WSAVA List of Essential Medicines for Cats and Dogs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Macrolides"? Classify Each Drug in This Chapter As a Macrolide Or Azalide, and As an Antibiotic Or Semi-Synthetic Derivative
STUDY GUIDE THE MACROLIDE/AZALIDE ANTIMICROBIAL AGENTS 1. Why are these antibiotics derivatives called "macrolides"? Classify each drug in this chapter as a macrolide or azalide, and as an antibiotic or semi-synthetic derivative. 2. What are the key structural differences between erythromycin, clarithromycin, azithromycin and dirithromycin? 3. Generally how does spiramycin and josamycin differ in structure from the commercial macrolides/azalides (2 reasons)? 4. What are the “ketolides and how do they differ in structure from the commercial macrolides? 5. What is the biosynthetic source of erythromycin? What is the lactone moiety of erythromycin called? What sugar moieties are present and what are their properties? 6. What hydrolysis product forms from erythromycin in aqueous acid or base? What is the significance of this reaction? Can it occur with other macrolides? 7. When does the “intramolecular cyclization” reaction occur with erythromycin? What is it's significance (two reasons) and how does it occur? Which functional groups are important for this reaction? 8. What salt forms of erythromycin are available? Which are water soluble? Which are water-insoluble? How is each salt form formulated and used (oral or parenteral)? 9. What ester and ester salt derivatives of erythromycin are available? What is the estolate? How is each salt form formulated and used (oral or parenteral)? What are the advantages of these esters dosage forms? 10. How does clarithromycin differ in structure from erythromycin? Why was this macrolide developed (the role of the 6-methoxy)? 11. How does azithromycin differ in structure from erythromycin? Why was this macrolide developed? 12. How does dirithromycin differ in structure from erythromycin? Why was this macrolide developed? What is the active form of this prodrug? 13. -
35 Cyproterone Acetate and Ethinyl Estradiol Tablets 2 Mg/0
PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION PrCYESTRA®-35 cyproterone acetate and ethinyl estradiol tablets 2 mg/0.035 mg THERAPEUTIC CLASSIFICATION Acne Therapy Paladin Labs Inc. Date of Preparation: 100 Alexis Nihon Blvd, Suite 600 January 17, 2019 St-Laurent, Quebec H4M 2P2 Version: 6.0 Control # 223341 _____________________________________________________________________________________________ CYESTRA-35 Product Monograph Page 1 of 48 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ....................................................................... 3 SUMMARY PRODUCT INFORMATION ............................................................................................. 3 INDICATION AND CLINICAL USE ..................................................................................................... 3 CONTRAINDICATIONS ........................................................................................................................ 3 WARNINGS AND PRECAUTIONS ....................................................................................................... 4 ADVERSE REACTIONS ....................................................................................................................... 13 DRUG INTERACTIONS ....................................................................................................................... 16 DOSAGE AND ADMINISTRATION ................................................................................................ 20 OVERDOSAGE .................................................................................................................................... -
Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1. -
Skin Probiotics ACCELERATING INNOVATION
ACCELERATING INNOVATION James Madison University technologies are available for licensing through its nonprofit affiliate, James Madison Innovations, Inc. Skin Probiotics Inventors: Reid Harris and Kevin Minbiole Department: Biology and Chemistry Overview Research Funding and Source: National Science Foundation James Madison University inventors have filed a patent Years of Development: 4 years application on a helpful bacterium that could potentially be Technology Readiness: Research Development used as a therapy for human skin fungus such as athlete’s foot. Patent Status: U.S. patent pending 20110002891 The JMU inventors have developed a potential process to Contact: Mary Lou Bourne, Director of Technology Transfer deliver a helpful microbe, Janthinobacterium Lividum to the James Madison University skin using a pharmaceutically acceptable carrier. The microbe Phone: (540)568-2865 E-mail: [email protected] has been shown to suppress bacterial and fungal growth on animals and in lab demonstrations. Tech Transfer and Business Model Infections can be a problem for a wide array of hosts. For JMI is interested in identifying an existing company or example, there are a variety of infections, such as bacterial, entrepreneur interested in commercializing the technology viral and/or fungal infections, that affect a large percentage of either under an exclusive or a non-exclusive license. A the human population. Tricophyton rubrum, the fungus that small company or entrepreneur could further develop the causes athlete’s foot, is responsible for approximately 46% to technology, possibly using SBIR or STTR funding. 72% of cutaneous and nail mycoses worldwide. Onychomycosis, a common and persistent fungal infection, is Market and Competition In 2008, the U.S. -
A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre
A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sebastien Lefebvre To cite this version: Tessa Trouchon, Sebastien Lefebvre. A Review of Enrofloxacin for Veterinary Use. Open Journal of Veterinary Medicine, 2016, 6 (2), pp.40-58. 10.4236/ojvm.2016.62006. hal-01503397 HAL Id: hal-01503397 https://hal.archives-ouvertes.fr/hal-01503397 Submitted on 7 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Open Journal of Veterinary Medicine, 2016, 6, 40-58 Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2016.62006 A Review of Enrofloxacin for Veterinary Use Tessa Trouchon, Sébastien Lefebvre USC 1233 INRA-Vetagro Sup, Veterinary School of Lyon, Marcy l’Etoile, France Received 12 January 2016; accepted 21 February 2016; published 26 February 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract This review outlines the current knowledge on the use of enrofloxacin in veterinary medicine from biochemical mechanisms to the use in the field conditions and even resistance and ecotoxic- ity. -
Human Chorionic Gonadotropin (HCG), a Polypeptide Hormone Produced by the Human
45792G/Revised: April 2011 CHORIONIC GONADOTROPIN FOR INJECTION, USP DESCRIPTION: Human chorionic gonadotropin (HCG), a polypeptide hormone produced by the human placenta, is composed of an alpha and a beta sub-unit. The alpha sub-unit is essentially identical to the alpha sub-units of the human pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as to the alpha sub-unit of human thyroid-stimulating hormone (TSH). The beta sub-units of these hormones differ in amino acid sequence. Chorionic gonadotropin is obtained from the human pregnancy urine. It is standardized by a biological assay procedure. Chorionic Gonadotropin for Injection, USP is available in multiple dose vials containing 10,000 USP Units with accompanying Bacteriostatic Water for Injection for reconstitution. When reconstituted with 10 mL of the accompanying diluent each vial contains: Chorionic gonadotropin 10,000 Units Mannitol 100 mg Benzyl alcohol 0.9% Water for Injection q.s. Buffered with dibasic sodium phosphate and monobasic sodium phosphate. Hydrochloric acid and/or sodium hydroxide may have been used for pH adjustment (6.0 Reference ID: 2933198 8.0). Nitrogen gas is used in the freeze drying process. CLINICAL PHARMACOLOGY: The action of HCG is virtually identical to that of pituitary LH, although HCG appears to have a small degree of FSH activity as well. It stimulates production of gonadal steroid hormones by stimulating the interstitial cells (Leydig cells) of the testis to produce androgens and the corpus luteum of the ovary to produce progesterone. Androgen stimulation in the male leads to the development of secondary sex characteristics and may stimulate testicular descent when no anatomical impediment to descent is present. -
Gonadotropin and Testosterone Measurements After
Pediat. Res. 10: 46-51 (1976) Estradiol puberty estrogen sexual differentiation gonadotropins testosterone maturation Gonadotropin and Testosterone Measurements after Estrogen Administration to Adult Men, Prepubertal and Pubertal Boys, and Men with Hypogonadotropism: Evidence for Maturation of Positive Feedback in the Male HOWARD E. KULIN"" AND EDWARD 0. REITER Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA Extract MATERIALS AND METHODS Nineteen male subjects were given five daily injections of SUBJECTS 17~-estradiol and circulating levels of estradiol (E 2 ), testosterone (T), and gonadotropins were determined by radioimmunoassay Seven normal, adult men (ages 20-22) and one male (age 21) before, during, and after the steroid course. Peak levels of E 2 with the syndrome of vanishing testes (I) were hospitalized for attained during the 5 days of treatment ranged from 173-577 pg/ml. study at the Clinical Center of the National Institutes of Health. Four of seven normal adult men and one castrate man demonstrated Each patient was given five daily intramuscular injections of IO or suppression of follicle-stimulating hormone ( FSH) and luteinizing 15 ,ug/kg body weight of 17~-estradiol (E2 ) (20) and blood samples hormone ( LH) with a subsequent rise in LH ( positive feedback) were obtained every 12-24 hr before, during, and after the estrogen while E 2 levels remained elevated. A rise in T was associated with course (see Table I). the LH increment in the four normal men. Nine pre-, early, or Nine endocrinologically normal boys between the ages of 7 and midpubertal boys and two men with hypogonadotropic hypogo 18 were studied in the course of evaluation for short stature, nadism displayed only gonadotropin suppression after E 2 adminis precocious puberty, or delayed adolescence. -
2019 National Library of Medicine Classification Schedules
National Library of Medicine Classification 2019 Schedule S-1 QS Human Anatomy Classify here general works on normal human anatomy. Works that treat men, women, or children separately are classed here. • Classify works on anatomy of a part of the body with the part. • Classify works on surgical anatomy in WO 101. • Classify works on artistic anatomy of human or animal in NC 760-783.8. • Classify works on anatomy of animals in QL or SF. QS 1-132 Anatomy QS 504-532 Histology QS 604-681 Embryology Anatomy Note that form numbers are also used under Histology (QS 504-539) and under Embryology (QS 604-681). QS 1 Organizations. Societies (General or not elsewhere classified) (Cutter from name of organization or society) (Table G) (Used for both monographs and serials) Includes membership lists issued serially or separately. Classify directories in QS 22. Classify annual reports, journals, etc., in W1. For academies and institutes, see QS 23-24. QS 4 General works Classify here works on regional anatomy. If written for the surgeon, classify in WO 101 Surgical anatomy. Classify material on comparative anatomy in QS 124. Collected works QS 5 By several authors QS 7 By individual authors QS 9 Addresses. Essays. Lectures QS 11 History (Table G) QS 11.1 General coverage (Not Table G) QS 13 Dictionaries. Encyclopedias QS 15 Classification. Terminology (Used for both monographs and serials) QS 16 Tables. Statistics. Surveys (Table G) (Used for both monographs and serials) QS 16.1 General coverage (Not Table G) (Used for both monographs and serials) QS 17 Atlases. -
Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate. -
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
Natural Products As Potential Antiparasitic Drugs
Natural Products as potential antiparasitic drugs OLIVER KAYSER1, ALBRECHT F. KIDERLEN2, SIMON L. CROFT3 1Freie Universität Berlin Institut für Pharmazie, Pharmazeutische Biotechnologie Kelchstraße 31, 12169 Berlin, Germany 2Robert Koch-Institut Nordufer 20 13353 Berlin, Germany 3London School of Hygiene and Tropical Medicine Department of Infectious and Tropical Diseases Keppel Street London, WC1E 7HT, United Kingdom ABSTRACT: Pharmaceutical research in natural products represents a major strategy for discovering and developing new drugs. The use of medicinal plants for the treatment of parasitic diseases is well known and documented since ancient times e.g. by the use of Cinchona succiruba (Rubiaceae) as an antimalarial. This chapter provides a comprehensive review of the latest results in the field of antiparasitic drug development from biologic sources (plants, bacteria, fungi and marine organisms) focussing on the treatment of protozoal infections (Plasmodium, Leishmania, Trypanosoma spp.). The status of validated in vitro and in vivo assays is reviewed, discussing their different features, problems and limitations. Because of the high number of natural products tested against the aforesaid protozoa in the last years, we limit the discussion to lignans, phenolics, terpenoids, and alkaloids as defined natural product classes. The review also covers essential research topics of recent publications on specific natural products (e.g. licochalcone A, benzyl- and naphthylisoquinoline alkaloids, and artemisinin) and gives an outlook to semi- synthetic approaches of drugs already introduced in clinics or in clinical trial studies. 1. INTRODUCTION The fascination of natural products, mostly as used as a preparation from a plant with known medicinal properties, goes back to ancient times. The discovery of pure compounds as active principles in plants was first described at the beginning of the 19th century, and the art of exploiting natural products has become part of the molecular sciences. -
Antiparasitic Properties of Cardiovascular Agents Against Human Intravascular Parasite Schistosoma Mansoni
pharmaceuticals Article Antiparasitic Properties of Cardiovascular Agents against Human Intravascular Parasite Schistosoma mansoni Raquel Porto 1, Ana C. Mengarda 1, Rayssa A. Cajas 1, Maria C. Salvadori 2 , Fernanda S. Teixeira 2 , Daniel D. R. Arcanjo 3 , Abolghasem Siyadatpanah 4, Maria de Lourdes Pereira 5 , Polrat Wilairatana 6,* and Josué de Moraes 1,* 1 Research Center for Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, São Paulo 07023-070, SP, Brazil; [email protected] (R.P.); [email protected] (A.C.M.); [email protected] (R.A.C.) 2 Institute of Physics, University of São Paulo, São Paulo 05508-060, SP, Brazil; [email protected] (M.C.S.); [email protected] (F.S.T.) 3 Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; [email protected] 4 Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717853577, Iran; [email protected] 5 CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] 6 Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected] (P.W.); [email protected] (J.d.M.) Citation: Porto, R.; Mengarda, A.C.; Abstract: The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, Cajas, R.A.; Salvadori, M.C.; Teixeira, a disease of great global public health significance. Praziquantel is the only drug available to F.S.; Arcanjo, D.D.R.; Siyadatpanah, treat schistosomiasis and there is an urgent demand for new anthelmintic agents.