Identifying Driver Mutations in Cancers

Total Page:16

File Type:pdf, Size:1020Kb

Identifying Driver Mutations in Cancers A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details Identifying driver mutations in cancers A thesis submitted to the University of Sussex for the degree of Doctor of Philosophy By Hanadi Baeissa October 2018 Declaration I hereby declare that this thesis has not been and will not be, submitted in whole or in part to another University for the award of any other degree. Hanadi Baeissa / / 2018 2 Preface The research presented in this thesis has been submitted for publication as follows: Chapter 2 Baeissa HM, Benstead-Hume G, Richardson CJ, Pearl FM. Mutational patterns in oncogenes and tumour suppressors. Biochemical Society Transactions. 2016; 44:925– 31. Author contributions: F.M.G.P. conceived the project and designed the analysis; H.B., C.R., G.B.-H. and F.M.G.P. implemented the informatics; and H.B. and F.M.G.P. undertook the data analysis and wrote the paper. Chapter 3 Baeissa HM, Benstead-Hume, G., Richardson, CJ. & Pearl, FM. Identification and analysis of mutational hotspots in oncogenes and tumour suppressors. Oncotarget. 2017; 8; 21290–304. Author contributions: F.M.G.P. conceived the project and designed the analysis; H.B., C.R., G.B.-H. and F.M.G.P. implemented the informatics; and H.B. and F.M.G.P. undertook the data analysis and wrote the paper. Chapter 4 Hanadi M Baeissa, Sarah K. Wooller, Chris J Richardson and Frances M G Pearl. Predicting loss of function and gain of function driver missense mutations in cancer. Submitted Author contributions: F.M.G.P. and H.M.B conceived the project and designed the analysis; H.B., C.R., and S.W. implemented the informatics; and H.B. undertook the data analysis. H.B and FMGP wrote the paper. 3 Chapter 5 Hanadi M Baeissa and Frances M G Pearl. Identifying the impact of inframe insertions and deletions on protein function in cancer. Submitted Author contributions: F.M.G.P. and H.B conceived the project and designed the analysis; H.B. implemented the informatics, undertook the data analysis and wrote the paper under the supervision of FMGP. Chapter 6 Hanadi M Baeissa, Sarah K Wooller and Frances M Pearl. Identifying actionable mutated proteins as targets for personalised medicine in lung cancer. In preparation Author contributions: F.M.G.P. and H.M.B conceived the project and designed the analysis; H.B., GB-H and S.W implemented the informatics. H.B undertook the data analysis and wrote the paper under the supervision of FMGP. 4 Acknowledgements This thesis would not have been possible without the constant help and guidance of my wonderful supervisor Dr. Frances Pearl. Her understanding and support are really appreciated. I have benefited from her knowledge, insight and enthusiasm. Also, I wish to thank my second supervisor Prof Laurence Pearl for the help. I am grateful to my friend Sarah Wooller for the warm support and caring that helped me through my most difficult period during the PhD. I wish to thank members of bioinformatics group: Graeme Benstead-Hume and Tina Chen for all the assistance, encouragement and friendship and to everyone who has been involved in the underlying work of this thesis. Most of all, I would like to thank my parents Mohammed and Noor. Their constant support and unwavering confidence that I can do anything and everything that I desire made me who I am today. My warmest thank also go out to my sister, my brothers, my kids for their support and opening my eyes to the future. Special thanks are owed to my husband Adel. His easy going attitude, understanding and love took the weight of life outside the research world off my shoulders so I could breathe a little easier. For the generous financial support through the years, thanks goes to King Abdulaziz University, Ministry of education in Saudi Arabia and Royal Embassy of Saudi Arabia Cultural Bureau in London. 5 Abstract All cancers depend upon mutations in critical genes, which confer a selective advantage to the tumour cell. The key to understanding the contribution of a disease- associated mutation to the development and progression of cancer comes from an understanding of the consequences of that mutation on the function of the affected protein, and the impact on the pathways in which that protein is involved. Using data from over 30 different cancers from whole-exome sequencing cancer genomic projects, I analysed over one million somatic mutations. I identified mutational hotspots within domain families by mapping small mutations to equivalent positions in multiple sequence alignments of protein domains. I found that gain of function mutations from oncogenes and loss of function mutations from tumour suppressors are normally found in different domain families and when observed in the same domain families, hotspot mutations are located at different positions within the multiple sequence alignment of the domain. Next, I investigated the ability of seven prediction algorithms to discriminate between driver missense mutations in oncogenes and tumour suppressors. Using 19 features to describe these mutations, I then developed a random forest classifier, MOKCaRF, to distinguish between gain of function and loss of function missense mutations in cancer. MOKCaRF performs significantly better than existing algorithms. I then evaluated the ability of six existing prediction tools to distinguish between pathogenic and neutral mutations for both inframe insertion and inframe deletion mutations. I developed my own classifiers using 11 features that perform better than the current algorithms. 6 Finally, using the algorithms that I developed, as well as changes in copy number and expression data for each gene, I analysed samples from 50 lung cancer patients to identify the actionable targets and potential new drug targets for each tumour. 7 List of Contents Chapter 1. Introduction ............................................................................................ 19 1.1 Cancer ................................................................................................................ 20 1.1.1 The Hallmarks of Cancer ............................................................................. 21 1.2 Genes involved in the development of cancer................................................. 23 1.2.1 Oncogenes .................................................................................................... 24 1.2.2 Tumour suppressor genes ............................................................................ 24 1.2.3 Therapeutically targeting driver genes ......................................................... 25 1.3 Mutations that arise in cancer ......................................................................... 26 1.3.1 Large-scale mutations .................................................................................. 26 1.3.2 Small-scale mutations .................................................................................. 27 1.3.2.1 Point Mutations ..................................................................................... 27 1.3.2.2. Indels .................................................................................................... 28 1.4 Functional consequence of small-scale mutations .......................................... 28 1.4.1 Loss of function mutations........................................................................... 28 1.4.2 Gain of function mutations .......................................................................... 30 1.5 Biological databases .......................................................................................... 31 1.5.1.Ensembl........................................................................................................ 31 1.5.2 The Universal Protein Resource .................................................................. 32 1.5.3 Protein Data Bank ........................................................................................ 33 1.5.4. CATH .......................................................................................................... 33 1.5.5 Pfam ............................................................................................................. 34 1.6 Cancer databases .............................................................................................. 36 1.6.1 Catalogue of Somatic Mutations in Cancer ................................................. 36 1.6.2 Cancer Gene Census .................................................................................... 37 1.6.3 ClinVar ......................................................................................................... 37 1.6.4 The Cancer Genome Atlas ........................................................................... 38 1.6.5 International Cancer Genome Consortium .................................................. 38 1.6.6 The Pan Cancer Analysis of Whole Genomes ............................................. 39 1.6.7 MOKCa .......................................................................................................
Recommended publications
  • University of California, San Diego
    UNIVERSITY OF CALIFORNIA, SAN DIEGO The post-terminal differentiation fate of RNAs revealed by next-generation sequencing A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Gloria Kuo Lefkowitz Committee in Charge: Professor Benjamin D. Yu, Chair Professor Richard Gallo Professor Bruce A. Hamilton Professor Miles F. Wilkinson Professor Eugene Yeo 2012 Copyright Gloria Kuo Lefkowitz, 2012 All rights reserved. The Dissertation of Gloria Kuo Lefkowitz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ __________________________________________________________________ Chair University of California, San Diego 2012 iii DEDICATION Ma and Ba, for your early indulgence and support. Matt and James, for choosing more practical callings. Roy, my love, for patiently sharing the ups and downs of this journey. iv EPIGRAPH It is foolish to tear one's hair in grief, as though sorrow would be made less by baldness. ~Cicero v TABLE OF CONTENTS Signature Page .............................................................................................................. iii Dedication ....................................................................................................................
    [Show full text]
  • California Proposition 65 Toxicity List
    STATE OF CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY OFFICE OF ENVIRONMENTAL HEALTH HAZARD ASSESSMENT SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT OF 1986 CHEMICALS KNOWN TO THE STATE TO CAUSE CANCER OR REPRODUCTIVE TOXICITY 4-Mar-05 The Safe Drinking Water and Toxic Enforcement Act of 1986 requires that the Governor revise and Chemical Type of Toxicity CAS No. Date Listed A-alpha-C (2-Amino-9H-pyrido[2,3-b]indole) cancer 26148685 1-Jan-90 Acetaldehyde cancer 75070 1-Apr-88 Acetamide cancer 60355 1-Jan-90 Acetazolamide developmental 59665 20-Aug-99 Acetochlor cancer 34256821 1-Jan-89 Acetohydroxamic acid developmental 546883 1-Apr-90 2-Acetylaminofluorene cancer 53963 1-Jul-87 Acifluorfen cancer 62476599 1-Jan-90 Acrylamide cancer 79061 1-Jan-90 Acrylonitrile cancer 107131 1-Jul-87 Actinomycin D cancer 50760 1-Oct-89 Actinomycin D developmental 50760 1-Oct-92 Adriamycin (Doxorubicin hydrochloride) cancer 23214928 1-Jul-87 AF-2;[2-(2-furyl)-3-(5-nitro-2-furyl)]acrylamide cancer 3688537 1-Jul-87 Aflatoxins cancer --- 1-Jan-88 Alachlor cancer 15972608 1-Jan-89 Alcoholic beverages, when associated with alcohol abuse cancer --- 1-Jul-88 Aldrin cancer 309002 1-Jul-88 All-trans retinoic acid developmental 302794 1-Jan-89 Allyl chloride Delisted October 29, 1999 cancer 107051 1-Jan-90 Alprazolam developmental 28981977 1-Jul-90 Altretamine developmental, male 645056 20-Aug-99 Amantadine hydrochloride developmental 665667 27-Feb-01 Amikacin sulfate developmental 39831555 1-Jul-90 2-Aminoanthraquinone cancer 117793 1-Oct-89 p -Aminoazobenzene cancer
    [Show full text]
  • COMBINED LIST of Particularly Hazardous Substances
    COMBINED LIST of Particularly Hazardous Substances revised 2/4/2021 IARC list 1 are Carcinogenic to humans list compiled by Hector Acuna, UCSB IARC list Group 2A Probably carcinogenic to humans IARC list Group 2B Possibly carcinogenic to humans If any of the chemicals listed below are used in your research then complete a Standard Operating Procedure (SOP) for the product as described in the Chemical Hygiene Plan. Prop 65 known to cause cancer or reproductive toxicity Material(s) not on the list does not preclude one from completing an SOP. Other extremely toxic chemicals KNOWN Carcinogens from National Toxicology Program (NTP) or other high hazards will require the development of an SOP. Red= added in 2020 or status change Reasonably Anticipated NTP EPA Haz list COMBINED LIST of Particularly Hazardous Substances CAS Source from where the material is listed. 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide Acutely Toxic Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- Acutely Toxic 1-(2-Chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (Methyl-CCNU) Prop 65 KNOWN Carcinogens NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) IARC list Group 2A Reasonably Anticipated NTP 1-(2-Chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) (Lomustine) Prop 65 1-(o-Chlorophenyl)thiourea Acutely Toxic 1,1,1,2-Tetrachloroethane IARC list Group 2B 1,1,2,2-Tetrachloroethane Prop 65 IARC list Group 2B 1,1-Dichloro-2,2-bis(p -chloropheny)ethylene (DDE) Prop 65 1,1-Dichloroethane
    [Show full text]
  • WSAVA List of Essential Medicines for Cats and Dogs
    The World Small Animal Veterinary Association (WSAVA) List of Essential Medicines for Cats and Dogs Version 1; January 20th, 2020 Members of the WSAVA Therapeutic Guidelines Group (TGG) Steagall PV, Pelligand L, Page SW, Bourgeois M, Weese S, Manigot G, Dublin D, Ferreira JP, Guardabassi L © 2020 WSAVA All Rights Reserved Contents Background ................................................................................................................................... 2 Definition ...................................................................................................................................... 2 Using the List of Essential Medicines ............................................................................................ 2 Criteria for selection of essential medicines ................................................................................. 3 Anaesthetic, analgesic, sedative and emergency drugs ............................................................... 4 Antimicrobial drugs ....................................................................................................................... 7 Antibacterial and antiprotozoal drugs ....................................................................................... 7 Systemic administration ........................................................................................................ 7 Topical administration ........................................................................................................... 9 Antifungal drugs .....................................................................................................................
    [Show full text]
  • Molecular Effects of Isoflavone Supplementation Human Intervention Studies and Quantitative Models for Risk Assessment
    Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis committee Promotors Prof. Dr Pieter van ‘t Veer Professor of Nutritional Epidemiology Wageningen University Prof. Dr Evert G. Schouten Emeritus Professor of Epidemiology and Prevention Wageningen University Co-promotors Dr Anouk Geelen Assistant professor, Division of Human Nutrition Wageningen University Dr Lydia A. Afman Assistant professor, Division of Human Nutrition Wageningen University Other members Prof. Dr Jaap Keijer, Wageningen University Dr Hubert P.J.M. Noteborn, Netherlands Food en Consumer Product Safety Authority Prof. Dr Yvonne T. van der Schouw, UMC Utrecht Dr Wendy L. Hall, King’s College London This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular effects of isoflavone supplementation Human intervention studies and quantitative models for risk assessment Vera van der Velpen Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 20 June 2014 at 13.30 p.m. in the Aula. Vera van der Velpen Molecular effects of isoflavone supplementation: Human intervention studies and quantitative models for risk assessment 154 pages PhD thesis, Wageningen University, Wageningen, NL (2014) With references, with summaries in Dutch and English ISBN: 978-94-6173-952-0 ABSTRact Background: Risk assessment can potentially be improved by closely linked experiments in the disciplines of epidemiology and toxicology.
    [Show full text]
  • Genome-Wide Screen of Cell-Cycle Regulators in Normal and Tumor Cells
    bioRxiv preprint doi: https://doi.org/10.1101/060350; this version posted June 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion Maria Sokolova1, Mikko Turunen1, Oliver Mortusewicz3, Teemu Kivioja1, Patrick Herr3, Anna Vähärautio1, Mikael Björklund1, Minna Taipale2, Thomas Helleday3 and Jussi Taipale1,2,* 1Genome-Scale Biology Program, P.O. Box 63, FI-00014 University of Helsinki, Finland. 2Science for Life laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE- 141 83 Stockholm, Sweden. 3Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • WO 2018/190970 Al 18 October 2018 (18.10.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/190970 Al 18 October 2018 (18.10.2018) W !P O PCT (51) International Patent Classification: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, CI2Q 1/32 (2006.01) UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (21) International Application Number: EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, PCT/US2018/021 109 MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (22) International Filing Date: TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 06 March 2018 (06.03.2018) KM, ML, MR, NE, SN, TD, TG). (25) Filing Language: English Declarations under Rule 4.17: (26) Publication Langi English — as to applicant's entitlement to apply for and be granted a patent (Rule 4.1 7(H)) (30) Priority Data: — as to the applicant's entitlement to claim the priority of the 62/484,141 11 April 2017 ( 11.04.2017) US earlier application (Rule 4.17(Hi)) (71) Applicant: REGENERON PHARMACEUTICALS, Published: INC. [US/US]; 777 Old Saw Mill River Road, Tarrytown, — with international search report (Art. 21(3)) New York 10591-6707 (US). — with sequence listing part of description (Rule 5.2(a)) (72) Inventors: STEVIS, Panayiotis; 777 Old Saw Mill Riv er Road, Tarrytown, New York 10591-6707 (US).
    [Show full text]
  • Download Our Summer 2010 Newsletter
    A n e w s l e t t e r f o r r e f e r r i n g veterinarians JOIN US IN 2011 AS WE CELEBRATE METROPOLITAN VETERINARY ASSOCIATES 25 P roviding emergency care & specialized veterinary services YEARS INSID E: p2-3 WELCOME TO Trilostane for the Treatment of Canine the fourth edition of our newsletter Hyperadrenocorticism – The Answer to Our Problems? Established in 1986, Metropolitan Veterinary Associates & Emergency Services p4 is a veterinary group that provides referral veterinary services. We concentrate Pet Loss Support Group & Monthly Lecture Series on specialty and emergency cases, allowing us to dedicate high-level care to the following disciplines: behavior, cardiology, dentistry, dermatology, I NSERT: emergency, internal medicine, neurology, ophthalmology, radiology front (including CT and MRI) and surgery. Meet our internal medicine team In order to maintain a high level of patient care, MVA moved into a newly back renovated 18,000 square foot facility with state-of-the-art diagnostic and Join us for CE therapeutic equipment in 2006. If you haven’t been able to visit our practice, we hope you can join us at one of the upcoming hospital lectures mentioned on page 4. Please enjoy this newsletter and let us know of any topics of interest you’d like to see explored in future editions. We’ve made it easier to contact us. Catch us 24 HOURS A DAY at 610/666/1050! (our primary phone number) DID YOU KNOW? TRILOSTANE FOR THE TREATMENT OF ! CANINE HYPERADRENOCORTICISM – THE ANSWER TO OUR PROBLEMS? By: Damon B.
    [Show full text]
  • Histone-Related Genes Are Hypermethylated in Lung Cancer
    Published OnlineFirst October 1, 2019; DOI: 10.1158/0008-5472.CAN-19-1019 Cancer Genome and Epigenome Research Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker Shihua Dong1,Wei Li1, Lin Wang2, Jie Hu3,Yuanlin Song3, Baolong Zhang1, Xiaoguang Ren1, Shimeng Ji3, Jin Li1, Peng Xu1, Ying Liang1, Gang Chen4, Jia-Tao Lou2, and Wenqiang Yu1 Abstract Lung cancer is the leading cause of cancer-related deaths lated in all 17 tumor types from TCGA datasets (n ¼ 7,344), worldwide. Cytologic examination is the current "gold stan- which was further validated in nine different types of cancer dard" for lung cancer diagnosis, however, this has low sensi- (n ¼ 243). These results demonstrate that HIST1H4F can tivity. Here, we identified a typical methylation signature of function as a universal-cancer-only methylation (UCOM) histone genes in lung cancer by whole-genome DNA methyl- marker, which may aid in understanding general tumorigen- ation analysis, which was validated by The Cancer Genome esis and improve screening for early cancer diagnosis. Atlas (TCGA) lung cancer cohort (n ¼ 907) and was further confirmed in 265 bronchoalveolar lavage fluid samples with Significance: These findings identify a new biomarker for specificity and sensitivity of 96.7% and 87.0%, respectively. cancer detection and show that hypermethylation of histone- More importantly, HIST1H4F was universally hypermethy- related genes seems to persist across cancers. Introduction to its low specificity, LDCT is far from satisfactory as a screening tool for clinical application, similar to other currently used cancer Lung cancer is one of the most common malignant tumors and biomarkers, such as carcinoembryonic antigen (CEA), neuron- the leading cause of cancer-related deaths worldwide (1, 2).
    [Show full text]
  • Chemical Muscle Enhancement (The BDR) by Author L
    Chemical Muscle Enhancement (The BDR) By Author L. Rea TABLE OF CONTENTS 1. AAS INTRODUCTION ..PG’S 1-12 WARNING: READ FIRST OVER 20 YEARS AGO... WHY STEROIDS AND WHAT IS POSSIBLE? WHAT ARE STEROIDS? FEMALE HORMONE SYNTHESIS MALE HORMONE SYNTHESIS TESTOSTERONE... WHAT DOES IT DO? STEROIDS INCREASE PC SYNTHESIS STEROIDS EFFECT BLOOD VOLUME WHAT HAPPENS AFTER TESTOSTERONE MOLECULES LEAVE RECEPTORS? STEROIDS...GROWTH ON THE CELULAR LEVEL 2. DRUG REFERENCES AND DESCRIPTIONS..PG 12 ORAL ANABOLIC / ANDROGENIC STEROIDS..PG’S 13-30 INJECTABLE ANABOLIC / ANDROGENIC STEROIDS..PG’S 31-45 TESTOSTERONE AND ITS ESTERS..PG’S 45-61 NORTESTOSTERONE (NANDROLONE) AND ITS ESTER..PG’S 62-70 TRENBOLONE AND DERIVATIVES..PG’S 71-78 ESTROGEN CONTROL AND HPTA REGENERATION DRUGS..PG’S 79-94 DIURETICS..PG’S 95-102 THYROID HORMONES ..PG’S 103-116 NON-AAS GROWTH FACTORS AND RELATED SUBSTANCES..PG’S 117-141 OTHER SUBSTANCES..PG’S 142-152 3. REPORTED CYCLES AND EFFECTS.. (Introduction) PG’S 153-159 REPORTED CYCLES AND EFFECTS EXAMPLES (MALE)...PG’S 160-169 REPORTED CYCLES AND EFFECTS EXAMPLES (FEMALE)...PG’S 170-174 REPORTED ADVANCED CYCLES AND EFFECTS-BLITZ CYCLES..PG’S 175-200 (More Reported Cycles and Effects) 4. NUTRITION..PG’S..201-211 5. SUPPLEMENTAL CREATINE..PG’S 212-216 6. REFERENCES AND AVAILABLE LITERATURE..PG’S 217-223 All Rights Reserved CHEMICAL MUSCLE ENHANCEMENT (The Report) and BODYBUILDERS DESK REFERENCE COPYRIGHT ©2002 by AUTHOR L. REA No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopy, recording, or by any information storage and retrieval system, without the permission in writing of the author and publisher.
    [Show full text]
  • Order in Council 1243/1995
    PROVINCE OF BRITISH COLUMBIA ORDER OF THE LIEUTENANT GOVERNOR IN COUNCIL Order in Council No. 12 4 3 , Approved and Ordered OCT 121995 Lieutenant Governor Executive Council Chambers, Victoria On the recommendation of the undersigned, the Lieutenant Governor, by and with the advice and consent of the Executive Council, orders that Order in Council 1039 made August 17, 1995, is rescinded. 2. The Drug Schedules made by regulation of the Council of the College of Pharmacists of British Columbia, as set out in the attached resolution dated September 6, 1995, are hereby approved. (----, c" g/J1"----c- 4- Minister of Heal fandand Minister Responsible for Seniors Presidin Member of the Executive Council (This pan is for adnwustratlye purposes only and is not part of the Order) Authority under which Order Is made: Act and section:- Pharmacists, Pharmacy Operations and Drug Scheduling Act, section 59(2)(1), 62 Other (specify): - Uppodukoic1enact N6145; Resolution of the Council of the College of Pharmacists of British Columbia ("the Council"), made by teleconference at Vancouver, British Columbia, the 6th day of September 1995. RESOLVED THAT: In accordance with the authority established in Section 62 of the Pharmacists, Pharmacy Operations and Drug Scheduling Act of British Columbia, S.B.C. Chapter 62, the Council makes the Drug Schedules by regulation as set out in the attached schedule, subject to the approval of the Lieutenant Governor in Council. Certified a true copy Linda J. Lytle, Phr.) Registrar DRUG SCHEDULES to the Pharmacists, Pharmacy Operations and Drug Scheduling Act of British Columbia The Drug Schedules have been printed in an alphabetical format to simplify the process of locating each individual drug entry and determining its status in British Columbia.
    [Show full text]