Basics in Low Voltage Distribution Equipment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Innovation to Reality-Introducing State-Of-The-Art Protection And
INNOVATION TO REALITY – INTRODUCING STATE-OF-THE-ART PROTECTION AND MONITORING TO EXISTING LOW-VOLTAGE SWITCHGEAR Sherwood Reber Michael Pintar Christopher Eaves Lafarge North America General Electric General Electric Abstract – A large array of components with communications capabilities exists for constructing I. INTRODUCTION protection, monitoring, and control systems for A. Background power distribution equipment (switchgear). While most of these components or devices perform Communicating devices and associated multiple functions, a typical application will contain networks are increasingly common in electrical at least several different devices that must be power distribution equipment. The networks interconnected to function as a complete system. provide the important connection among individual An example might be multifunction meters coupled devices, such as trip units, meters, and protective with multifunction protective relays, and a relays, for gathering and reporting critical power programmable logic controller for a complete system information. In low-voltage power systems system. Could it be possible to take the functions (600 V and below), a network of communicating of multiple microprocessor-based devices and devices can provide supervisory control functions, combine those functions into a single-processor gather substation electrical data, and report event system? Would the new system be able to status to a central control computer. execute instructions for fast acting overcurrent protection while gathering simultaneous -
Electrical Balance of Plant Solutions for Power Generation
GE Grid Solutions Electrical Balance of Plant Solutions for Power Generation g imagination at work Today’s Environment Todays power plants, whether heavy duty gas turbines, a distributed mobile “power plant on wheels”, or a remote wind farm, are becoming increasingly complex, especially when connecting different disparate systems seamlessly together. This is resulting in increasing industry challenges including: Demand Management Emergency Power Supplementing power to the grid for peak Support during natural disasters due to shaving or managing seasonal demands. unpredictable global weather patterns as well as support in politically volatile regions of the world. Constraint Management Regulatory Environment Overcoming generation constraints with Rapidly changing regulations, standards and impact increasing demand. on grid stability due to a variety of power generation sources on the grid. Back-up Power Power Quality Supporting maintenance, overhauls, or Managing changed network load profiles, larger outages at power plants. switched or dynamic loads, missing or overloaded interconnections. Rural Demand Energy Savings Population growth in large cities creating Reduce production cost through energy savings and increase in electrification of rural areas. increase process efficiency. With one of the largest installed base of turbine generators in the world, coupled with more than a century of experience delivering innovative, high voltage solutions in generation, transmission, and distribution networks, GE helps utilities solve these challenges with its versatile and robust suite of solutions for Electrical Balance of Plant (EBoP) applications offering best-in-class manufactured products with engineering and installation services. Providing a broad range of solutions to suit customer’s specific EBoP requirements, GE’s solutions are designed with scalability in mind to support a large scope of projects ranging from heavy duty turbine generation to hydro pump storage, renewable wind and solar applications. -
Electric Power Generation and Distribution
ATP 3-34.45 MCRP 3-40D.17 ELECTRIC POWER GENERATION AND DISTRIBUTION JULY 2018 DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited. This publication supersedes TM 3-34.45/MCRP 3-40D.17, 13 August 2013. Headquarters, Department of the Army Foreword This publication has been prepared under our direction for use by our respective commands and other commands as appropriate. ROBERT F. WHITTLE, JR. ROBERT S. WALSH Brigadier General, USA Lieutenant General, USMC Commandant Deputy Commandant for U.S. Army Engineer School Combat Development and Integration This publication is available at the Army Publishing Directorate site (https://armypubs.army.mil) and the Central Army Registry site (https://atiam.train.army.mil/catalog/dashboard). *ATP 3-34.45 MCRP 3-40D.17 Army Techniques Publication Headquarters No. 3-34.45 Department of the Army Washington, DC, 6 July 2018 Marine Corps Reference Publication Headquarters No. 3-40D.17 Marine Corps Combat Development Command Department of the Navy Headquarters, United States Marine Corps Washington, DC, 6 July 2018 Electric Power Generation and Distribution Contents Page PREFACE.................................................................................................................... iv INTRODUCTION .......................................................................................................... v Chapter 1 ELECTRICAL POWER ............................................................................................. 1-1 Electrical Power Support to Military Operations -
Circuit Breaker Control Guidelines for Vacclad-W Metal-Clad Switchgear
Application Paper AP083012EN Circuit breaker control guidelines for VacClad-W metal-clad switchgear Circuit breaker control Control breaker control equipment Relays Eaton’s VCP-W circuit breaker has a motor charged Microprocessor-based or solid-state relays spring type stored energy closing mechanism. would generally require dc power or reliable Closing the breaker charges accelerating springs. uninterruptible ac supply for their logic circuits. Protective relays or the control switch will energize a shunt trip coil to release the accelerating springs Auxiliary switches and open the breaker. This requires a reliable Optional circuit breaker and cell auxiliary switches source of control power for the breaker to function are available where needed for interlocking or as a protective device. Figure 2 and Figure 3 control of auxiliary devices. Typical applications and show typical ac and dc control schematics for type operation are described in Figure 1 and Table 1. VCP-W circuit breakers. Breaker auxiliary switches and MOC switches For ac control, a capacitor trip device is used are used for breaker open/close status and with each circuit breaker shunt trip to ensure that interlocking. energy will be available for tripping during fault conditions. A control power transformer is required Auxiliary contacts available for controls or external on the source side of each incoming line breaker. use from auxiliary switch located on the circuit Closing bus tie or bus sectionalizing breakers breaker are typically limited in number by the will require automatic transfer of control power. breaker control requirements as follows: This control power transformer may also supply • Breakers with ac control voltage: 1NO and 3NC other ac auxiliary power requirements for the switchgear. -
Distribution Board
Released By: The Development Commissioner (SSI), Ministry of SSI, New Delhi Distribution Board PRODUCT CODE (ASICC) 77308 QUALITY AND STANDARDS IS 8623:1977 IS 2675:1983 PRODUCTION CAPACITY Qty.: 600 Nos. (per annum) Value Rs. 75,00,000 YEAR OF PREPARATION 2002- 2003 PREPARED BY Small Industries Service Institute Vikas Sadan College Square Cuttack - 753003 and Office of the Development Commissioner Small Scale Industries Electrical and Electronics Division 7th Floor, Nirman Bhavan, New Delhi - 110 011. Introduction The Distribution Board, refers to an equipment which consists of bus bars, and possible switches, fuse links and Automatic protective equipment, bypass equipment, for connecting, controlling and protecting a number of branch circuits fed from one main circuit of a wiring installation in a building or premises for easy and safe handling of incoming power supply. These are, also used to protect the electrical distribution system in turn, connected electrical equipment from being damaged due to various faults like short circuit, over load, earth leakage, etc. The Conductor system by means of which electrical energy is conveyed from bulk power source or sources to the consumers is known as distribution system, which may be divided into two systems known as high voltage (primary) distribution and low voltage (secondary distribution). From generating stations the Electrical Power is usually transmitted to various Sub- stations, through extra high tension transmission lines at voltages from 33 to 220 kV and at these Sub-stations this voltage is stepped down to 11 or 6.6 or 3.3 kV and power at this voltage is conveyed to different sub-stations for distribution and to the bulk supply consumer. -
WL Arc Resistant Low Voltage Switchgear Product Guide
WL Arc Resistant Low Voltage Switchgear Product guide usa.siemens.com/switchgear WL Arc Resistant Low Voltage Switchgear Features, Benefits and Ratings Enhanced safety • One piece circuit breaker compartment doors with insert panels Siemens now offers arc resistant, metal-enclosed, low for control devices such as fuses, indicating lights and circuit voltage switchgear designed to provide an additional degree breaker control switches when required. of protection for personnel performing normal operating duties • Reinforced bolted rear covers. in proximity to the energized equipment. Such duties include • Insulated/Isolated bus bar system. opening or closing circuit breakers, closed door circuit breaker • Integrally designed circuit breaker door sealing frame that racking, reading instruments, or other activities that do not allows the user to rack a circuit breaker to connect, test or require cover removal or opening doors (other than auxiliary/ disconnect position without having to install additional instrument compartment doors). hardware (bellows, shrouds, etc) and still maintain arc resistant rating of the apparatus. Why arc resistant switchgear • Shutters in circuit breaker compartments. Standard metal-enclosed switchgear is designed to withstand the mechanical forces generated by bolted faults on the load • Riser Base with integrated arc plenum. terminals until a power circuit breaker or other protective device • Four high power circuit breaker stacking capability. No can interrupt the flow of fault current. This capability is verified additional stacking/configuration restrictions. by short-circuit and short-time withstand tests on the equipment • All section configurations available. Available in solidly and interruption tests on the power circuit breakers. During grounded or resistance grounded configurations. a bolted fault, the voltage at the fault location is essentially • Non-fused non current-limiting circuit breakers allow full zero and the fault energy is dissipated throughout the power power coordination. -
VFI Transformer Vs. Switchgear Information
Distribution Transformers Reference Data COOPER POWER Effective March 2015 TD202003EN Supersedes R210-90-2 August 2012 SERIES VFI transformer vs switchgear At issue Simplified installation A comparison of operating capabilities and costs Because there is only one piece of low-profile demonstrates that a transformer equipped with equipment to install, the installation is faster, an integral vacuum fault interrupter (VFI) can be simpler, cheaper, and more aesthetically pleasing. a superior alternative to a non-VFI transformer in Lower operating and maintenance costs combination with stand-alone switchgear. There is one piece of equipment to maintain Recommendation instead of two. Substation units reduce inventory and maintenance costs associated with insulators Eaton combines a conventional distribution or barriers. The sealed tank design protects transformer with the VFI vacuum fault interrupter the oil-immersed VFI breaker so that operation – the same advanced technology used in VFI is unimpaired by contaminated or hazardous pad-mounted switchgear in its Cooper Power™ environments or flood conditions. Breaker series VFI transformer. This combination provides maintenance is virtually eliminated. both voltage transformation and overcurrent Transformer or loop overcurrent protection protection in one space-saving, money-saving up to 35 kV package. When a transformer fault or overload condition The VFI transformer is practical for application occurs, the VFI breaker trips and isolates the on all distribution systems—new or existing, transformer, leaving the feeder uninterrupted. outdoor or indoor (Envirotemp™ FR3™ fluid-filled), When a fault occurs downstream, the VFI breaker commercial or industrial. It is vital for installations trips and isolates the fault, leaving the transformer where conventional protective equipment doesn't load uninterrupted. -
Use of Electric Transmission and Distribution Equipment Technical
TECHNICAL SUPPORT DOCUMENT FOR PROCESS EMISSIONS OF SULFUR HEXAFLUORIDE (SF6) AND PFCs FROM ELETRIC POWER SYSTEMS: PROPOSED RULE FOR MANDATORY REPORTING OF GREENHOUSE GASES Revised November 2010 Office of Air and Radiation U.S. Environmental Protection Agency Contents 1. Source Description...............................................................................................................................................1 a. Total U.S. Emissions.......................................................................................................................................1 b. Emissions to be Reported................................................................................................................................1 c. Facility Definition Characterization................................................................................................................1 2. Options for Reporting Threshold .........................................................................................................................4 3. Options for Monitoring Methods .........................................................................................................................6 4. Procedures for Estimating Missing Data..............................................................................................................7 5. QA/QC Requirements ..........................................................................................................................................7 6. Reporting Procedures...........................................................................................................................................9 -
Schulz Electric Hydroelectric
Hydroelectric Services Turnkey Services and Maintenance Programs 24-Hour Emergency Service ©2016 Schulz Group, a brand of Timken Gears & Services Inc. All rights reserved. Complete Mechanical and Electrical Services for the Hydroelectric Industry Schulz Group’s hydroelectric specialists at Maine Industrial Repair provide comprehensive maintenance programs and repair services for hydroelectric generation facilities. Our experience can help minimize downtime, reduce annual maintenance expenses, and prolong the life of hydroelectric equipment. Schulz Electric and Maine Industrial Repair Services are ISO 9001:2008 Certified. Schulz Group’s attention to detail and quality standards are second to none in the industry. Now part of the Timken Company, Schulz Group is dedicated to expanding its proven reputation as the leader in hydroelectric generator services. Schulz Group offers complete services for both horizontal and vertical units. Schulz Group has the capability to service customers’ equipment, from On-site crews disassemble a generator waterline to exciter, as well as controls, switchgear and mechanical parts. prior to repair. Industries served • Waste Water Treatment • Municipalities • Hydroelectric Power Generation • Fresh Water Treatment • Building Maintenance • Nuclear Power Generation • Manufacturing • Schools and Universities • Engineering Support • Paper Mills • Power Generation • Renewable Energy Applications ©2016 Schulz Group, a brand of Timken Gears & Services Inc. All rights reserved. Maintenance Programs On-site inspection of a generator as part of a On-site inspection of a horizontal unit Technicians have the capability to perform complete preventive maintenance program. prior to mechanical repairs. in-place repairs to generator coils and poles. Do you know the true cost commitment to customers and plays • Complete mechanical inspections of unplanned downtime? a vital role in providing solutions of guide bearings, head covers, designed to return equipment to linkage eccentrics, wicket gates, How long can you go without your like new condition. -
“Electrical Safety in the Workplace”
“Electrical Safety in the Workplace” This material was produced under Grant #SH-16609-07-60-F-26 from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. September 2008 “Electrical Safety in the Workplace” Course Goal – The aim of this program is to provide comprehensive on-site training to high-risk workers (i.e. skilled trades and maintenance workers) and management on the requirements of Sub Part S, and the prevention of serious injuries from electrical hazards at their worksites. Participants will develop understanding of the requirements of OSHA Sub Part “S” and NFPA, 70E and will be able to identify and reduce or eliminate electrical safety hazards in their workplace. Electrical Safe Work Practices including electrical safety principles, guidelines for qualification of personnel, job planning requirements and Management and Personal Responsibility will be covered. Section Content Objective 1 Introduction to Participants will be able to: Electrical Safety • Explain the issues (statistics) associated with poor electrical safety in the workplace. • Recall key electrical terms which are essential to understanding and meeting the requirements of key electrical safety standards; i.e. OSHA 29 CFR 1910.331-.335, NFPA 70E, NEC (NFPA 70) • Define and differentiate between qualified and unqualified persons under OSHA Sub Part S. and the training requirements for each. • Describe the intent of an Electrical Safety Program and list the essential elements of an effective program. -
Hydropower Vision Chapter 2
Chapter 2: State of Hydropower in the United States Hydropower A New Chapter for America’s Renewable Electricity Source STATE OF HYDROPOWER 2 in the United States Photo from 65681751. Illustration by Joshua Bauer/NREL 70 2 Overview OVERVIEW Hydropower is the primary source of renewable energy generation in the United States, delivering 48% of total renewable electricity sector generation in 2015, and roughly 62% of total cumulative renewable generation over the past decade (2006-2015) [1]. The approximately 101 gigawatts1 (GW) of hydropower capacity installed as of 2014 included ~79.6 GW from hydropower gener ation2 facilities and ~21.6 GW from pumped storage hydro- power3 facilities [2]. Reliable generation and grid support services from hydropower help meet the nation’s require- ments for the electrical bulk power system, and hydro- power pro vides a long-term, renewable source of energy that is essentially free of hazardous waste and is low in carbon emissions. Hydropower also supports national energy security, as its fuel supply is largely domestic. % 48 HYDROPOWER PUMPED CAPACITY STORAGE OF TOTAL CAPACITY RENEWABLE GENERATION Hydropower is the largest renewable energy resource in the United States and has been an esta blished, reliable contributor to the nation’s supply of elec tricity for more than 100 years. In the early 20th century, the environmental conse- quences of hydropower were not well characterized, in part because national priorities were focused on economic development and national defense. By the latter half of the 20th century, however, there was greater awareness of the environmental impacts of dams, reservoirs, and hydropower operations. -
Electrical Equipment Maintenance
51 ELECTRICAL EQUIPMENT MAINTENANCE EEM-i .+ +++,- '- . ;\; ..+,' .. , ,, y, +,~ ":'+ =+, "-+. RePOrt of Committee on .... ElectriCal Equipment Maintenance '- , ° - Swaffield Cowan, Ch'airman. FaetorY .Insurance Aesn., 131 Providence Rd., Char~tte, NC 28207 (Retli~l 12/1/72) Alan Reed, Chairman-Blect, (Dec. i', 1072) "' , . Daniel-Wocdbead Co., 3411 Woodhekd Dr., Northbrook, IL 60062 • , . , . (Pep. National Safety CorintH) + . ". George O. Hunt, Vice Oluzirman .... Monssnto Company,'800 N. Lindbergh Blvd., St. Louis, MO 63166 •. : (REX/. NFPA Seetional.Committee on F3eetalce] Equipment in 'Chemlcal A t~nespheres) -+"' " .... mcha~d W. Sh~ul,'t e~-o s~.~ " " ' Natl. Electrical Mandlaeturem'Assn., 155<East 44th.St., New Yoik, NY I0017' angert, Jr., Low Voltage Distribution Abbott H. Lucas, Elect+-ieal Fuse Manu- %Bquipment Section, National Electrical facturers Guild. Manufoct~rers Assn. ' . + .... • Donald W. Lutz, Elect~ical Msintonance C. T. Baxter, ~ Industrial and Comm~reisl Englnecra Assn. ~+ Lighting Equip. Section, National Elec- Henry S. Orth, Multi-Amp Institute.. ~"cel Manulacturem Aesn. md P~ko, Plant Engineering Magazine. " ++- Warren H. Gook, Western Electric Co., Inc. J. M. Parker, International Brotherhood of Leonard S. Corey, Eastman Kodak Co. Electrical Workers. Charles J. Eiart, Nsti0nal Electrical Con- R. W. Mummer, Aluminum Co. of Ameri~: ~ trectom Association. Carlton E. SClmad, American Insuran~ee C. F. Hedlund, Factory Mutual Rese~ A~n. Corp. R. L. Schultz, James G. Biddle Co. Z. J. Kruzic, Industrial Control and Sys- H. Dole Sheets, .Procter & Gamble Co. tems Section, National Electrical Manu- R. F. ~Sorenson, St. Regis Paper Co. - facturers Assn. G. H. St. On~e, Eeso Rescarch and Engi- L. E. LaFehr, International Associatibn of necring Co. Electrical Inspectors.