted during April by the G20 membership and was shared with the ETWG members. This final report is cited in “Proposed Documents for the Japanese Presidency of the G20” that was distributed to the G20 energy ministers, who convened in Karuizawa on 15-16 June 2019. This report, prepared as an input for the 2019 G20 ministerial meeting, is an IEA contribution; it is not submitted for formal approval by energy ministers, nor does it reflect the G20 membership’s national or collective views. The report sets out around 100 “innovation gaps”, that is, key innovation needs in each energy technology area that require additional efforts, including through global collaboration. Together with other related information, the report can be found at the IEA Innovation web portal at www.iea.org/innovation.
    [Show full text]
  • Energy Security Assessment Framework to Support Energy Policy Decisions
    Energy security assessment framework to support energy policy decisions Juozas Augutis, Ričardas Krikštolaitis, Linas Martišauskas Lithuanian Energy Institute, Kaunas, Lithuania Vytautas Magnus University, Kaunas, Lithuania EU Conference on modelling for policy support Brussels (Belgium), 26-27 November 2019 Presentation outline • Energy security definition • Methodology framework • Results of Lithuanian energy system 2 Energy security definition Energy Security Energy system Energy supply Energy price resilience to reliability acceptability disruptions Energy security* – the ability of the energy system: • to uninterruptedly supply energy to consumers under acceptable prices, • to resist potential disruptions arising due to technical, natural, economic, socio- political and geopolitical threats. *Vytautas Magnus University and Lithuanian Energy Institute, Energy Security Research Centre, 2013–2019 3 Methodology framework for the energy security analysis Threats • Identification and analysis of threats to energy security Disruptions • Formation of internal and external disruptions to energy system Energy system modelling • Model for energy system development implemented in OSeMOSYS tool • Energy system modelling with stochastic disruption scenarios or pathways Consequence analysis • Disruption consequences: energy cost increase and unsupplied energy Energy security metric Methodological approach • Energy security coefficient – quantitative level of energy security 4 Threats to energy security • A threat to energy security is defined as any potential danger that exists within or outside the energy system and that has a potential to result in some kind of disruption of that system. Category Threats • technical problems or accidents in the energy production, resource extractions and transportation, Technical energy transmission infrastructure and processing enterprises, • attacks on supply infrastructure. • extreme temperature, wind, rainfall and other extreme meteorological phenomena or natural Natural disasters.
    [Show full text]
  • The Renewable Energy Transition in Africa Powering Access, Resilience and Prosperity
    The Renewable Energy Transition in Africa Powering Access, Resilience and Prosperity On behalf of the Disclaimer This publication and the material herein are provided “as is”. All reasonable precautions have been taken by the Authors to verify the reliability of the material in this publication. However, neither the Authors nor any of its officials, agents, data or other third- party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein. The information contained herein does not necessarily represent the views of all countries analysed in the report. The mention of specific companies or certain projects or products does not imply that they are endorsed or recommended by the Authors in preference to others of a similar nature that are not mentioned. The designations employed, and the presentation of material herein, do not imply the expression of any opinion on the part of the Authors concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. Foreword Energy is the key to development in Africa and the founda- drawn up a roadmap to achieve inclusive and sustainable tion for industrialisation. Like in Europe and other parts of the growth and development. One of the important topics covered world, the expansion of renewables goes beyond the provision is access to affordable, reliable and sustainable energy for all of reliable energy and climate protection. Economic develop- – SDG 7 of the 2030 Agenda.
    [Show full text]
  • Energy Transition: Building the Framework for the Future of Energy Energy Transition | Building the Framework for the Future of Energy
    Energy transition: Building the framework for the future of energy Energy transition | Building the framework for the future of energy Contents Energy transition: Decisions made today by executives, customers, and policy makers are laying the groundwork for the energy future 2 Decarbonization of energy sources 3 Increasing operational energy efficiency 4 Commercialization of new technologies 5 Looking to the future of energy: Macro trends and key drivers 7 Four Future of Energy scenarios 9 Implications for industry sectors 11 The road ahead 12 Let's talk 15 1 Energy transition: Building the framework for the future of energy Energy transition: Decisions made today by executives, customers, and policy makers are laying the groundwork for the energy future In March 2020, Deloitte surveyed 600 executives in the energy 1. Decarbonization of energy sources and industrial sectors about their preparedness for a lower- 2. Increasing operational energy efficiency carbon future and their organizations’ strategies for the energy transition. The survey findings were published inNavigating the 3. Commercialization of new technologies energy transition from disruption to growth and showed three 4. Investment in new business models significant results. First, the transition away from fossil fuels is 5. Adapting to new policy and regulation already well underway and not merely a distant future. Progress in the power sector seems most notable, for example, where in 6. Managing customer and stakeholder expectations the United States, cheap domestic natural gas and renewables are backing out coal generation and have contributed to a As companies find their footing post-crisis, progress in a few substantial emissions reduction.
    [Show full text]
  • Hydropower As Enabler of the Clean Energy Transition: Future Priorities for European Hydropower Research
    EERA JP Hydropower Policy Brief 1/2020 Hydropower as enabler of the clean energy transition: Future priorities for European hydropower research A new role for hydropower in the electrical energy system In EU (2018, EU 28) hydropower The layout of the electrical energy system in continental accounts for around 360 TWh produced Europe was initiated many decades ago. The energy annually1, approximately 43% of the providers were thermal power plants, where operation total renewable electricity production2. was maintained at a constant level. Some run-of-river In Europe, hydropower provides approx. hydropower added slowly fluctuating amounts of non- 180 TWh of storage3 and more than 200 dispatchable power, and pumped storage power plants GW of power4 in synchronous and some storage hydropower plants were used to generators to stabilise the continental balance the consumption and production on short time- European electrical grid. Of this, scales. The future will look very different from this. approximately 155 GW is conventional The European Green Deal’s ambitious target of climate hydropower and approx. 45 GW neutrality by 2050 will inevitably reduce the number of Pumped Storage Hydropower (PSH)5. thermal units, replacing the energy they provided with emission free renewables such as intermittent wind and Hydropower and climate adaptation solar PV. This will make the job of balancing the Adding to the importance of redesigning the consumption and production much harder as existing hydropower system based on energy fluctuations are high on both production side and considerations is the projected need for consumption side. New technology and inventions are needed to make this possible, however, the fleet of altered future water management.
    [Show full text]
  • Pathways to Sustainable Energy Accelerating Energy Transition in the UNECE Region
    UNEC E Pathways to Sustainable Energy Accelerating Energy Transition in the UNECE Region Energy underpins economic development and the 2030 Agenda for Sustainable Development and has a critical role to play in climate change mitigation. The recognition of the role that energy plays in modern society is highly signicant, however, there remains an important disconnection between agreed energy and climate targets and the Pathways to Sustainable Energy • Accelerating Transition in the UNECE Region approaches in place today to achieve them. Only international cooperation and innovation can deliver the accelerated and more ambitious strategies. Policies will be needed to ll the persistent gaps to achieve the 2030 Agenda. If the gaps are not addressed urgently, progressively more drastic and expensive measures will be required to avoid extreme and potentially unrecoverable social impacts as countries try to cope with climate change. This report uniquely focuses on sustainable energy in the UNECE region up to 2050 as regional economic cooperation is an important factor in achieving sustainable energy. Arriving at a state of attaining sustainable energy is a complex social, political, economic and technological challenge. The UNECE countries have not agreed on how collectively they will achieve energy for sustainable development. Given the role of the UNECE to promote economic cooperation it is important to explore the implications of dierent sustainable energy pathways and for countries to work together on developing and deploying policies and measures. Pathways to Sustainable Energy Accelerating Energy Transition in the UNECE Region 67UNECE Energy Series UNIT Palais des Nations CH - 1211 Geneva 10, Switzerland E Telephone: +41(0)22 917 12 34 D E-mail: [email protected] N A Website: www.unece.org TION S UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE Pathways to Sustainable Energy - Accelerating Energy Transition in the UNECE Region ECE ENERGY SERIES No.
    [Show full text]
  • Net Zero and the Role of Gas and Coal in Energy Transitions
    Net Zero and the Role of Gas and Coal in Energy Transitions Dr Carole Nakhle CEO, Crystol Energy IEA-IEF-OPEC Symposium on Gas and Coal Market Outlooks 28 April 2021 Energy Expertise. Global Reach. Evolution of global electricity mix Share of Electricity Production by Evolution of Electricity Mix by Fuel Source, World 45% 40% 2019 35% 30% 25% 20% 15% 10% 1985 5% 0% 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 0% 20% 40% 60% 80% 100% Coal Gas Hydro Coal Gas Hydro Renewables Solar Oil Renewables Solar Oil Wind Nuclear Wind Nuclear Source: BP, 2020, Ember, 2021 2 Electricity generation by fuel type in selected countries/regions Electricity Generation by Fuel Type EU China Africa Middle East US 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Oil Natural Gas Coal Nuclear Hydro Renewables Other Source: BP, 2020 Note: EU includes UK 3 CO2emissions bycountry/region Source: BP, Source: Million Tonnes 10000 12000 2000 4000 6000 8000 2020 0 1990 1991 Note: EU includes UK includes EU Note: 1992 1993 1994 1995 US 1996 1997 Middle East 1998 CO2 Emissions Country/Region by 1999 2000 2001 2002 Africa 2003 2004 2005 China 2006 2007 2008 EU 2009 2010 World(rhs) 2011 2012 2013 2014 2015 2016 2017 2018 2019 0 5000 10000 15000 20000 25000 30000 35000 40000 4 Million Tonnes Europe: underneath the trend, a multispeed energy region Electricity generation by fuel, 2019 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Germany Italy UK Poland Netherlands Spain EU Oil Natural Gas Coal Nuclear Hydro Renewables Other Source: BP, 2020 Note: EU includes UK 5 Climate, economics and politics • EU aims to be climate-neutral by 2050 – an economy with net-zero greenhouse gas emissions.
    [Show full text]
  • ENABLING Sdgs THROUGH INCLUSIVE, JUST ENERGY TRANSITIONS
    THEME REPORT ON ENABLING SDGs THROUGH INCLUSIVE, JUST ENERGY TRANSITIONS TOWARDS THE ACHIEVEMENT OF SDG 7 AND NET-ZERO EMISSIONS Published by the United Nations Copyright © United Nations, 2021 All rights reserved For further information, please contact: Secretariat of the High-level Dialogue on Energy 2021 Division for Sustainable Development Goals Department of Economic and Social Affairs United Nations https://www.un.org/en/conferences/energy2021/about Email: [email protected] ACKNOWLEDGEMENTS This report was prepared in support of the High-level Dialogue on Energy that will be convened by the UN Secretary-General under the auspices of the UN General Assembly in September 2021, in response to resolution 74/225. The preparation for the Dialogue has been coordinated under the leadership of the Dialogue Secretary-General, LIU Zhenmin, Under-Secretary-General for Economic and Social Affairs, and the Co-Chairs of the Dialogue and UN-Energy, Achim Steiner, Administrator of UNDP and Damilola Ogunbiyi, Special Representative of the UN Secretary-General for Sustainable Energy for All. The views expressed in this publication are those of the experts who contributed to it and do not necessarily reflect those of the United Nations or the organizations mentioned in this document. The report is a product of a multi-stakeholder Technical Working Group (TWG) which was formed in preparation of the High-level Dialogue. UN-Energy provided substantive support to the TWG throughout the development of this report. The outstanding commitment and dedication of the Co-lead organizations under the leadership of LIU Zhenmin, UN Under-Secretary-General for Economic and Social Affairs, Rola Dashti, Executive Secretary of UN ESCWA and Tedros Adhanom Ghebreyesus, Director-General of the WHO, in guiding the process that led to this report was truly remarkable.
    [Show full text]
  • Enabling Frameworks for Sustainable Energy Transition’, Commonwealth Sustainable Energy Transition Series 2021/03, Commonwealth Secretariat, London
    2021/03 COMMONWEALTH SUSTAINABLE ENERGY TRANSITION SERIES SUSTAINABLE Enabling Frameworks ENERGYfor Sustainable Energy TRANSITION Transition SERIESAnthony Polack Commonwealth Sustainable Energy Transition Series 2021/03 ISSN 2413-3175 © Commonwealth Secretariat 2021 By Anthony Polack. Please cite this paper as: Polack, A (2021), ‘Enabling Frameworks for Sustainable Energy Transition’, Commonwealth Sustainable Energy Transition Series 2021/03, Commonwealth Secretariat, London. Anthony Polack has over 15 years’ professional experience in the energy and climate change sectors, having worked for the United Nations (UNDP, UNEP, UNFCCC), Commonwealth Secretariat, Pacific Community (SPC), German Agency for International Cooperation (GIZ), and the Australian, British, Fijian, Vanuatu and Palauan governments. He is a Certified Expert in Climate and Renewable Energy Finance. Thanks and appreciation goes to Laurence Delina, Assistant Professor in the Division of Environment and Sustainability at the Hong Kong University of Science and Technology, for his external peer review. The Commonwealth Sustainable Energy Transition (CSET) Agenda encourages and promotes collaboration amongst Commonwealth member countries in the transition to sustainable energy systems and action towards achievement of the SDGs. It builds on the recognition at CHOGM 2018 of the critical importance of sustainable energy to economic development and the imperative to transition to cleaner forms of energy in view of commitments by member countries under the Paris Agreement. It is anchored on the following three key pillars drawn from the agreed outcomes of the inaugural CSET Forum in June 2019 and leverages existing programmes of the Commonwealth Secretariat: • Inclusive Transitions: advocating equitable and inclusive measures for energy transitions that recognise and address impacts on economies, communities and industries.
    [Show full text]
  • Accelerating South Africa's Energy Transition
    Accelerating South Africa’s energy transition with gas power and renewables www.ge.com/gas-power/future-of-energy In April 2021, the country announced it aims to reduce its annual greenhouse gas (GHG) emissions Executive Although Africa contributes ~5 percent to global carbon dioxide (CO2) emissions, to 398–440mn tonnes the African Development Bank (AfDB) Summary expects the costs of climate change on per year (tpy) by 2030, the continent could rise to $50bn each 28 percent less than South Africa’s year by 2040, with a further 3 percent leaders must decline each year in GDP by 2050.1 its 2015-set targets South Africa, which generated 86 percent with the launch of an work urgently of its electricity from coal in 2020, sees updated draft of the addressing climate change as an urgent with international priority. Addressing this priority requires Nationally Determined strong commitments and, consistent counterparts policy and regulatory frameworks. Contribution (NDC). to reduce the The country has made progress. The 2019 Integrated Resource Plan, the Green impact of Transport Strategy which enhanced climate change. the recently implemented carbon tax Renewables are the fastest growing source are examples of the government’s of new power generation capacity and commitment to emissions reduction. electricity. Research shows South Africa’s The Nationally Determined Contribution energy mix will evolve to include greater is South Africa’s commitment in terms of amounts of renewables, even as coal the United Nations Framework Convention remains the dominant fuel beyond 2040. on Climate Change (UNFCCC) and its Paris Agreement (PA) to contribute to 2 Accelerating South Africa’s energy transition with gas power and renewables 2 Figure 1), gas power can serve as an enabler solutions to funding shortfalls, Executive Summary for greater renewables penetration and, (Continued) accelerate the retirement of coal assets, both of projects from beginning to end.5 South Africa’s energy needs are urgent.
    [Show full text]