Decelerating Uplift at Lazufre Volcanic Center, Central Andes, from A.D. 2010 to 2016, and Implications for Geodetic Models GEOSPHERE; V

Total Page:16

File Type:pdf, Size:1020Kb

Decelerating Uplift at Lazufre Volcanic Center, Central Andes, from A.D. 2010 to 2016, and Implications for Geodetic Models GEOSPHERE; V Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Decelerating uplift at Lazufre volcanic center, Central Andes, from A.D. 2010 to 2016, and implications for geodetic models GEOSPHERE; v. 13, no. 5 Scott T. Henderson1,2, Francisco Delgado2, Julie Elliott3, Matthew E. Pritchard2, and Paul R. Lundgren4 1Departamento de Geociencias, Universidad de los Andes, Cr 1 #18A-12, Bogotá, Colombia doi:10.1130/GES01441.1 2Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA 3Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA 12 figures; 5 tables; 1 supplemental file 4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA CORRESPONDENCE: sth54@cornell .edu ABSTRACT vicinity of uplift since the late Pliocene (Naranjo, 2010). Although the majority CITATION: Henderson, S.T., Delgado, F., Elliott, J., of dated eruptive products have Pleistocene ages, the most recent lava flow Pritchard, M.E., and Lundgren, P.R., 2017, Deceler­ ating uplift at Lazufre volcanic center, Central Andes, Interferometric synthetic aperture radar (InSAR) and GPS measurements at Lastarria has been dated at ~2500 yr old (Naranjo, 2010), and at Cordon from A.D. 2010 to 2016, and implications for geo­ beyond 2010 are presented for the first time for the Lazufre volcanic center del Azufre flows have been dated to 0.3 ± 0.3 Ma (Wilder, 2015). The strike detic models: Geosphere, v. 13, no. 5, p. 1489–1505, in the Central Andes. Vertical uplift at Lazufre was known to affect an area axis of current uplift is NNE-SSW and aligned with structural lineaments, and doi:10.1130/GES01441.1. >50 km in diameter at rates exceeding 3 cm/yr between 1997 and 2010. Analy­ the spatial footprint contains a high concentration of volcanic vents (Ruch and sis of new InSAR data through August 2016 indicates that the spatial pattern Walter, 2010). Furthermore, topographical analysis combined with dated flows Received 7 October 2016 Revision received 16 May 2017 of uplift is relatively unchanged but the amplitude of uplift has significantly de­ suggests persistent tumescence at the location of uplift since at least 400 ka Accepted 5 July 2017 creased to <1.5 cm/yr since at least December 2011. We present a time­ series (Perkins et al., 2016). Published online 9 August 2017 inversion for InSAR data between 1996 and 2016 that is well fit by a double A striking characteristic of the Lazufre system is extremely vigorous degas- exponential model, with an inflection point occurring in 2006. For two con­ sing from the Lastarria edifice. In fact, localized uplift of the edifice of Lastarria tinuous GPS stations installed within the deformation footprint in November volcano has prompted the hypothesis that Lastarria may act as a “pressure 2010, we have determined vertical velocities through 2014 or 2015 (depending valve” for a deeper magmatic plumbing system (Froger et al., 2007; Ruch on the station) that agree with contemporaneous InSAR­derived velocities. et al., 2009). Furthermore, recent in situ studies of gas composition at Lastarria Velocities from campaign GPS benchmarks established in November 2011 and have suggested a possible transition from a hydrothermal character between reoccupied in March 2014 are also presented. We use a previously proposed A.D. 2006 and 2009 (Aguilera et al., 2012) to a shallow magmatic source in 2012 model of an inflating sill at 10 km depth to explain geodetically observed dis­ (Tamburello et al., 2014). Remote sensing measurements of SO2 emissions at placements. Opening rates are halved (6.8 ± 1.25 × 106 m3/yr) compared to in­ Lastarria from 2004 onwards also suggest a possible time dependence with ferred values using data prior to 2010. Subsurface heterogeneity is accounted a peak in 2006 (Carn et al., 2013). The recent temporal changes in gas emis- for by assigning elastic parameters based on local seismic tomography in a sions at Lastarria provide evidence for changes to the subsurface magmatic finite­element model. Surface displacements (or inferred volume change esti­ system, which motivates examining recent geodetic measurements for tran- mates) for heterogeneous models compared to homogeneous models are sient signals. ampli fied by up to 7% within a 10 km radius of the center of uplift. Uplift began at Lazufre between late 1997 and 2000, accelerating to a maxi- mum line-of-sight (LOS) velocity of 3.5 cm/yr and affecting a broad region >50 km in diameter (e.g., Henderson and Pritchard, 2013). A second, smaller INTRODUCTION region (~2 km across) of uplift of about ~0.5 cm/yr starting in 2002 has been observed on top of Lastarria volcano (e.g., Froger et al., 2007; Ruch et al., 2009) The Lazufre volcanic uplift signal is centered between the summits of but is not discussed in this paper because it is not well resolved by the data Lastarria volcano (25.168°S, 68.507°W, 5706 m elevation) and Cordon del sets used in this study. Owing to the remote location of Lazufre, deformation Azufre volcano (25.336°S, 68.521°W, 5481 m elevation) in the Central Andes measurements have mostly been made with interferometric synthetic aperture Volcanic Zone (CVZ) of northern Chile and Argentina (Fig. 1). These volcanoes radar (InSAR); however, due to the end of Envisat (European Space Agency were identified as having had Holocene activity based on remotely sensed [ESA]) satellite observations in 2010, there was a gap in observations. For morphological indicators such as post-glacial eruptive features (Francis and de the first time, we present post-2010 InSAR observations along with continu- For permission to copy, contact Copyright Silva, 1989). Subsequently, extensive regional geological mapping has been ous GPS observations at Lazufre to address the question of whether previous Permissions, GSA, or [email protected]. conducted, which indicated ~120 km3 of erupted material from vents in the spatio temporal surface uplift trends have continued in the past 6 yr. © 2017 Geological Society of America GEOSPHERE | Volume 13 | Number 5 Henderson et al. | Decelerating uplift at Lazufre volcanic center and implications for geodetic models Downloaded from http://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/13/5/1489/3995723/1489.pdf 1489 by guest on 28 September 2021 Research Paper N Figure 1. Overview map of Lazufre defor­ mation and GPS network, Central Andes. Circles are continuous GPS sites installed in November 2010; squares are campaign GPS benchmarks installed and surveyed in November 2011. East­west (Ux) and vertical (Uz) components of displacement (in cm/yr) are derived from InSAR data from between May 2006 and November 2008 (Remy et al., 2014). Black star marks the center of vertical uplift (25.259°S, 68.483°W). Black triangles are active vol­ canoes from the Smithsonian Global Vol­ canism Catalog. Curving black line is the international border between Chile and Argentina. Black triangles are active vol­ canoes from the Smithsonian Global Vol­ canism (http:// volcano .si .edu). To date, many source models of deformation at Lazufre have been con- All geodetic models to date for Lazufre have assumed that the crustal struc- strained by a single LOS viewing geometry, utilizing data from European ture is homogeneous and elastic. In recent years however, seismic tomog- Remote Sensing [ERS] Satellites 1 and 2 from ESA and Envisat tracks 282 raphy and conductivity models have been published, which help constrain spanning July 1995 to May 2010 (Pritchard and Simons, 2002, 2004; Froger subsurface heterogeneity under the Lazufre region. In particular, magneto- et al., 2007; Ruch et al., 2008). Owing to the nonunique nature of geodetic telluric data revealed a strong conductor under the deformation anomaly dip- models, there has been some disagreement as to whether the source was a ping eastward to the base of the crust. Modeling suggests that the feature laterally propagating sill (e.g., Ruch et al., 2008; Anderssohn et al., 2009) or could be due to 5–8 vol% partial melt which is feeding current sill inflation had a fixed geometry with variable opening rate. These models were based in the upper crust (Budach et al., 2013). A follow-up study with additional lo- on a rectangular elastic dislocation model (Okada, 1985). All available as- cal instrumentation defined several distinct low-conductivity anomalies—one cending and descending data through 2010 were used recently by Pearse and directly under Lastarria volcano (1–10 W·m) to 1 km depth, another south of Lundgren (2013) to address the question of lateral growth of the sill, and the the edifice (5–10 W·m) at 7–8 km depth, and finally an anomaly (0.1–1 W·m) best-fitting source was concluded to have a fixed geometry with a depth of at 5–15 km depth under the deformation centroid (Diaz et al., 2015). These 8 km, strike of 10° east of north, dip of 10°, length of 30 km, width of 20 km, results match quite well with local seismic tomography in which roughly co- and maximum opening rate of 5 cm/yr (implying volume change on the order incident low S-wave velocities were observed: 1.2–1.8 km/s, 1.5–2 km/s, and of 0.01 km3/yr). Note that the depth in this case describes the middle of the 2.3 km/s, respectively (Spica et al., 2015). The prevailing interpretation is that sill below the local average elevation of 4.8 km. Remy et al. (2014) modeled, magmatic fluids migrate upward to ~6 km from a reservoir at 10 km depth, with different methodologies, the same InSAR data set, adding campaign thereby providing heat to the extensive and shallow hydrothermal system GPS observations spanning 2006–2008, and pointed out that either a trun- (Spica et al., 2015).
Recommended publications
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Hoja Cachi.P65
    Cachi 1 RESUMEN Pucará y Altos del Cajón de edad ordovícica repre- sentan el magmatismo paleozoico en la Cordillera La Hoja Geológica 2566-III, CACHI, está ubi- Oriental. cada en las provincias de Salta y Catamarca, en el Las sedimentitas cretácico-paleógenas del Gru- noroeste de Argentina. Esta cubre parte de dos pro- po Salta afloran en la Cordillera Oriental. Esta uni- vincias geológicas: la Puna en el oeste, la cual ocupa dad está integrada por los depósitos de sinrift del aproximadamente el 70% de la superficie de la Hoja, Subgrupo Pirgua, constituido por conglomerados y y la Cordillera Oriental o Subprovincia de las Cum- areniscas rojas, y las secuencias de postrift de los bres Calchaquíes, en el este. Subgrupos Balbuena y Santa Bárbara, integradas por Los pueblos de Payogasta, Cachi, Seclantas, Mo- areniscas, areniscas carbonáticas, pelitas y ocasio- linos y Angastaco constituyen las principales con- nales calizas correspondientes a las Formaciones centraciones urbanas en la parte oriental y las minas Lecho, Yacoraite, Mealla, Maíz Gordo y Lumbrera. Tincalayu y Fénix son los centros de desarrollo más El Paleógeno de la Puna está representado por importantes de la región puneña. Las principales ac- la Formación Geste, compuesta por conglomerados tividades económicas del sector oriental de la Hoja y areniscas, cuya fauna registra condiciones de cli- son la ganadería, agricultura y turismo, mientras que ma subtropical. La actividad del arco magmático en el sector occidental es la minería. andino y el acortamiento tectónico controlaron la Las provincias geológicas tienen una diferente naturaleza de las unidades neógenas en la Puna. Las expresión morfológica.
    [Show full text]
  • PLUTONS: Investigating the Relationship Between Pluton Growth and Volcanism in the Central Andes
    Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H. Christensen7, N.J. Finnegan8, 9 2 10 11 7 12 2 13 2 6 doi:10.1130/GES01578.1 E. Minaya , R.S.J. Sparks , M. Sunagua , M.J. Unsworth , C. Alvizuri , M.J. Comeau , R. del Potro , D. Díaz , M. Diez , A. Farrell , S.T. Henderson1,14, J.A. Jay15, T. Lopez7, D. Legrand16, J.A. Naranjo17, H. McFarlin6, D. Muir18, J.P. Perkins19, Z. Spica20, A. Wilder21, and K.M. Ward22 1 10 figures; 3 tables Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York 14853, USA 2School of Earth Sciences, University of Bristol, BS8 1RJ, United Kingdom 3College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, Oregon 97331, USA CORRESPONDENCE: pritchard@ cornell .edu 4Department of Geography, Geology and Planning, Missouri State University, 901 S. National Ave, Springfield, Missouri 65897, USA 5Department of Geosciences, The University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0001, USA CITATION: Pritchard, M.E., de Silva, S.L., Michel‑ 6School of Geosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, USA felder, G., Zandt, G., McNutt, S.R., Gottsmann, 7Geophysical Institute, University
    [Show full text]
  • La Mano De Dios En Socaire
    CAPÍTULO I. PLANTEAMIENTO DEL PROBLEMA 1.0. ESTADO DE LA CUESTIÓN A pesar de los años transcurridos desde la conquista española, durante el siglo XVI y posteriores, los atacameños o likan-antai conservan aún una parte importante de su tradición sur-andina milenaria. Puedo decir, vinculada con concepciones básicas del tiempo, el espacio, el género, el cuerpo, las relaciones de producción, el ciclo agrícola, el ritual y la(s) cosmovisión(es), entre otros. Más importante, mantienen una relación directa con un espacio físico o entorno, de allí que en kunza la etnia se llame a sí misma como “los habitantes del territorio”1. Hoy en día los atacameños ocupan un espacio comprendido en las inmediaciones del salar de Atacama, norte de Chile. Aún cuando, tienen por extensión relación con poblaciones de las provincias de Jujuy, Salta y Catamarca, en el noroeste de Argentina, y con grupos del altiplano sur boliviano. Que hasta finales de siglo XIX, mantenían intercambio permanente a través de rutas caravaneras a larga distancia entre el océano Pacífico, la puna y el altiplano, luego cortadas por la irrupción de los nuevos estados nacionales posterior a la Guerra del Pacífico de 1879. La arqueología chilena ha definido a los atacameños como los forjadores de las culturas agro-alfareras del extremo norte de Chile y sus descendientes. Alcide D‟Orbigny (1839), se refirió a la “Nación de los atacamas” como a los habitantes del interior de la región de Antofagasta, Rudolfo A. Philippi (1860) siguió este ejemplo y hablo de los atacamas o atacameños, Max Uhle (1919) introdujo el término para los habitantes prehistóricos, mientras Ricardo E.
    [Show full text]
  • Fenómenos De Pareidolia En Socaire, Norte De Chile*
    ISSN 2545-8256 1 Surandino Monográfico /núm. 4 (2018): [1-22] ¿Por qué la mano izquierda? Fenómenos de pareidolia en Socaire, Norte de Chile* Ricardo Moyano " Becario Postdoctoral del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Interdisciplinario Tilcara, Facultad de Filosofía y Letras (FFyL), Universidad de Buenos Aires ( UBA), Argentina - mundosub- [email protected] Patricio Bustamante Investigador en Arqueoastronomía, Grupo WACA, Chile - [email protected] América Valenzuela Laboratorio de Etnografía, Departamento de Antropología, Universidad de Chile (UChile) - [email protected] Fecha de recepción: 20 de junio de 2017. Fecha de aceptación: 15 de marzo de 2018. Resumen Se exponen los resultados del estudio del calendario agrícola y un posible sistema Palabras clave de ceques en la comunidad indígena atacameña de Socaire, norte de Chile. Desde la etnoastronomía etnoastronomía se analizan los fenómenos de pareidolia asociados a la observación pareidolia del cielo y la representación de la topografía del lugar. Los resultados demuestran norte de Chile la existencia de un sistema de líneas o convidos, similar a los ceques del Cuzco, desti- nados a organizar espacio-temporalmente las actividades agrícolas y los principales rituales. Se presentan evidencias arqueológicas que sustentan la hipótesis del culto a los cerros en tiempos prehispánicos, así como elementos de geometría y matemá- tica indígena, que vinculan el uso del cuerpo humano con el concepto de paisaje. El estudio comparativo supone la existencia de patrones psicológicos, no sólo para identificar “astros, constelaciones y topoformas”, sino también para explicar mitos y cosmogonías en el contexto de la astronomía cultural. * Agradecimientos. En homenaje al Dr. R.
    [Show full text]
  • Boron As a Tracer for Material Transfer
    ISSN 1610-0956 Boron as a tracer for material transfer in subduction zones ______________________________________ verfasst von Martin Siegfried Rosner geboren am 14.07. 1972 in Kassel Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - eingereicht an der Mathematisch- Naturwissenschaftlichen Fakultät der Universität Potsdam Potsdam, Januar 2003 Hiermit erkläre ich das die vorliegende Arbeit an keiner anderen Hochschule eingereicht wurde und von mir selbstständig und nur mit den angegebenen Hilfsmitteln angefertigt wurde. Potsdam den 6. Januar 2003 Gutachter: Prof. Dr. Jörg Erzinger (Universität Potsdam) Prof. Dr. Gerhard Franz (Technische Universität Berlin) Prof. Dr. Roland Oberhänsli (Universität Potsdam) Table of contents ERWEITERTE ZUSAMMENFASSUNG 1 CHAPTER I - Methodology of boron isotope and concentration analyses I.1 Introduction 7 I.2 Reagents and laboratory equipment 10 I.3 Boron concentration analyses 11 I.4 Methods of boron isotope analysis 12 I.4.1 Mass spectrometric methods 12 I.4.1.1 Thermal ionisation mass spectrometry (TIMS) 13 + I.4.1.1.1 PTIMS: The Cs2BO2 -graphite method 13 - I.4.1.1.2 NTIMS: The BO2 method 14 I.4.1.2 MC-ICP-MS and SIMS 14 I.5. Sample preparation 15 I.5.1 Dissolution methods 15 I.5.1.1 Carbonate fusion 16 I.5.1.2 Acid attack 16 I.5.2. Boron separation by ion exchange chromatography 17 I.5.2.1 Ion exchange chromatography after alkaline fusion 19 I.5.2.1.1 Purification after K2CO3 fusion (first separation step) 19 I.5.2.1.2 Removal of major cations (second
    [Show full text]
  • A Geo-Referenced Visual Guide to 70 Chilean Volcanoes Photography by Gerard Prins Mission Impossible Corcovado Volcano (P
    Land of the living Mountains A geo-referenced visual guide to 70 Chilean volcanoes Photography by Gerard Prins Mission Impossible Corcovado volcano (p. 98) Ever since, in 1990, I laid eyes on “my first volcano” – Vol- that will likely take the rest of my life and still be grossly in- Additional handicaps are that I’m no mountaineer nor an ex- cán Villarrica in the Chilean South – I have been impressed by complete. pert by any measure and, thus, constantly fear to be wrong. their beauty as well as by the imposing forces that lie behind Especially because even detailed maps of the Chilean In- their creation, and have, willingly or unwillingly, pointed In the process, I have picked up some passing knowledge stituto Geográfico Militar – or Google Earth for that mat- my camera at them over and again. on geology and volcanism. However, “passing” is the opera- ter – provide precious little info on mountain names and Unwillingly, because in a country that is part of the Pacific tive word here, which is why I am relying on shameless (but locations. Ring of Fire and counts with over 600 volcanic phenomena, often edited) copy/paste from the Global Volcanism Program Moreover, I have been chasing the González-Ferrán Chil- it is virtually impossible to look towards the Andes Cordill- Web site to textually accompany the images, and generate at ean volcano “Bible” for the last ten years or so, to no avail. era and not capture something that is somehow related with least some sort of context. Still, I hope this document will be a source of entertain- the incessant subduction of the Nazca Plate under the South Although this presentation visually documents roughly ment and reason enough for travellers to either get a good tour American- and Antarctica Plates.
    [Show full text]
  • A Preliminary Evaluation of Volatiles Content in Melt Inclusion in Monogenetic Centers of the Central Andean Volcanic Zone (Northern of Chile)
    Goldschmidt2019 Abstract A preliminary evaluation of volatiles content in melt inclusion in monogenetic centers of the Central Andean Volcanic Zone (Northern of Chile) C. GONZÁLEZ 1*, E.H. HAURI 2, A. SAAL 3, J. WANG 2 AND F. AGUILERA1 1 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, 1270709, Chile. (*correspondence: [email protected]) 2 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA 3 Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA Volatiles in subduction zones are generated during metamorphism of the subduction of the Nazca oceanic lithosphere previously affected by hydrothermal alteration and seawater circulation [1, 2]. In the Central Andean Volcanic Zone (CAVZ) the regional tectonic setting and the heterogenous magma source have controlled the chemistry and isotopic composition of the erupted lavas [3, 4]. These factors could modify the distribution of volatiles along and across the arc (e.g. CAVA. Sadofsky et al., 2008). Across the CAVZ of Northern Chile, there are several Pliocene to Holocene monogenetic mafic centers associated to pyroclastic deposits: Ajata volcano, Porunita, La Luna de Tierra, Poruna and volcan del Inca scoria cones and Cerro Overo maar, with a range in magma composition from basaltic-andesite to andesite (SiO2 53.42 – 60.34 wt%) respectively. We picked Olivine-hosted melt inclusions from the pyroclastic material to determine the composition and distribution of volatiles (H, C, F, S, Cl) in the most primitive magmas. The olivine phenocrysts are subhedral to anhedral, varying from < 1 mm to ~200 µm. The distribution and size of melt inclusion varies between site.
    [Show full text]
  • Descriptive Stats Height 1239Records
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID.Number 115 -99 NP Volcano and eruption 355806 355806
    [Show full text]
  • Caracterización Geológica Y Geoquímica Del Maar Cerro Overo, Andes Centrales
    ST 3 METAMORFISMO Y MAGMATISMO EN ZONAS DE SUBDUCCIÓN Caracterización geológica y geoquímica del maar Cerro Overo, Andes Centrales. Gabriel Ureta*1, Eduardo Medina1, Inés Rodríguez2,3 (1) Departamento de Ciencias Geológicas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile (2) Programa de Doctorado, Departamento de Ciencias Geológicas, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile (3) Laboratoire Magmas et volcans, Université Blaise Pascal-CNRS-IRD, OPGC, 5 rue kessler 63038, Clermont Ferrand, France *email de contacto: [email protected] Resumen. El Cerro Overo es un volcán monogenético ubicado en la Zona Volcánica Central de los Andes, específicamente en la región de Antofagasta, a 8,6 km al noreste del cráter del volcán Chiliques, el cual pertenece al cordón volcánico Puntas Negras. La cima del volcán Cerro Overo alcanza los 4.555 m s.n.m. y corresponde a un cono volcánico de composición andesítica - basáltica de edad Holocena. La importancia del volcanismo reflejado en el Cordón Puntas Negras, sumado la abundancia de material piroclástico y presencia de lineamientos estructurales, sugiere que el volcán Cerro Overo es un maar producto de una erupción freatomagmática. El cual estaría relacionado con la construcción del volcán Chiliques, que tiene una composición andesítica - basáltica y andesítica. Las rocas del volcán Cerro Overo evolucionaron mediante un proceso de cristalización fraccionada con interacción de fluidos acuosos e incorporación de fundidos corticales (mingling) o asimilación de material cortical. Figura 1. Mapa de ubicación Palabras Claves: volcán Cerro Overo, maar, freatomagmática. 2 Marco geológico 1 Introducción La zona de estudio está comprendida en el extremo El volcán Cerro Overo se localiza a 200 km al SE de la noreste del Cordón Puntas NeGras, cadena volcánica de ciudad de Calama en las coordenadas 23°31'S - 67°39'W.
    [Show full text]
  • An Overview of the Mafic and Felsic Monogenetic
    Chapter An Overview of the Mafic and Felsic Monogenetic Neogene to Quaternary Volcanism in the Central Andes, Northern Chile (18-28°Lat.S) Gabriel Ureta, Károly Németh, Felipe Aguilera, Matias Vilches, Mauricio Aguilera, Ivana Torres, José Pablo Sepúlveda, Alexander Scheinost and Rodrigo González Abstract Monogenetic volcanism produces small eruptive volumes with short eruption history, different chemical compositions, and relatively simple conduit. The Central Volcanic Zone of the Andes is internationally known as a natural laboratory to study volcanism, where mafic and felsic products are present. In this contribution, the spectrum of architectures, range of eruptive styles, lithological features, and differ- ent magmatic processes of the mafic and felsic monogenetic Neogene to Quaternary volcanoes from the Central Volcanic Zone of the Andes in northern Chile (18°S-28°S) are described. The major volcanic activity occurred during the Pleistocene, where the most abundant activity corresponds to effusive and Strombolian eruptions. This volcanism is characterized by external (e.g., magma reservoirs or groundwater avail- ability) and internal (e.g., magma ascent rate or interaction en-route to the surface) conditions, which determine the changes in eruptive style, lithofacies, and magmatic processes involved in the formation of monogenetic volcanoes. Keywords: monogenetic volcanoes, small-volume volcanoes, magmatic and hydromagmatic eruptions, Central Volcanic Zone, Altiplano-Puna 1. Introduction Monogenetic volcanoes are the most common type of subaerial volcanoes on the Earth [1] that occur in any tectonic setting as intraplate, extensional, and subduction [2]. They can be distributed as isolated centers, monogenetic volcanic fields [3], or associated with large volcanic systems as polygenetic volcanoes or calderas [4], dis- playing a plumbing system relatively simple of a dispersed nature [5].
    [Show full text]
  • Caracterización Hidrogeológica E Hidrogeoquímica De Las Cuencas: Salar De Aguas Calientes 2, Puntas Negras, Laguna Tuyajto, P
    CARACTERIZACIÓN HIDROGEOLÓGICA E HIDROGEOQUÍMICA DE LAS CUENCAS: SALAR DE AGUAS CALIENTES 2, PUNTAS NEGRAS, LAGUNA TUYAJTO, PAMPA COLORADA, PAMPA LAS TECAS Y SALAR EL LACO, II REGION DE CHILE TÉSIS PARA OPTAR AL TÍTULO DE GEÓLOGA MARIANA MARCELLA CERVETTO SEPÚLVEDA PROFESOR GUÍA: SOFÍA REBOLLEDO LEMUS MIEMBROS DE LA COMISIÓN: CARLOS PARRAGUEZ DECKER KATJA DECKART SANTIAGO DE CHILE OCTUBRE 2012 RESUMEN El presente estudio se centró en caracterizar el funcionamiento hidráulico de las cuencas endorreicas Salar de Aguas Calientes 2, Puntas Negras, Laguna Tuyajto, Pampa Colorada, Pampa Las Tecas y Salar El Laco, ubicadas en la II Región de Antofagasta. Estas son cuencas intra-volcánicas, que se forman al este de la Cordillera Occidental, donde se desarrolla el volcanismo de arco actual, y que se caracteriza por un clima semi-árido. Los depósitos volcánicos dan lugar a la morfología particular de esta zona, que consiste en un conjunto de pequeñas cuencas hidrológicas morfológicamente aisladas, que acumulan depósitos aluviales y/o salinos del Pleistoceno-Holoceno debido a la intensa aridez del área. La recarga se produce por la infiltración de las precipitaciones, las que infiltran o escurren dependiendo de las características geológicas y geomorfológicas del terreno. Las descargas se producen en mayor proporción por evaporación desde lagunas, salares, napas someras y evapo-transpiración a partir de la vegetación que allí existe. Las zonas acuíferas existentes están limitadas a la porosidad primaria de las rocas volcánicas, la porosidad secundaria asociada a procesos de fracturamiento en este tipo de formaciones, y horizontes erosionados y meteorizados encontrados en profundidad. El agua subterránea puede interceptar la superficie en las áreas de los salares y lagunas.
    [Show full text]