Innovation to Reality-Introducing State-Of-The-Art Protection And

Total Page:16

File Type:pdf, Size:1020Kb

Innovation to Reality-Introducing State-Of-The-Art Protection And INNOVATION TO REALITY – INTRODUCING STATE-OF-THE-ART PROTECTION AND MONITORING TO EXISTING LOW-VOLTAGE SWITCHGEAR Sherwood Reber Michael Pintar Christopher Eaves Lafarge North America General Electric General Electric Abstract – A large array of components with communications capabilities exists for constructing I. INTRODUCTION protection, monitoring, and control systems for A. Background power distribution equipment (switchgear). While most of these components or devices perform Communicating devices and associated multiple functions, a typical application will contain networks are increasingly common in electrical at least several different devices that must be power distribution equipment. The networks interconnected to function as a complete system. provide the important connection among individual An example might be multifunction meters coupled devices, such as trip units, meters, and protective with multifunction protective relays, and a relays, for gathering and reporting critical power programmable logic controller for a complete system information. In low-voltage power systems system. Could it be possible to take the functions (600 V and below), a network of communicating of multiple microprocessor-based devices and devices can provide supervisory control functions, combine those functions into a single-processor gather substation electrical data, and report event system? Would the new system be able to status to a central control computer. execute instructions for fast acting overcurrent protection while gathering simultaneous metering A challenge in working with communicating data from every circuit breaker in the equipment devices has been handling large amounts of data line-up? from multiple devices in a workable time frame. Speeds and bandwidth on commercially available In this paper, the authors discuss a unique networks have recently reached levels at which it is approach to low-voltage switchgear protection and reasonable to consider gathering data from every the process of transitioning this concept to a real- circuit in a substation (up to 30 circuits) and use world application. The paper describes the that data to perform real-time control and architecture and functionality of this approach and protection functions. Channeling all these data to explains how a centrally controlled system can one central processor located in the low-voltage provide advanced monitoring and protection substation provides an opportunity to perform functions much more effectively than existing protection, control, and monitoring functions that systems. are either not possible with conventional hardware and/or software or are extremely difficult to Installation and field-testing are important steps implement in electrical distribution equipment. in the process of introducing new technology. This paper will describe why retrofitting an existing B. Shortcomings Of Present-Day Communication switchgear lineup may be preferable to starting Systems with new switchgear. It will also describe the considerable planning involved in the retrofit Although modern communication networks have process to minimize the effect on the customer’s the speed and bandwidth to communicate with operations. many devices, variable latency caused by communication delays, device response time, and The paper concludes with a discussion of how the amount of information requested from each well the system functioned in an actual operating device has relegated communication devices to environment. supervisory and data-gathering functions. In order to add protection, such as overcurrent tripping, to Index terms – retrofit, communicating devices, the list of functions handled by the network, a fast, single-processor reliable, and deterministic communication system is necessary. Variables affecting system response, such as the number of communicating devices and the length Innovation to Reality DER-038 1 of the message to and from the device, can make performing the control and protection functions and the system response time after an event (electrical each breaker acting as a node on the network. The fault) not only difficult to predict, but also slow key advantage of this architecture is that the single compared to the time required by a single device to processor has the information from all nodes execute its own event response. Certain types of simultaneously. Thus, protection and control information from a device can be assigned to high- schemes can be designed that consider the values priority interrupts, but the system response is not of electrical signals, such as current magnitude always deterministic, nor is the performance and phase angle, at one or all circuit breakers in predictable. Higher-speed networks, including the system with equal ease. This allows the Ethernet, can provide very fast communication implementation of circuit-specific zone-protection rates, but the protocols employed do not provide functions as easily as a simple overcurrent function the necessary predictable and deterministic at a single circuit breaker. response times. Protocols specifically designed for machine and device control offer promising capabilities in data rate, scalability, and reliability, Power Distribution but none provided the desired fast, reliable, and Analog Signals Voltage deterministic communication. Digital Network Sensors Central Computer C. A Different Approach To Monitoring and Protection Breaker Node The concept discussed in this paper uses a Current methodology different from that of all other Sensors electrical equipment systems to date. Communication is based on the capabilities of Ethernet, while removing the time variation introduced by collision-detection, multiple-access Breaker Breaker Breaker Breaker (CSMA/CD) protocols. Communication is Node Node Node Node structured to yield fixed latency and subcycle Current Current Current Current transmission times between a central processor Sensors Sensors Sensors Sensors and all the devices in the system. Fast communication and fixed latency are key enablers for using a communication network to perform Fig. 1. Centralized architecture applied to a typical low- critical control, monitoring, and protection voltage switchgear lineup. functions. The following are examples of the advanced protective and monitoring functions possible with a A second distinction is in the types of information single-processor architecture where all devices carried on the network. Rather than processed provide data simultaneously. summary information captured, created, and stored by such devices as trip units, meters, or relays, the • Multiple-source ground fault -- Includes actual raw parametric or discrete electrical data simple main-tie-main configurations with and device physical status are carried on the multiple neutral-to-ground bonding network. The data sent from the devices to the connections to more complex systems central processor are the actual voltages, currents, incorporating utility transformers, emergency and device status. As a result, any microprocessor generators, paralleling equipment, on the network has complete system wide data uninterruptible power sources, and bypass with which to make decisions. It can operate any or breakers. all devices based on information derived for as many devices as the control and protection algorithms require. • Zone-selective interlocking -- Reduces the The architecture discussed here is centralized, delay time for overcurrent tripping (short time with one microprocessor responsible for all system or ground fault) when the fault is between a functions. Alternate architectures, such as main or tie circuit breaker and a branch distributed and semi-distributed, were considered, feeder circuit breaker. but the central processor architecture provides the best performance. Figure 1 shows the centralized • Bus differential -- A type of bus fault architecture applied to a typical lineup of low- protection seldom used in low voltage voltage switchgear, with a central computer equipment due to the costs associated with Innovation to Reality DER-038 2 multiple current sensors on each circuit requirements. Test procedures were based on the breaker and the need for a set of sensitive product specifications and detailed requirements (and usually costly) protective relays. for the systems. Test results and pass/fail criteria Sensitive bus differential protection can were linked back to the specifics of the product significantly reduce the damage associated requirements. The engineers also expanded the with arcing faults. test cases by performing failure mode effects analysis (FMEA) to add unexpected cases, • Dynamic zone protection based on system providing more than simple coverage. Although configuration -- Provides the ability to testing is thorough, the unexpected field situation dynamically adjust overcurrent protective can still be missed. settings on upstream breakers based on the 2) The Environment Is Different: In particular the settings of a downstream breaker sensing a electromagnetic (EM) field caused by motor loads, fault. Back-up protection provided by the transformer inrush, and switching transients is main or tie circuit breaker can be much tighter different in the field. Laboratory testing to ANSI to the feeder breaker that is sensing and C90.1 is performed prior to beta testing to cover attempting to clear the fault. Traditionally, high-frequency, high electric field situations. Other main and tie circuit breakers are set with laboratory testing for the influence
Recommended publications
  • Electrical Balance of Plant Solutions for Power Generation
    GE Grid Solutions Electrical Balance of Plant Solutions for Power Generation g imagination at work Today’s Environment Todays power plants, whether heavy duty gas turbines, a distributed mobile “power plant on wheels”, or a remote wind farm, are becoming increasingly complex, especially when connecting different disparate systems seamlessly together. This is resulting in increasing industry challenges including: Demand Management Emergency Power Supplementing power to the grid for peak Support during natural disasters due to shaving or managing seasonal demands. unpredictable global weather patterns as well as support in politically volatile regions of the world. Constraint Management Regulatory Environment Overcoming generation constraints with Rapidly changing regulations, standards and impact increasing demand. on grid stability due to a variety of power generation sources on the grid. Back-up Power Power Quality Supporting maintenance, overhauls, or Managing changed network load profiles, larger outages at power plants. switched or dynamic loads, missing or overloaded interconnections. Rural Demand Energy Savings Population growth in large cities creating Reduce production cost through energy savings and increase in electrification of rural areas. increase process efficiency. With one of the largest installed base of turbine generators in the world, coupled with more than a century of experience delivering innovative, high voltage solutions in generation, transmission, and distribution networks, GE helps utilities solve these challenges with its versatile and robust suite of solutions for Electrical Balance of Plant (EBoP) applications offering best-in-class manufactured products with engineering and installation services. Providing a broad range of solutions to suit customer’s specific EBoP requirements, GE’s solutions are designed with scalability in mind to support a large scope of projects ranging from heavy duty turbine generation to hydro pump storage, renewable wind and solar applications.
    [Show full text]
  • Basics in Low Voltage Distribution Equipment
    Thought leadership White paper Basics in low voltage distribution equipment Mark Rumpel Basics of electricity generation Product line manager Eaton In the U.S., as elsewhere, electricity has historically been generated from precious natural resources including coal, oil or natural gas. Nuclear energy and hydropower innovations advanced electrical Executive summary generation capabilities at the end of the 20th century. Today, Depending on their unique needs, multi-family, commercial and alternative and renewable fuels such as geothermal energy, wind industrial sites typically rely upon either low or medium voltage power, biomass and solar energy are gradually becoming more service entrance equipment to control or cut off the electrical readily available; these sources are popular both for their higher supply of their buildings from a single point. Low voltage efficiency and long-term sustainability. distribution equipment typically operates at less than 600 volts; Once harvested, natural resources and mechanical energy sources in contrast, medium voltage equipment affords a wider range must first be converted into electrical energy to make it transmis- of 600 to 38,000 volts. sible and usable. Power plants complete this function using steam This paper provides a basic overview of the definitions, turbines. components, applications and other details associated Water is heated in a massive boiler to produce steam, which is used with low voltage distribution equipment. It covers electrical to turn a series of blades mounted on a shaft turbine. The force of panelboards, switchboards and switchgear operating at the steam rotates a shaft connected to a generator. The spinning 600 volts alternating current (AC) or direct current (DC) or below.
    [Show full text]
  • Circuit Breaker Control Guidelines for Vacclad-W Metal-Clad Switchgear
    Application Paper AP083012EN Circuit breaker control guidelines for VacClad-W metal-clad switchgear Circuit breaker control Control breaker control equipment Relays Eaton’s VCP-W circuit breaker has a motor charged Microprocessor-based or solid-state relays spring type stored energy closing mechanism. would generally require dc power or reliable Closing the breaker charges accelerating springs. uninterruptible ac supply for their logic circuits. Protective relays or the control switch will energize a shunt trip coil to release the accelerating springs Auxiliary switches and open the breaker. This requires a reliable Optional circuit breaker and cell auxiliary switches source of control power for the breaker to function are available where needed for interlocking or as a protective device. Figure 2 and Figure 3 control of auxiliary devices. Typical applications and show typical ac and dc control schematics for type operation are described in Figure 1 and Table 1. VCP-W circuit breakers. Breaker auxiliary switches and MOC switches For ac control, a capacitor trip device is used are used for breaker open/close status and with each circuit breaker shunt trip to ensure that interlocking. energy will be available for tripping during fault conditions. A control power transformer is required Auxiliary contacts available for controls or external on the source side of each incoming line breaker. use from auxiliary switch located on the circuit Closing bus tie or bus sectionalizing breakers breaker are typically limited in number by the will require automatic transfer of control power. breaker control requirements as follows: This control power transformer may also supply • Breakers with ac control voltage: 1NO and 3NC other ac auxiliary power requirements for the switchgear.
    [Show full text]
  • WL Arc Resistant Low Voltage Switchgear Product Guide
    WL Arc Resistant Low Voltage Switchgear Product guide usa.siemens.com/switchgear WL Arc Resistant Low Voltage Switchgear Features, Benefits and Ratings Enhanced safety • One piece circuit breaker compartment doors with insert panels Siemens now offers arc resistant, metal-enclosed, low for control devices such as fuses, indicating lights and circuit voltage switchgear designed to provide an additional degree breaker control switches when required. of protection for personnel performing normal operating duties • Reinforced bolted rear covers. in proximity to the energized equipment. Such duties include • Insulated/Isolated bus bar system. opening or closing circuit breakers, closed door circuit breaker • Integrally designed circuit breaker door sealing frame that racking, reading instruments, or other activities that do not allows the user to rack a circuit breaker to connect, test or require cover removal or opening doors (other than auxiliary/ disconnect position without having to install additional instrument compartment doors). hardware (bellows, shrouds, etc) and still maintain arc resistant rating of the apparatus. Why arc resistant switchgear • Shutters in circuit breaker compartments. Standard metal-enclosed switchgear is designed to withstand the mechanical forces generated by bolted faults on the load • Riser Base with integrated arc plenum. terminals until a power circuit breaker or other protective device • Four high power circuit breaker stacking capability. No can interrupt the flow of fault current. This capability is verified additional stacking/configuration restrictions. by short-circuit and short-time withstand tests on the equipment • All section configurations available. Available in solidly and interruption tests on the power circuit breakers. During grounded or resistance grounded configurations. a bolted fault, the voltage at the fault location is essentially • Non-fused non current-limiting circuit breakers allow full zero and the fault energy is dissipated throughout the power power coordination.
    [Show full text]
  • VFI Transformer Vs. Switchgear Information
    Distribution Transformers Reference Data COOPER POWER Effective March 2015 TD202003EN Supersedes R210-90-2 August 2012 SERIES VFI transformer vs switchgear At issue Simplified installation A comparison of operating capabilities and costs Because there is only one piece of low-profile demonstrates that a transformer equipped with equipment to install, the installation is faster, an integral vacuum fault interrupter (VFI) can be simpler, cheaper, and more aesthetically pleasing. a superior alternative to a non-VFI transformer in Lower operating and maintenance costs combination with stand-alone switchgear. There is one piece of equipment to maintain Recommendation instead of two. Substation units reduce inventory and maintenance costs associated with insulators Eaton combines a conventional distribution or barriers. The sealed tank design protects transformer with the VFI vacuum fault interrupter the oil-immersed VFI breaker so that operation – the same advanced technology used in VFI is unimpaired by contaminated or hazardous pad-mounted switchgear in its Cooper Power™ environments or flood conditions. Breaker series VFI transformer. This combination provides maintenance is virtually eliminated. both voltage transformation and overcurrent Transformer or loop overcurrent protection protection in one space-saving, money-saving up to 35 kV package. When a transformer fault or overload condition The VFI transformer is practical for application occurs, the VFI breaker trips and isolates the on all distribution systems—new or existing, transformer, leaving the feeder uninterrupted. outdoor or indoor (Envirotemp™ FR3™ fluid-filled), When a fault occurs downstream, the VFI breaker commercial or industrial. It is vital for installations trips and isolates the fault, leaving the transformer where conventional protective equipment doesn't load uninterrupted.
    [Show full text]
  • Schulz Electric Hydroelectric
    Hydroelectric Services Turnkey Services and Maintenance Programs 24-Hour Emergency Service ©2016 Schulz Group, a brand of Timken Gears & Services Inc. All rights reserved. Complete Mechanical and Electrical Services for the Hydroelectric Industry Schulz Group’s hydroelectric specialists at Maine Industrial Repair provide comprehensive maintenance programs and repair services for hydroelectric generation facilities. Our experience can help minimize downtime, reduce annual maintenance expenses, and prolong the life of hydroelectric equipment. Schulz Electric and Maine Industrial Repair Services are ISO 9001:2008 Certified. Schulz Group’s attention to detail and quality standards are second to none in the industry. Now part of the Timken Company, Schulz Group is dedicated to expanding its proven reputation as the leader in hydroelectric generator services. Schulz Group offers complete services for both horizontal and vertical units. Schulz Group has the capability to service customers’ equipment, from On-site crews disassemble a generator waterline to exciter, as well as controls, switchgear and mechanical parts. prior to repair. Industries served • Waste Water Treatment • Municipalities • Hydroelectric Power Generation • Fresh Water Treatment • Building Maintenance • Nuclear Power Generation • Manufacturing • Schools and Universities • Engineering Support • Paper Mills • Power Generation • Renewable Energy Applications ©2016 Schulz Group, a brand of Timken Gears & Services Inc. All rights reserved. Maintenance Programs On-site inspection of a generator as part of a On-site inspection of a horizontal unit Technicians have the capability to perform complete preventive maintenance program. prior to mechanical repairs. in-place repairs to generator coils and poles. Do you know the true cost commitment to customers and plays • Complete mechanical inspections of unplanned downtime? a vital role in providing solutions of guide bearings, head covers, designed to return equipment to linkage eccentrics, wicket gates, How long can you go without your like new condition.
    [Show full text]
  • Hydropower Vision Chapter 2
    Chapter 2: State of Hydropower in the United States Hydropower A New Chapter for America’s Renewable Electricity Source STATE OF HYDROPOWER 2 in the United States Photo from 65681751. Illustration by Joshua Bauer/NREL 70 2 Overview OVERVIEW Hydropower is the primary source of renewable energy generation in the United States, delivering 48% of total renewable electricity sector generation in 2015, and roughly 62% of total cumulative renewable generation over the past decade (2006-2015) [1]. The approximately 101 gigawatts1 (GW) of hydropower capacity installed as of 2014 included ~79.6 GW from hydropower gener ation2 facilities and ~21.6 GW from pumped storage hydro- power3 facilities [2]. Reliable generation and grid support services from hydropower help meet the nation’s require- ments for the electrical bulk power system, and hydro- power pro vides a long-term, renewable source of energy that is essentially free of hazardous waste and is low in carbon emissions. Hydropower also supports national energy security, as its fuel supply is largely domestic. % 48 HYDROPOWER PUMPED CAPACITY STORAGE OF TOTAL CAPACITY RENEWABLE GENERATION Hydropower is the largest renewable energy resource in the United States and has been an esta blished, reliable contributor to the nation’s supply of elec­ tricity for more than 100 years. In the early 20th century, the environmental conse- quences of hydropower were not well characterized, in part because national priorities were focused on economic development and national defense. By the latter half of the 20th century, however, there was greater awareness of the environmental impacts of dams, reservoirs, and hydropower operations.
    [Show full text]
  • Wastewater Treatment Cogeneration Fact Sheet
    Wastewater Treatment Cogeneration Fact Sheet Cogeneration at West Point Treatment Plant The West Point Treatment Plant captures renewable energy to maximize value from a green energy resource – biogas from the wastewater treatment process. Biogas from the plant’s digesters contains about 60 percent methane (the combustible component of natural gas). The cogeneration system creates electricity from this gas and captures the heat generated from the engines. The system reduces West Point’s demand for electricity supplied from the grid, and will provide a significant portion of West Point’s heat demand for most of the year. West Point’s cogeneration facility is the latest upgrade in a long history of energy recovery from biogas at West Point. West Point has been using digester gas in the treatment process since it opened in 1966 to run raw sewage pump engines and generate heat, and it first began creating electricity from biogas in 1983. This new cogeneration system is the largest combined heat and power facility in the State of Washington that uses biogas from digesters. Internal Combustion Engines The cogeneration of power and heat at West Point uses internal combustion engines. Internal combustion cogeneration systems use an engine similar to an automobile engine. In this case, renewable digester gas is used as the energy source instead of gasoline, and the output of the engine drives a generator. At West Point, two internal combustion engines fueled by digester gas provide power to generators that produce electricity for the plant. The heat from several parts of the engines including the jacket water, lube oil, after cooler, and exhaust, is used to heat water which is then sent to heat digesters, and occupied spaces.
    [Show full text]
  • WL Low Voltage Metal-Enclosed Switchgear
    WL Low Voltage Metal-Enclosed Switchgear Selection and Application Guide usa.siemens.com/switchgear Type WL Low Voltage Metal-Enclosed Switchgear Table of Contents General Information 2 Construction Details 3-5 WL Circuit Breaker 6-8 Electronic Trip Unit 9-15 Breaker Technical Data 16-17 WL Secondary Terminal Assisgnments 18 Section Configurations 19-20 Shipping Weights and Dimensional Information 21-29 VT, CPT, CT Data 30 1 Type WL Low Voltage Metal-Enclosed Switchgear General Information Siemens Type WL low voltage metal- enclosed switchgear is designed, constructed and tested to provide superior power distribution, power monitoring and control. At the heart of the Type WL low voltage switchgear is the World Class Siemens WL breaker. Siemens Type WL low voltage switchgear can be utilized in the following applications: • Industrial Heavy assembly Semiconductor Petrochemical Automotive Biotech Pharmaceutical • Institutional Type WL Low Voltage Metal-Enclosed Switchgear Water treatment Airports Industry Standards Universities • ANSI C37.17 – Trip Devices for AC Type WL switchgear with power circuit Medical facilities and General Purpose DC Low-Voltage breakers are designed, tested and Correctional facilities Power Circuit Breakers constructed in accordance with: • NEMA SG3 - Low Voltage Power • Critical Power • UL 1558 – Metal-Enclosed Low Circuit Breakers Data Processing Voltage Power Circuit Breaker Continuous industrial process Switchgear Features and modifications required by Hospitals • ANSI C37.20.1 – Metal-Enclosed NEC are incorporated
    [Show full text]
  • Hydropower Plants As Black Start Resources
    Hydropower Plants as Black Start Resources May 2019 Jose R. Gracia Patrick W. O’Connor Lawrence C. Markel Rui Shan D. Thomas Rizy Alfonso Tarditi ORNL/SPR-2018/1077 Approved for public release. Distribution is unlimited. Acknowledgments This work was authored by Oak Ridge National Laboratory, managed by UT-Battelle for the US Department of Energy, under contract DE-AC05-00OR22725 and supported by the HydroWIRES Initiative of the Energy Department’s Water Power Technologies Office (WPTO), under contract number DE-AC05-00OR22725. The authors would like to thank Stephen Signore of Oak Ridge National Laboratory for his help in determining the makeup of current black start units in the United States. Additional thanks go to Alejandro Moreno, Samuel Bockenhauer, and Rebecca O’Neil for their thoughtful comments on drafts of the white paper. HydroWIRES The US electricity system is changing rapidly with the large-scale addition of variable renewables, and the flexible capabilities of hydropower (including pumped storage hydropower) make it well-positioned to aid in integrating these variable resources while supporting grid reliability and resilience. Recognizing these challenges and opportunities, WPTO has launched a new initiative known as HydroWIRES: Water Innovation for a Resilient Electricity System. HydroWIRES is principally focused on understanding and supporting the changing role of hydropower in the evolving US electricity system. Through the HydroWIRES initiative, WPTO seeks to understand and drive utilization of the full potential of hydropower resources to contribute to electricity system reliability and resilience, now and into the future. HydroWIRES is distinguished in its close engagement with the US Department of Energy (DOE) national laboratories.
    [Show full text]
  • And Medium-Voltage Arc Flash Mitigation Solutions for Greater Protection and Productivity
    — Smarter safety IEC low- and medium-voltage arc flash mitigation solutions for greater protection and productivity • Maximum protection • Maximum uptime • Maximum peace of mind — The occurrence of an arc flash is the most serious fault within a power system. Its destructive impacts can lead to severe personnel injuries, costly equipment damage and long outages. ABB offers a wide range of solutions to prevent and mitigate the effects of arc flash events, thus enhancing safety, minimizing damage and reducing downtime. — Table of contents 004 – 005 The business case for arc flash mitigation solutions 006 – 007 What is an arc flash? 008 – 013 Passive, active and preventive solutions 014 – 015 Portfolio overview 016 – 019 Passive arc flash protection product range 020 – 023 Active arc flash mitigation product range 024 – 026 Preventive arc flash protection product range 4 SMARTER SAFETY ARC FLASH MITIGATION SOLUTIONS FOR GREATER PROTECTION AND PRODUCTIVITY — SMARTER SAFETY There is a real business case for arc flash protection and mitigation and at ABB we are proud that our wide range of solutions goes beyond compliance with standards and regulations to bring you the best possible value. PUTTING THE PROTECTION OF YOUR PEOPLE FIRST 5 — Putting the protection of your people first is a smart choice. Because safety is not a cost, it is an investment. It goes without saying that safety should be a Maximum protection. Protect personnel with priority for every business. Arc flash mitigation solutions ranging from passive protection to solutions are essential because they save lives. ultra-fast arc mitigation solutions. ABB’s portfolio But that’s not all.
    [Show full text]
  • Hive Switchgear
    MICROGRID-ENABLED SWITCHGEAR Hive Switchgear DesigneD anD engineereD for microgriD operations, the Hive switchgear provides commercial, industrial and military operations with critical energy reliability and resiliency when experiencing disturbances from utility power. By integrating all the control functionality up front, the Hive switchgear simplifies design,engineering, installation and commissioning for low- and medium-voltage systems. With AutoLYNC®, Go Electric’s patented microgrid controller, the system incorporates a wide range of distributed energy resources (DERs), such as solar, wind, energy storage and gensets. Prepare for the evolution of the grid and address all your immediate energy resiliency requirements at once with the Hive microgrid-enabled switchgear. KEY FEATURES • MICROGRID READY Prewired protection and controls deliver microgrid capability from the start • FLEXIBLE, MODULAR DESIGN Satisfy today’s energy need while setting a strong foundation for the future • RAPID RESPONSE Ensure safe power delivery when isolated from the distribution grid • UL CERTIFICATION Quality engineering and manufacturing to the highest industry standards TRANSITION YOUR DISTRIBUTION SYSTEM TO A MICROGRID SYSTEM Easily integrate all DERs Streamline installation Standardize around into existing circuitry and commissioning a scalable switchgear Reduce system design and Prewired, prefabricated, Provide resilient power engineering costs with a central factory acceptance-tested distribution for low-voltage connection point for a variety switchgear lowers install and medium-voltage applications of renewables, generators and costs, reduces risk during site with a system that can grow energy storage systems acceptance testing and adapt with your business Hive Switchgear Connect and control vastly different power sources, with How It Works room to grow DERs with different power characteristics, including solar, CHP, and diesel, provide power on a common busbar.
    [Show full text]