Histone-Related Genes Are Hypermethylated in Lung Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Histone-Related Genes Are Hypermethylated in Lung Cancer Published OnlineFirst October 1, 2019; DOI: 10.1158/0008-5472.CAN-19-1019 Cancer Genome and Epigenome Research Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker Shihua Dong1,Wei Li1, Lin Wang2, Jie Hu3,Yuanlin Song3, Baolong Zhang1, Xiaoguang Ren1, Shimeng Ji3, Jin Li1, Peng Xu1, Ying Liang1, Gang Chen4, Jia-Tao Lou2, and Wenqiang Yu1 Abstract Lung cancer is the leading cause of cancer-related deaths lated in all 17 tumor types from TCGA datasets (n ¼ 7,344), worldwide. Cytologic examination is the current "gold stan- which was further validated in nine different types of cancer dard" for lung cancer diagnosis, however, this has low sensi- (n ¼ 243). These results demonstrate that HIST1H4F can tivity. Here, we identified a typical methylation signature of function as a universal-cancer-only methylation (UCOM) histone genes in lung cancer by whole-genome DNA methyl- marker, which may aid in understanding general tumorigen- ation analysis, which was validated by The Cancer Genome esis and improve screening for early cancer diagnosis. Atlas (TCGA) lung cancer cohort (n ¼ 907) and was further confirmed in 265 bronchoalveolar lavage fluid samples with Significance: These findings identify a new biomarker for specificity and sensitivity of 96.7% and 87.0%, respectively. cancer detection and show that hypermethylation of histone- More importantly, HIST1H4F was universally hypermethy- related genes seems to persist across cancers. Introduction to its low specificity, LDCT is far from satisfactory as a screening tool for clinical application, similar to other currently used cancer Lung cancer is one of the most common malignant tumors and biomarkers, such as carcinoembryonic antigen (CEA), neuron- the leading cause of cancer-related deaths worldwide (1, 2). Early specific enolase, CYFRA 21-1, etc. Therefore, effective biomarkers detection and surgery offer the best chance for survival, with the for early detection, diagnosis, prognosis, and monitoring of lung 5-year survival rate as high as 80% (3). However, most patients cancer are urgently needed (7). with lung cancer have been diagnosed with inoperable advanced Epigenetic and genetic abnormalities are hallmarks of stage with metastasis, and patients must undergo chemotherapy, lung cancer (8–10). Abnormal DNA methylation is the most radiotherapy, immunotherapy, or targeted therapy. The 5-year common epigenetic variation in the process of lung cancer. survival rate of patients in the advanced stage is below 10% (4, 5). Compared with DNA mutations, DNA methylation occurs Over the past decade, low-dose CT (LDCT) is the most commonly much earlier and is more stable in the early diagnosis of used screening method for lung cancer, which has been shown to tumors, and aberrant DNA methylation pattern can be used improve early detection and reduce mortality (6). However, due for predicting the liver cancer metastasis to lung (11). Although many DNA methylation biomarkers have been reported, they 1 are still under the exploration process and rarely used in clinical Shanghai Public Health Clinical Center and Department of General Surgery, fi Huashan Hospital, Cancer Metastasis Institute and Laboratory of RNA Epige- applications. Sensitivity and speci city of current methylation fi netics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan markers are insuf cient with high false positives and false University, Shanghai, China. 2Department of Laboratory Medicine, Shanghai negatives risk (12, 13). Therefore, applying methylation mar- Chest Hospital, Shanghai Jiao Tong University, Shanghai, China. 3Department of kers to clinical applications is challenging, and searching for Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. new biomarkers for the early detection of cancer is urgently 4 Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, needed (14). China. Histones are major essential components of chromatin and Note: Supplementary data for this article are available at Cancer Research conserved in eukaryotic cells (15). There are five major types of Online (http://cancerres.aacrjournals.org/). histones: H1, H2A, H2B, H3, and H4. Histones H2A, H2B, H3, S. Dong, W. Li, L. Wang, J. Hu, and Y. Song contributed equally to this article. and H4 are known as the core histones, whereas histone H1 is Corresponding Authors: Wenqiang Yu, Fudan University, 130 Dong'an Road, known as the linker histone (16). Histones are divided into West 13# Building, Room 419, Shanghai 200032, China. Phone: 8621-5423-7978; canonical replication-dependent histones that are expressed dur- Fax: 8621-5423-7339; E-mail: [email protected]; and Jia-Tao Lou, ing the S-phase of the cell cycle and replication-independent Department of Laboratory Medicine, Shanghai Chest Hospital, 241 West Huaihai histone variants, which are expressed during each phase of the Road, Shanghai 200030, China. Phone: 86212-22000-01503; Fax: 8621-6280- cell cycle. Genes encoding canonical histones are intron-less and 8279; E-mail: [email protected] lack a polyA tail at the 30 end, having instead a stem-loop – Cancer Res 2019;79:6101 12 structure, and canonical histone genes also tend to be clustered doi: 10.1158/0008-5472.CAN-19-1019 in the genome. Genes encoding histone variants are usually not Ó2019 American Association for Cancer Research. clustered and have introns and polyA tails (17, 18). In the human www.aacrjournals.org 6101 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst October 1, 2019; DOI: 10.1158/0008-5472.CAN-19-1019 Dong et al. genome, histone genes mainly form histone cluster 1 (Chr6p21) The Cancer Genome Atlas DNA methylation data analysis and histone cluster 2 (Chr1q21; ref. 19). Other histone genes are The Illumina 450K methylation array level three data from The distributed randomly in the human genome. Although histone Cancer Genome Atlas (TCGA) database were downloaded from modifications have been extensively studied in chromatin regu- the UCSC Xena browser (https://xenabrowser.net/). For each lation, epigenetic variation in the family of histone genes them- histone gene, only probes within the gene-body region (listed selves is rarely considered. It has been shown that histone gene in Supplementary Table S2) were selected to calculate an average cluster 1 is occupied by abnormally higher order chromatin methylation value. Probes with "NA" values were excluded. The organization in breast cancer (20). However, DNA methylation absolute methylation values were calculated from the b values of alteration in histone genes' loci has not yet been systematically 450K methylation array [methylation value ¼ (b value þ 0.5) Â investigated, especially in cancer development. 100%]. For each gene, the final methylation value was calculated Here, through genome-wide DNA methylation analysis by the average of all CpG sites selected. The samples used from with an unusual strategy, we found that many histone gene TCGA database and the methylation levels of HIST1H4F are listed loci are abnormally hypermethylated in lung cancer, which in Supplementary Table S3. piqued our interest for further investigation. We demonstrate that methylation of histone genes can be used as a biomarker Clinical samples for early detection in bronchoalveolar lavage fluid (BALF) We collected 243 primary tissue samples and 265 BALF samples. Furthermore, histonegenelociarenotonlyabnor- samples from Shanghai Chest Hospital and Zhongshan Hos- mally hypermethylated in lung cancer but also specifically pital of Fudan University. Primary tissue samples included 25 methylated in various tumors. In particular, the HIST1H4F lung cancer and 25 paired para-cancer control samples, 12 gene is abnormally hypermethylated in 17 types of cancer, colorectal cancer and 12 paired para-cancer control samples, which could act as a potential universal-cancer-only methyla- 10 esophagus cancer and 12 paired para-cancer control sam- tion (UCOM) marker. We speculate that the methylation of ples, 20 liver cancer and 23 para-cancer control samples, nine HIST1H4F will be of great significance for early diagnosis, pancreatic cancer and nine paired para-cancer control samples, especially during the screening process of cancer in clinical 10 cervical cancer and 10 control samples, 10 gastric cancer and applications. 10 para-cancer control samples, 14 breast cancer and 14 paired para-cancer control samples, and 10 head and neck cancer and 10 paired para-cancer control samples. Clinical characters of Materials and Methods thesesamplesaresummarizedinSupplementaryTableS4. Whole genome bisulfite sequencing data analysis BALF samples contained a benign lung disease (BLD) control Whole genome bisulfite sequencing (WGBS) datasets were group and lung cancer group. BLD control group contained 59 downloaded from the Encode database (https://www.encodepro samples, including pneumonia, emphysema, tuberculosis, etc. ject.org/) and the SRA database (https://www.ncbi.nlm.nih.gov/ The lung cancer experimental group included 92 lung squa- sra); the serial numbers are summarized in Supplementary mous cell carcinoma (LUSC) samples, 70 lung adenocarcinoma Table S1. DNA methylation levels were calculated using BSMAP samples, and 44 small-cell lung carcinoma (SCLC) samples. software (21) as described previously (11), where hg19 human BALFsampleswererandomlyassignedtoatrainingsetanda genome assembly and University of California,
Recommended publications
  • Histone Isoform H2A1H Promotes Attainment of Distinct Physiological
    Bhattacharya et al. Epigenetics & Chromatin (2017) 10:48 DOI 10.1186/s13072-017-0155-z Epigenetics & Chromatin RESEARCH Open Access Histone isoform H2A1H promotes attainment of distinct physiological states by altering chromatin dynamics Saikat Bhattacharya1,4,6, Divya Reddy1,4, Vinod Jani5†, Nikhil Gadewal3†, Sanket Shah1,4, Raja Reddy2,4, Kakoli Bose2,4, Uddhavesh Sonavane5, Rajendra Joshi5 and Sanjay Gupta1,4* Abstract Background: The distinct functional efects of the replication-dependent histone H2A isoforms have been dem- onstrated; however, the mechanistic basis of the non-redundancy remains unclear. Here, we have investigated the specifc functional contribution of the histone H2A isoform H2A1H, which difers from another isoform H2A2A3 in the identity of only three amino acids. Results: H2A1H exhibits varied expression levels in diferent normal tissues and human cancer cell lines (H2A1C in humans). It also promotes cell proliferation in a context-dependent manner when exogenously overexpressed. To uncover the molecular basis of the non-redundancy, equilibrium unfolding of recombinant H2A1H-H2B dimer was performed. We found that the M51L alteration at the H2A–H2B dimer interface decreases the temperature of melting of H2A1H-H2B by ~ 3 °C as compared to the H2A2A3-H2B dimer. This diference in the dimer stability is also refected in the chromatin dynamics as H2A1H-containing nucleosomes are more stable owing to M51L and K99R substitu- tions. Molecular dynamic simulations suggest that these substitutions increase the number of hydrogen bonds and hydrophobic interactions of H2A1H, enabling it to form more stable nucleosomes. Conclusion: We show that the M51L and K99R substitutions, besides altering the stability of histone–histone and histone–DNA complexes, have the most prominent efect on cell proliferation, suggesting that the nucleosome sta- bility is intimately linked with the physiological efects observed.
    [Show full text]
  • Table S1. 49 Histone Variants Were Identified with High Sequence Coverage Through LC-MS/MS Analysis Electronic Supplementary
    Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2020 Table S1. 49 histone variants were identified with high sequence coverage through LC-MS/MS analysis Sequence Uniprot IDs Protein Name Protein Description Coverage Ratio E2+/E2- RSD P07305 H10_HUMAN 67.5% Histone H1.0 OS=Homo sapiens GN=H1F0 PE=1 SV=3 4.85 23.3% Histone H1.1 OS=Homo sapiens GN=HIST1H1A PE=1 Q02539 H11_HUMAN 74.4% SV=3 0.35 92.6% Histone H1.2 OS=Homo sapiens GN=HIST1H1C PE=1 P16403 H12_HUMAN 67.1% SV=2 0.73 80.6% Histone H1.3 OS=Homo sapiens GN=HIST1H1D PE=1 P16402 H13_HUMAN 63.8% SV=2 0.75 77.7% Histone H1.4 OS=Homo sapiens GN=HIST1H1E PE=1 P10412 H14_HUMAN 69.0% SV=2 0.70 80.3% Histone H1.5 OS=Homo sapiens GN=HIST1H1B PE=1 P16401 H15_HUMAN 79.6% SV=3 0.29 98.3% Testis-specific H1 histone OS=Homo sapiens GN=H1FNT Q75WM6 H1FNT_HUMAN 7.8% \ \ PE=2 SV=3 Histone H1oo OS=Homo sapiens GN=H1FOO PE=2 Q8IZA3 H1FOO_HUMAN 5.2% \ \ SV=1 Histone H1t OS=Homo sapiens GN=HIST1H1T PE=2 P22492 H1T_HUMAN 31.4% SV=4 1.42 65.0% Q92522 H1X_HUMAN 82.6% Histone H1x OS=Homo sapiens GN=H1FX PE=1 SV=1 1.15 33.2% Histone H2A type 1 OS=Homo sapiens GN=HIST1H2AG P0C0S8 H2A1_HUMAN 99.2% PE=1 SV=2 0.57 26.8% Q96QV6 H2A1A_HUMAN 58.0% Histone H2A type 1-A OS=Homo sapiens 0.90 11.2% GN=HIST1H2AA PE=1 SV=3 Histone H2A type 1-B/E OS=Homo sapiens P04908 H2A1B_HUMAN 99.2% GN=HIST1H2AB PE=1 SV=2 0.92 30.2% Histone H2A type 1-C OS=Homo sapiens Q93077 H2A1C_HUMAN 100.0% GN=HIST1H2AC PE=1 SV=3 0.76 27.6% Histone H2A type 1-D OS=Homo sapiens P20671
    [Show full text]
  • A Cell Line P53 Mutation Type UM
    A Cell line p53 mutation Type UM-SCC 1 wt UM-SCC5 Exon 5, 157 GTC --> TTC Missense mutation by transversion (Valine --> Phenylalanine UM-SCC6 wt UM-SCC9 wt UM-SCC11A wt UM-SCC11B Exon 7, 242 TGC --> TCC Missense mutation by transversion (Cysteine --> Serine) UM-SCC22A Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC22B Exon 6, 220 TAT --> TGT Missense mutation by transition (Tyrosine --> Cysteine) UM-SCC38 Exon 5, 132 AAG --> AAT Missense mutation by transversion (Lysine --> Asparagine) UM-SCC46 Exon 8, 278 CCT --> CGT Missense mutation by transversion (Proline --> Alanine) B 1 Supplementary Methods Cell Lines and Cell Culture A panel of ten established HNSCC cell lines from the University of Michigan series (UM-SCC) was obtained from Dr. T. E. Carey at the University of Michigan, Ann Arbor, MI. The UM-SCC cell lines were derived from eight patients with SCC of the upper aerodigestive tract (supplemental Table 1). Patient age at tumor diagnosis ranged from 37 to 72 years. The cell lines selected were obtained from patients with stage I-IV tumors, distributed among oral, pharyngeal and laryngeal sites. All the patients had aggressive disease, with early recurrence and death within two years of therapy. Cell lines established from single isolates of a patient specimen are designated by a numeric designation, and where isolates from two time points or anatomical sites were obtained, the designation includes an alphabetical suffix (i.e., "A" or "B"). The cell lines were maintained in Eagle's minimal essential media supplemented with 10% fetal bovine serum and penicillin/streptomycin.
    [Show full text]
  • Herpes Simplex Virus Blocks Host Transcription Termination Via the Bimodal Activities of ICP27
    ARTICLE https://doi.org/10.1038/s41467-019-14109-x OPEN Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27 Xiuye Wang 1, Thomas Hennig2, Adam W. Whisnant 2, Florian Erhard 2, Bhupesh K. Prusty 2, Caroline C. Friedel 3, Elmira Forouzmand4,5, William Hu1, Luke Erber 6, Yue Chen6, Rozanne M. Sandri-Goldin 1*, Lars Dölken 2,7* & Yongsheng Shi1* Infection by viruses, including herpes simplex virus-1 (HSV-1), and cellular stresses cause 1234567890():,; widespread disruption of transcription termination (DoTT) of RNA polymerase II (RNAPII) in host genes. However, the underlying mechanisms remain unclear. Here, we demonstrate that the HSV-1 immediate early protein ICP27 induces DoTT by directly binding to the essential mRNA 3’ processing factor CPSF. It thereby induces the assembly of a dead-end 3’ processing complex, blocking mRNA 3’ cleavage. Remarkably, ICP27 also acts as a sequence- dependent activator of mRNA 3’ processing for viral and a subset of host transcripts. Our results unravel a bimodal activity of ICP27 that plays a key role in HSV-1-induced host shutoff and identify CPSF as an important factor that mediates regulation of transcription termination. These findings have broad implications for understanding the regulation of transcription termination by other viruses, cellular stress and cancer. 1 Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. 2 Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany. 3 Institute of Informatics, Ludwig-Maximilians-Universität München, München, Germany. 4 Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697, USA.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • HIST1H2AC Human Shrna Plasmid Kit (Locus ID 8334) Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TL312444 HIST1H2AC Human shRNA Plasmid Kit (Locus ID 8334) Product data: Product Type: shRNA Plasmids Product Name: HIST1H2AC Human shRNA Plasmid Kit (Locus ID 8334) Locus ID: 8334 Synonyms: dJ221C16.4; H2A/l; H2AFL; HIST1H2AC Vector: pGFP-C-shLenti (TR30023) Format: Lentiviral plasmids Components: HIST1H2AC - Human, 4 unique 29mer shRNA constructs in lentiviral GFP vector(Gene ID = 8334). 5µg purified plasmid DNA per construct Non-effective 29-mer scrambled shRNA cassette in pGFP-C-shLenti Vector, TR30021, included for free. RefSeq: NM_003512, NM_003512.1, NM_003512.2, NM_003512.3, BC085010, BC017379, BC050602, NM_003512.4 Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. [provided by RefSeq, Aug 2015] shRNA Design: These shRNA constructs were designed against multiple splice variants at this gene locus.
    [Show full text]
  • DNA Methylation Changes in Down Syndrome Derived Neural Ipscs Uncover Co-Dysregulation of ZNF and HOX3 Families of Transcription
    Laan et al. Clinical Epigenetics (2020) 12:9 https://doi.org/10.1186/s13148-019-0803-1 RESEARCH Open Access DNA methylation changes in Down syndrome derived neural iPSCs uncover co- dysregulation of ZNF and HOX3 families of transcription factors Loora Laan1†, Joakim Klar1†, Maria Sobol1, Jan Hoeber1, Mansoureh Shahsavani2, Malin Kele2, Ambrin Fatima1, Muhammad Zakaria1, Göran Annerén1, Anna Falk2, Jens Schuster1 and Niklas Dahl1* Abstract Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages. Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling. Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • Acetyl-Histone H2A-K5 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science Acetyl-Histone H2A-K5 Rabbit pAb Catalog No.: A15620 Basic Information Background Catalog No. Histones are basic nuclear proteins that are responsible for the nucleosome structure of A15620 the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is Observed MW wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with 14kDa linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent Calculated MW histone that is a member of the histone H2A family. Transcripts from this gene lack polyA 14kDa tails but instead contain a palindromic termination element. This gene is found in the small histone gene cluster on chromosome 6p22-p21.3. Category Primary antibody Applications WB, IHC, IF Cross-Reactivity Human, Mouse, Rat, Other (Wide Range) Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 8329 P0C0S8 IHC 1:50 - 1:100 Immunogen IF 1:50 - 1:100 A synthetic acetylated peptide around K5 of human Histone H2A (NP_003508.1). Synonyms HIST1H2AI;H2A/c;H2AFC Contact Product Information Source Isotype Purification www.abclonal.com Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using Acetyl-Histone H2A-K5 antibody (A15620) at 1:1000 dilution.C2C12 cells and C6 cells were treated by TSA (1 uM) at 37℃ for 18 hours.
    [Show full text]
  • The UVB-Induced Gene Expression Profile of Human Epidermis in Vivo Is Different from That of Cultured Keratinocytes
    Oncogene (2006) 25, 2601–2614 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes CD Enk1, J Jacob-Hirsch2, H Gal3, I Verbovetski4, N Amariglio2, D Mevorach4, A Ingber1, D Givol3, G Rechavi2 and M Hochberg1 1Department of Dermatology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel; 2Department of Pediatric Hemato-Oncology and Functional Genomics, Safra Children’s Hospital, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University,Tel Aviv, Israel; 3Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel and 4The Laboratory for Cellular and Molecular Immunology, Department of Medicine, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel In order to obtain a comprehensive picture of the radiation. UVB, with a wavelength range between 290 molecular events regulating cutaneous photodamage of and 320 nm, represents one of the most important intact human epidermis, suction blister roofs obtained environmental hazards affectinghuman skin (Hahn after a single dose of in vivo ultraviolet (UV)B exposure and Weinberg, 2002). To protect itself against the were used for microarray profiling. We found a changed DNA-damaging effects of sunlight, the skin disposes expression of 619 genes. Half of the UVB-regulated genes over highly complicated cellular programs, including had returned to pre-exposure baseline levels at 72 h, cell-cycle arrest, DNA repair and apoptosis (Brash et al., underscoring the transient character of the molecular 1996). Failure in selected elements of these defensive cutaneous UVB response.
    [Show full text]
  • Snf2h-Mediated Chromatin Organization and Histone H1 Dynamics Govern Cerebellar Morphogenesis and Neural Maturation
    ARTICLE Received 12 Feb 2014 | Accepted 15 May 2014 | Published 20 Jun 2014 DOI: 10.1038/ncomms5181 OPEN Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation Matı´as Alvarez-Saavedra1,2, Yves De Repentigny1, Pamela S. Lagali1, Edupuganti V.S. Raghu Ram3, Keqin Yan1, Emile Hashem1,2, Danton Ivanochko1,4, Michael S. Huh1, Doo Yang4,5, Alan J. Mears6, Matthew A.M. Todd1,4, Chelsea P. Corcoran1, Erin A. Bassett4, Nicholas J.A. Tokarew4, Juraj Kokavec7, Romit Majumder8, Ilya Ioshikhes4,5, Valerie A. Wallace4,6, Rashmi Kothary1,2, Eran Meshorer3, Tomas Stopka7, Arthur I. Skoultchi8 & David J. Picketts1,2,4 Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation.
    [Show full text]
  • Genome-Wide Screen of Cell-Cycle Regulators in Normal and Tumor Cells
    bioRxiv preprint doi: https://doi.org/10.1101/060350; this version posted June 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion Maria Sokolova1, Mikko Turunen1, Oliver Mortusewicz3, Teemu Kivioja1, Patrick Herr3, Anna Vähärautio1, Mikael Björklund1, Minna Taipale2, Thomas Helleday3 and Jussi Taipale1,2,* 1Genome-Scale Biology Program, P.O. Box 63, FI-00014 University of Helsinki, Finland. 2Science for Life laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE- 141 83 Stockholm, Sweden. 3Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells.
    [Show full text]