Mutational Landscape of Uterine and Ovarian Carcinosarcomas Implicates Histone Genes in Epithelial–Mesenchymal Transition

Total Page:16

File Type:pdf, Size:1020Kb

Mutational Landscape of Uterine and Ovarian Carcinosarcomas Implicates Histone Genes in Epithelial–Mesenchymal Transition Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial–mesenchymal transition Siming Zhaoa,b, Stefania Bellonec, Salvatore Lopezc, Durga Thakrala,b, Carlton Schwabc, Diana P. Englishc, Jonathan Blackc, Emiliano Coccoc, Jungmin Choia,b, Luca Zammataroc, Federica Predolinic, Elena Bonazzolic, Mark Bia,b, Natalia Buzad, Pei Huid, Serena Wongd, Maysa Abu-Khalafe, Antonella Ravaggif, Eliana Bignottif, Elisabetta Bandieraf, Chiara Romanif, Paola Todeschinif, Renata Tassif, Laura Zanottif, Franco Odicinof, Sergio Pecorellif, Carla Donzellig, Laura Ardighierig, Fabio Facchettig, Marcella Falchettig, Dan-Arin Silasic, Elena Ratnerc, Masoud Azodic, Peter E. Schwartzc, Shrikant Manea,b, Roberto Angiolih, Corrado Terranovah, Charles Matthew Quicki, Babak Edrakij, Kaya Bilgüvara,b, Moses Leek, Murim Choik, Amy L. Stieglerl, Titus J. Boggonl, Joseph Schlessingerl, Richard P. Liftona,b,m,1, and Alessandro D. Santinc aDepartment of Genetics, Yale University School of Medicine, New Haven, CT 06510; bHoward Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510; cDepartment of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510; dDepartment of Pathology, Yale University School of Medicine, New Haven, CT 06510; eInternal Medicine & Oncology, Yale University School of Medicine, New Haven, CT 06510; f“Angelo Nocivelli” Institute of Molecular Medicine, Department of Obstetrics & Gynecology, University of Brescia, 25100 Brescia, Italy; gDepartment of Pathology, University of Brescia, 25100 Brescia, Italy; hDivision of Gynecologic Oncology, Universita’ Campus Bio-Medico di Roma, 00128 Rome, Italy, iDepartment of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205; jDivision of Gynecologic Oncology, John Muir Health Clinical Research Center, Concord, CA 94598; kDepartment of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea; lDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT 06510; and mLaboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065 Contributed by Richard P. Lifton, August 25, 2016 (sent for review January 5, 2016; reviewed by Michael J. Birrer and Elise Kohn) Carcinosarcomas (CSs) of the uterus and ovary are highly aggres- The overall 5-y survival is only 30 ± 9% for all stages, and the sive neoplasms containing both carcinomatous and sarcomatous recurrence rate after surgery is extremely high (50–80%) (3–5). elements. We analyzed the mutational landscape of 68 uterine and The uncertain origin and poor prognosis of uterine and ovarian ovarian CSs by whole-exome sequencing. We also performed CSs motivate determination of the molecular basis of CS ag- multiregion whole-exome sequencing comprising two carcinoma gressive behavior in the hope of developing novel and effective and sarcoma samples from six tumors to resolve their evolutionary treatment modalities. histories. The results demonstrated that carcinomatous and sarco- Results matous elements derive from a common precursor having muta- – tions typical of carcinomas. In addition to mutations in cancer genes The Genetic Landscape of CS. A total of 68 patients with stage I IV TP53 uterine (n = 44) and ovarian (n = 24) CSs were studied. Their previously identified in uterine and ovarian carcinomas such as , SI Appendix PIK3CA, PPP2R1A, KRAS, PTEN, CHD4,andBCOR, we found an ex- clinical and histological features are presented in , cess of mutations in genes encoding histone H2A and H2B, as well Table S1. Upon surgical removal of tumors, primary cell lines as significant amplification of the segment of chromosome 6p har- were prepared (five tumors) or tumors were frozen (63 tumors). Among these tumors, 41 had matched normal tissues available boring the histone gene cluster containing these genes. We also found frequent deletions of the genes TP53 and MBD3 (a member with CHD4 of the nucleosome remodeling deacetylase complex) and Significance frequent amplification of chromosome segments containing the genes PIK3CA, TERT,andMYC. Stable transgenic expression of Some cancers, termed carcinosarcomas (CSs), have mixed cell H2A and H2B in a uterine serous carcinoma cell line demonstrated types, with either epithelial or mesenchymal features. Sequenc- that mutant, but not wild-type, histones increased expression of ing the genomes of uterine and ovarian CSs demonstrated that markers of epithelial–mesenchymal transition (EMT) as well as tu- these different cell types derive from a common precursor cell mor migratory and invasive properties, suggesting a role in sarcoma- that has many mutations typical of epithelial cancers. In addi- tous transformation. Comparison of the phylogenetic relationships tion, we find that these tumors have a significant burden of of carcinomatous and sarcomatous elements of the same tumors point mutations and amplification of histone genes, suggesting demonstrated separate lineages leading to these two components. a potential role of these mutations in sarcomatous trans- These findings define the genetic landscape of CSs and suggest ther- formation. Consistent with this finding, expression of specific apeutic targets for these highly aggressive neoplasms. histone gene mutations in uterine carcinoma cells changed gene expression toward a mesenchymal state. These findings have uterine carcinosarcoma | ovarian carcinosarcoma | exome sequencing potential implications for the treatment of these cancers. Author contributions: J.S., R.P.L., and A.D.S. designed research; S.B., D.T., D.P.E., J.B., E.C., arcinosarcomas (CSs) of the female genital tract, also known F.P., E. Bonazzoli, N.B., P.H., S.W., A.R., E. Bignotti, E. Bandiera, C.R., P.T., R.T., L. Zanotti, Cas mixed malignant Müllerian tumors, are rare but highly C.D., L.A., F.F., and M.F. performed research; S.L., C.S., J.C., L. Zammataro, M.A.-K., F.O., aggressive tumors characterized by a biphasic histology. These S.P., D.-A.S., E.R., M.A., P.E.S., S.M., R.A., C.T., C.M.Q., B.E., K.B., and M.L. contributed new cancers most commonly arise in the uterus, followed by the reagents/analytic tools; S.Z., M.B., M.C., A.L.S., T.J.B., R.P.L., and A.D.S. analyzed data; and S.Z., A.L.S., T.J.B., J.S., R.P.L., and A.D.S. wrote the paper. ovaries, fallopian tubes, and vagina (1–3). The diagnosis of CS Reviewers: M.J.B., Massachusetts General Hospital/Harvard Medical School; and E.K., Na- requires the presence of both sarcomatous and carcinomatous tional Institutes of Health. components. Although the pathogenesis of CSs remains under The authors declare no conflict of interest. debate, an increasing body of evidence supports the origin of Freely available online through the PNAS open access option. both elements from a common epithelial cell that undergoes 1To whom correspondence should be addressed. Email: [email protected]. sarcomatous dedifferentiation, rather than two independent This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. progenitors (2–5). 1073/pnas.1614120113/-/DCSupplemental. 12238–12243 | PNAS | October 25, 2016 | vol. 113 | no. 43 www.pnas.org/cgi/doi/10.1073/pnas.1614120113 Downloaded by guest on October 1, 2021 and tumor-normal pairs were subjected to whole-exome se- mutations in the tumor suppressors TP53 (tumor protein P53) and quencing, with 197 mean reads per targeted base for tumor PTEN (phosphatase and tensin homolog). All of these genes have samples and 101 for normal tissues; 94.5% of the targeted bases been previously implicated in uterine and/or ovarian carcinomas. had at least 20 independent sequence reads (SI Appendix, Table In addition, we identified two tumors with a previously un- S2). Tumor purity was estimated from the minor allele frequency identified somatic mutation in HIST1H2AB [G > Catchromo- of somatic mutations and segments showing loss of heterozy- some 6 (chr6): 26033628; amino acid change, E57Q]. HIST1H2AB gosity (LOH) or copy number variation (CNV); the mean tumor encodes the histone H2A protein type 1-B/E. This gene has not purity was 81%. Somatic point mutations were identified using previously been implicated in cancer, and this variant was absent MuTect (6) for normal-tumor pairs and were further filtered to from public and Yale University databases. The probability of reduce false-positive calls (Materials and Methods). Somatic having any recurrent G:C > C:G mutation in this dataset by indels were called by in-house Perl scripts (Materials and Meth- chance, given the size of the exome, the number of tumors, and ods). For unmatched tumors, we first called variants from the the observed substitution-specific mutation rate (0.5 per megabase reference sequence and then excluded variants that have a fre- pair), was low (P < 0.01). − quency higher than 2 × 10 5 in the Exome Aggregation Con- To identify genes with an increased burden of somatic mutation, sortium (ExAC) database (7). Driver mutations were confirmed we used MutSigCV (12) to analyze all somatic damaging muta- by manual inspection of the reads plot, and selected mutations tions (premature termination, splice site, and indel mutations) as were confirmed by Sanger sequencing. well as missense mutations at phylogenetically conserved sites in In total, 4,115 somatic point mutations (3,056 protein-altering the 37 matched tumors (Materials and Methods). With a genome- mutations) and 49 indels from the 41 matched normal-tumor wide false discovery
Recommended publications
  • Histone Isoform H2A1H Promotes Attainment of Distinct Physiological
    Bhattacharya et al. Epigenetics & Chromatin (2017) 10:48 DOI 10.1186/s13072-017-0155-z Epigenetics & Chromatin RESEARCH Open Access Histone isoform H2A1H promotes attainment of distinct physiological states by altering chromatin dynamics Saikat Bhattacharya1,4,6, Divya Reddy1,4, Vinod Jani5†, Nikhil Gadewal3†, Sanket Shah1,4, Raja Reddy2,4, Kakoli Bose2,4, Uddhavesh Sonavane5, Rajendra Joshi5 and Sanjay Gupta1,4* Abstract Background: The distinct functional efects of the replication-dependent histone H2A isoforms have been dem- onstrated; however, the mechanistic basis of the non-redundancy remains unclear. Here, we have investigated the specifc functional contribution of the histone H2A isoform H2A1H, which difers from another isoform H2A2A3 in the identity of only three amino acids. Results: H2A1H exhibits varied expression levels in diferent normal tissues and human cancer cell lines (H2A1C in humans). It also promotes cell proliferation in a context-dependent manner when exogenously overexpressed. To uncover the molecular basis of the non-redundancy, equilibrium unfolding of recombinant H2A1H-H2B dimer was performed. We found that the M51L alteration at the H2A–H2B dimer interface decreases the temperature of melting of H2A1H-H2B by ~ 3 °C as compared to the H2A2A3-H2B dimer. This diference in the dimer stability is also refected in the chromatin dynamics as H2A1H-containing nucleosomes are more stable owing to M51L and K99R substitu- tions. Molecular dynamic simulations suggest that these substitutions increase the number of hydrogen bonds and hydrophobic interactions of H2A1H, enabling it to form more stable nucleosomes. Conclusion: We show that the M51L and K99R substitutions, besides altering the stability of histone–histone and histone–DNA complexes, have the most prominent efect on cell proliferation, suggesting that the nucleosome sta- bility is intimately linked with the physiological efects observed.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Repertoire of Morphable Proteins in an Organism
    Repertoire of morphable proteins in an organism Keisuke Izumi, Eitaro Saho, Ayuka Kutomi, Fumiaki Tomoike and Tetsuji Okada Department of Life Science, Gakushuin University, Tokyo, Japan ABSTRACT All living organisms have evolved to contain a set of proteins with variable physical and chemical properties. Efforts in the field of structural biology have contributed to uncovering the shape and the variability of each component. However, quantification of the variability has been performed mostly by multiple pair-wise comparisons. A set of experimental coordinates for a given protein can be used to define the “morphness/unmorphness”. To understand the evolved repertoire in an organism, here we show the results of global analysis of more than a thousand Escherichia coli proteins, by the recently introduced method, distance scoring analysis (DSA). By collecting a new index “UnMorphness Factor” (UMF), proposed in this study and determined from DSA for each of the proteins, the lowest and the highest boundaries of the experimentally observable structural variation are comprehensibly defined. The distribution plot of UMFs obtained for E. coli represents the first view of a substantial fraction of non-redundant proteome set of an organism, demonstrating how rigid and flexible components are balanced. The present analysis extends to evaluate the growing data from single particle cryo-electron microscopy, providing valuable information on effective interpretation to structural changes of proteins and the supramolecular complexes. Subjects Biochemistry, Bioinformatics, Biophysics, Molecular Biology Keywords Protein, Structure, Crystallography, cryo-EM, E. coli, Human, PDB, Coordinates Submitted 21 October 2019 Accepted 20 January 2020 INTRODUCTION Published 11 February 2020 Self-replicating (living) species are defined by the presence of a genome that is used to Corresponding author Tetsuji Okada, produce a set of proteins and RNAs.
    [Show full text]
  • HIST1H2AC Human Shrna Plasmid Kit (Locus ID 8334) Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TL312444 HIST1H2AC Human shRNA Plasmid Kit (Locus ID 8334) Product data: Product Type: shRNA Plasmids Product Name: HIST1H2AC Human shRNA Plasmid Kit (Locus ID 8334) Locus ID: 8334 Synonyms: dJ221C16.4; H2A/l; H2AFL; HIST1H2AC Vector: pGFP-C-shLenti (TR30023) Format: Lentiviral plasmids Components: HIST1H2AC - Human, 4 unique 29mer shRNA constructs in lentiviral GFP vector(Gene ID = 8334). 5µg purified plasmid DNA per construct Non-effective 29-mer scrambled shRNA cassette in pGFP-C-shLenti Vector, TR30021, included for free. RefSeq: NM_003512, NM_003512.1, NM_003512.2, NM_003512.3, BC085010, BC017379, BC050602, NM_003512.4 Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H2A family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. [provided by RefSeq, Aug 2015] shRNA Design: These shRNA constructs were designed against multiple splice variants at this gene locus.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • MYC-Containing Amplicons in Acute Myeloid Leukemia: Genomic Structures, Evolution, and Transcriptional Consequences
    Leukemia (2018) 32:2152–2166 https://doi.org/10.1038/s41375-018-0033-0 ARTICLE Acute myeloid leukemia Corrected: Correction MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences 1 1 2 2 1 Alberto L’Abbate ● Doron Tolomeo ● Ingrid Cifola ● Marco Severgnini ● Antonella Turchiano ● 3 3 1 1 1 Bartolomeo Augello ● Gabriella Squeo ● Pietro D’Addabbo ● Debora Traversa ● Giulia Daniele ● 1 1 3 3 4 Angelo Lonoce ● Mariella Pafundi ● Massimo Carella ● Orazio Palumbo ● Anna Dolnik ● 5 5 6 2 7 Dominique Muehlematter ● Jacqueline Schoumans ● Nadine Van Roy ● Gianluca De Bellis ● Giovanni Martinelli ● 3 4 8 1 Giuseppe Merla ● Lars Bullinger ● Claudia Haferlach ● Clelia Tiziana Storlazzi Received: 4 August 2017 / Revised: 27 October 2017 / Accepted: 13 November 2017 / Published online: 22 February 2018 © The Author(s) 2018. This article is published with open access Abstract Double minutes (dmin), homogeneously staining regions, and ring chromosomes are vehicles of gene amplification in cancer. The underlying mechanism leading to their formation as well as their structure and function in acute myeloid leukemia (AML) remain mysterious. We combined a range of high-resolution genomic methods to investigate the architecture and expression pattern of amplicons involving chromosome band 8q24 in 23 cases of AML (AML-amp). This 1234567890();,: revealed that different MYC-dmin architectures can coexist within the same leukemic cell population, indicating a step-wise evolution rather than a single event origin, such as through chromothripsis. This was supported also by the analysis of the chromothripsis criteria, that poorly matched the model in our samples. Furthermore, we found that dmin could evolve toward ring chromosomes stabilized by neocentromeres.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Usbiological Datasheet
    HIST1H2BG, NT (HIST1H2BC, H2BFL, Histone H2B type 1-C/E/F/G/I, Histone H2B.1 A, Histone H2B.a, Histone H2B.g, Histone H2B.h, Histone H2B.k, Histone H2B.l) (Biotin) Catalog number 036594-Biotin Supplier United States Biological Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene is intronless and encodes a member of the histone H2B family. Transcripts from this gene lack polyA tails but instead contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6. [provided by RefSeq]. Applications Suitable for use in Western Blot, ELISA Recommended Dilution ELISA: 1:1,000 Western Blot: 1:100-500 Storage and Stability Store product at 4°C if to be used immediately within two weeks. For long-term storage, aliquot to avoid repeated freezing and thawing and store at -20°C. Aliquots are stable at -20°C for 12 months after receipt. Dilute required amount only prior to immediate use. Further dilutions can be made in assay buffer. For maximum recovery of product, centrifuge the original vial after thawing and prior to removing the cap. Note Applications are based on unconjugated antibody. Immunogen HIST1H2BG antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 1-30 amino acids from the N-terminal region of human HIST1H2BG.
    [Show full text]
  • Histone-Related Genes Are Hypermethylated in Lung Cancer
    Published OnlineFirst October 1, 2019; DOI: 10.1158/0008-5472.CAN-19-1019 Cancer Genome and Epigenome Research Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker Shihua Dong1,Wei Li1, Lin Wang2, Jie Hu3,Yuanlin Song3, Baolong Zhang1, Xiaoguang Ren1, Shimeng Ji3, Jin Li1, Peng Xu1, Ying Liang1, Gang Chen4, Jia-Tao Lou2, and Wenqiang Yu1 Abstract Lung cancer is the leading cause of cancer-related deaths lated in all 17 tumor types from TCGA datasets (n ¼ 7,344), worldwide. Cytologic examination is the current "gold stan- which was further validated in nine different types of cancer dard" for lung cancer diagnosis, however, this has low sensi- (n ¼ 243). These results demonstrate that HIST1H4F can tivity. Here, we identified a typical methylation signature of function as a universal-cancer-only methylation (UCOM) histone genes in lung cancer by whole-genome DNA methyl- marker, which may aid in understanding general tumorigen- ation analysis, which was validated by The Cancer Genome esis and improve screening for early cancer diagnosis. Atlas (TCGA) lung cancer cohort (n ¼ 907) and was further confirmed in 265 bronchoalveolar lavage fluid samples with Significance: These findings identify a new biomarker for specificity and sensitivity of 96.7% and 87.0%, respectively. cancer detection and show that hypermethylation of histone- More importantly, HIST1H4F was universally hypermethy- related genes seems to persist across cancers. Introduction to its low specificity, LDCT is far from satisfactory as a screening tool for clinical application, similar to other currently used cancer Lung cancer is one of the most common malignant tumors and biomarkers, such as carcinoembryonic antigen (CEA), neuron- the leading cause of cancer-related deaths worldwide (1, 2).
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • DIPPER, a Spatiotemporal Proteomics Atlas of Human Intervertebral Discs
    TOOLS AND RESOURCES DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics Vivian Tam1,2†, Peikai Chen1†‡, Anita Yee1, Nestor Solis3, Theo Klein3§, Mateusz Kudelko1, Rakesh Sharma4, Wilson CW Chan1,2,5, Christopher M Overall3, Lisbet Haglund6, Pak C Sham7, Kathryn Song Eng Cheah1, Danny Chan1,2* 1School of Biomedical Sciences, , The University of Hong Kong, Hong Kong; 2The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China; 3Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; 4Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong; 5Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China; 6Department of Surgery, McGill University, Montreal, Canada; 7Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong Abstract The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity *For correspondence: and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising [email protected] 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key †These authors contributed directional trends spanning the lateral and anteroposterior axes were derived from high-resolution equally to this work spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific Present address: ‡Department profiles of regulatory activities
    [Show full text]
  • Associated R-Loops at Near-Nucleotide Resolution Using Bisdrip-Seq Jason G Dumelie, Samie R Jaffrey*
    TOOLS AND RESOURCES Defining the location of promoter- associated R-loops at near-nucleotide resolution using bisDRIP-seq Jason G Dumelie, Samie R Jaffrey* Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, United States Abstract R-loops are features of chromatin consisting of a strand of DNA hybridized to RNA, as well as the expelled complementary DNA strand. R-loops are enriched at promoters where they have recently been shown to have important roles in modifying gene expression. However, the location of promoter-associated R-loops and the genomic domains they perturb to modify gene expression remain unclear. To resolve this issue, we developed a bisulfite-based approach, bisDRIP- seq, to map R-loops across the genome at near-nucleotide resolution in MCF-7 cells. We found the location of promoter-associated R-loops is dependent on the presence of introns. In intron- containing genes, R-loops are bounded between the transcription start site and the first exon- intron junction. In intronless genes, the 3’ boundary displays gene-specific heterogeneity. Moreover, intronless genes are often associated with promoter-associated R-loop formation. Together, these studies provide a high-resolution map of R-loops and identify gene structure as a critical determinant of R-loop formation. DOI: https://doi.org/10.7554/eLife.28306.001 *For correspondence: Introduction [email protected] R-loops are nucleic acid structures in which a strand of RNA is hybridized to a strand of DNA, while Competing interests: The the other strand of DNA is looped out. Recent techniques for genome-wide mapping of R-loops authors declare that no revealed that promoter regions are enriched in R-loops (Ginno et al., 2012).
    [Show full text]