Descriptive Stats Height1239+Bhppcdsepith

Total Page:16

File Type:pdf, Size:1020Kb

Descriptive Stats Height1239+Bhppcdsepith This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Ituarte, Lia S Title: Exploring differential erosion patterns using volcanic edifices as a proxy in South America General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 115 -99 NP Volcano-dated 355806 355806 122 -99 NP Volcano-dated 355823 355823 133 -99 NP Volcano-dated 352826 352826 150 -99 NP Volcano-dated 355868 355868 159 -99 NP Volcano-dated 355870 355870 164 -99 NP Volcano-dated 355832 355832 179 -99 NP Volcano-dated 355060 355060 208 -99 NP Volcano-dated 355809 355809 219 -99 NP Volcano-dated 355840 355840 233 -99 NP Volcano-dated 358062 358062 234 -99 NP Volcano-dated 357153 357153 235 -99 NP Volcano-dated 352021 352021 241 -99 NP Volcano-dated 357060 357060 247 -99 NP Volcano-dated 358070 358070 249 -99 NP Volcano-dated 357042 357042 253 -99 NP Volcano-dated 358020 358020 254 -99 NP Volcano-dated 357091 357091 255 -99 NP Volcano-dated 357140 357140 256 -99 NP Volcano-dated 352006 352006 259 -99 NP Volcano-dated 358012 358012 263 -99 NP Volcano-dated 354007 354007 297 -99 NP Volcano-dated 351070 351070 298 -99 NP Volcano-dated 355112 355112 300 -99 NP Volcano-dated 351080 351080 304 -99 NP Volcano-dated 352020 352020 307 -99 NP Volcano-dated 354030 354030 308 -99 NP Volcano-dated 358057 358057 313 -99 NP Volcano-dated 355100 355100 315 -99 NP Volcano-dated 355832 355832 316 -99 NP Volcano-dated 357110 357110 320 -99 NP Volcano-dated 357100 357100 321 -99 NP Volcano-dated 358056 358056 322 -99 NP Volcano-dated 357021 357021 ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 323 -99 NP Volcano-dated 357061 357061 324 -99 NP Volcano-dated 358052 358052 326 -99 NP Volcano-dated 358054 358054 327 -99 NP Volcano-dated 358040 358040 343 -99 NP Volcano-dated 357130 357130 344 -99 NP Volcano-dated 352005 352005 346 -99 NP Volcano-dated 355130 355130 347 -99 NP Volcano-dated 358010 358010 348 -99 NP Volcano-dated 357066 357066 349 -99 NP Volcano-dated 352011 352011 351 -99 NP Volcano-dated 351060 351060 353 -99 NP Volcano-dated 355094 355094 355 -99 NP Volcano-dated 357150 357150 358 -99 NP Volcano-dated 352060 352060 361 -99 NP Volcano-dated 358063 358063 362 -99 NP Volcano-dated 352010 352010 363 -99 NP Volcano-dated 355210 355210 364 -99 NP Volcano-dated 351011 351011 365 -99 NP Volcano-dated 351020 351020 372 -99 NP Volcano-dated 352001 352001 373 -99 NP Volcano-dated 357111 357111 375 -99 NP Volcano-dated 354031 354031 382 -99 NP Volcano-dated 352080 352080 387 -99 NP Volcano-dated 354020 354020 393 -99 NP Volcano-dated 357120 357120 396 -99 NP Volcano-dated 358049 358049 397 -99 NP Volcano-dated 354050 354050 411 -99 NP Volcano-dated 357040 357040 504 -99 NP Volcano-dated 351030 351030 543 -99 NP Volcano-dated 351090 351090 544 -99 NP Volcano-dated 357060 357060 545 -99 NP Volcano-dated 357060 357060 546 -99 NP Volcano-dated 357060 357060 ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 547 -99 NP Volcano-dated 357060 357060 548 -99 NP Volcano-dated 357060 357060 549 -99 NP Volcano-dated 357060 357060 550 -99 NP Volcano-dated 357060 357060 551 -99 NP Volcano-dated 357060 357060 552 -99 NP Volcano-dated 357060 357060 553 -99 NP Volcano-dated 357060 357060 554 -99 NP Volcano-dated 357060 357060 555 -99 NP Volcano-dated 355210 355210 563 -99 NP Volcano-dated 351012 351012 646 -99 NP Volcano-dated 352022 352022 647 -99 NP Volcano-dated 352002 352002 652 -99 NP Volcano-dated 358041 358041 685 -99 NP Volcano-dated 357070 357070 713 -99 NP Volcano-dated 358050 358050 798 -99 NP Volcano-dated 352050 352050 802 -99 NP Volcano-dated 352003 352003 806 -99 NP Volcano-dated 351070 351070 1090 -99 NP Volcano-dated 357061 357061 1128 -99 NP Volcano-dated 354010 354010 1153 -99 NP Volcano-dated 355012 355012 1159 -99 NP Volcano-dated 357066 357066 1160 -99 NP Volcano-dated 357040 357040 1376 -99 NP Volcano-dated 351030 351030 1645 -99 NP Volcano-dated 354050 354050 1655 -99 NP Volcano-dated -99 -99 1705 -99 NP Volcano-dated -99 -99 1720 -99 NP Volcano-dated 355130 355130 1728 -99 NP Volcano-dated 357040 357040 1740 -99 NP Volcano-dated 357090 357090 1748 1 NP Volcano-arc -99 -99 1749 2 NP Volcano-arc -99 -99 1750 3 NP Volcano-arc -99 -99 ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 1751 4 NP Volcano-arc -99 -99 1752 5 NP Volcano-arc -99 -99 1753 6 NP Volcano-arc -99 -99 1754 7 NP Volcano-arc -99 -99 1755 8 NP Volcano-arc -99 -99 1756 9 NP Volcano-arc -99 -99 1757 10 NP Volcano-arc -99 -99 1758 11 NP Volcano-arc -99 -99 1759 12 NP Volcano-arc -99 -99 1760 13 NP Volcano-arc -99 -99 1761 14 NP Volcano-arc -99 -99 1762 15 NP Volcano-arc -99 -99 1763 16 NP Volcano-arc -99 -99 1764 17 NP Volcano-arc -99 -99 1765 18 NP Volcano-arc -99 -99 1766 19 NP Volcano-arc -99 -99 1767 20 NP Volcano-arc -99 -99 1768 21 NP Volcano-arc -99 -99 1769 22 NP Volcano-arc -99 -99 1770 23 NP Volcano-arc -99 -99 1771 24 NP Volcano-arc -99 -99 1772 25 NP Volcano-arc -99 -99 1773 26 NP Volcano-arc -99 -99 1774 27 NP Volcano-arc -99 -99 1775 28 NP Volcano-arc -99 -99 1776 29 NP Volcano-arc -99 -99 1777 30 NP Volcano-arc -99 -99 1778 31 NP Volcano-arc -99 -99 1779 32 NP Volcano-arc -99 -99 1780 33 NP Volcano-arc -99 -99 1781 34 NP Volcano-arc -99 -99 1782 35 NP Volcano-arc -99 -99 1783 36 NP Volcano-arc -99 -99 ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 1784 37 NP Volcano-arc -99 -99 1785 38 NP Volcano-arc -99 -99 1786 39 NP Volcano-arc -99 -99 1787 40 NP Volcano-arc -99 -99 1788 41 NP Volcano-arc -99 -99 1789 42 NP Volcano-arc -99 -99 1790 43 NP Volcano-arc -99 -99 1791 44 NP Volcano-arc -99 -99 1792 45 NP Volcano-arc -99 -99 1793 46 NP Volcano-arc -99 -99 1794 47 NP Volcano-arc -99 -99 1795 48 NP Volcano-arc -99 -99 1796 49 NP Volcano-arc -99 -99 1797 50 NP Volcano-arc -99 -99 1798 51 NP Volcano-arc -99 -99 1799 52 NP Volcano-arc -99 -99 1800 53 NP Volcano-arc -99 -99 1801 54 NP Volcano-arc -99 -99 1802 55 NP Volcano-arc -99 -99 1803 56 NP Volcano-arc -99 -99 1804 57 NP Volcano-arc -99 -99 1805 58 NP Volcano-arc -99 -99 1806 59 NP Volcano-arc -99 -99 1807 60 NP Volcano-arc -99 -99 1808 61 NP Volcano-arc -99 -99 1809 62 NP Volcano-arc -99 -99 1810 63 NP Volcano-arc -99 -99 1811 64 NP Volcano-arc -99 -99 1812 65 NP Volcano-arc -99 -99 1813 66 NP Volcano-arc -99 -99 1814 67 NP Volcano-arc -99 -99 1815 68 NP Volcano-arc -99 -99 1816 69 NP Volcano-arc -99 -99 ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 1817 70 NP Volcano-arc -99 -99 1818 71 NP Volcano-arc -99 -99 1819 72 NP Volcano-arc -99 -99 1820 73 NP Volcano-arc -99 -99 1821 74 NP Volcano-arc -99 -99 1822 75 NP Volcano-arc -99 -99 1823 76 NP Volcano-arc -99 -99 1824 77 NP Volcano-arc -99 -99 1825 78 NP Volcano-arc -99 -99 1826 79 NP Volcano-arc -99 -99 1827 80 NP Volcano-arc -99 -99 1828 81 NP Volcano-arc -99 -99 1829 82 NP Volcano-arc -99 -99 1830 83 NP Volcano-arc -99 -99 1831 84 NP Volcano-arc -99 -99 1832 85 NP Volcano-arc -99 -99 1833 86 NP Volcano-arc -99 -99 1834 87 NP Volcano-arc -99 -99 1835 88 NP Volcano-arc -99 -99 1836 89 NP Volcano-arc -99 -99 1837 91 NP Volcano-arc -99 -99 1838 92 NP Volcano-arc -99 -99 1839 93 NP Volcano-arc -99 -99 1840 94 NP Volcano-arc -99 -99 1841 95 NP Volcano-arc -99 -99 1842 96 NP Volcano-arc -99 -99 1843 97 NP Volcano-arc -99 -99 1844 98 NP Volcano-arc -99 -99 1845 99 NP Volcano-arc -99 -99 1846 101 NP Volcano-arc -99 -99 1847 102 NP Volcano-arc -99 -99 1848 104 NP Volcano-arc -99 -99 1849 105 NP Volcano-arc -99 -99 ID Sample.ID Unit.sampled Unit.filter IAVCEI.ID Volcano.ID 1850 106 NP Volcano-arc -99 -99 1851 107 NP Volcano-arc -99 -99 1852 108 NP Volcano-arc -99 -99 1853 109 NP Volcano-arc -99 -99 1854 110 NP Volcano-arc -99 -99 1855 111 NP Volcano-arc -99 -99 1856 112 NP Volcano-arc -99 -99 1857 113 NP Volcano-arc -99 -99 1858 114 NP Volcano-arc -99 -99 1859 115 NP Volcano-arc -99 -99 1860 116 NP Volcano-arc -99 -99 1861 117 NP Volcano-arc -99 -99 1862 118 NP Volcano-arc -99 -99 1863 119 NP Volcano-arc -99 -99 1864 120 NP Volcano-arc -99 -99 1865 121 NP Volcano-arc -99 -99 1866 122 NP Volcano-arc -99 -99 1867 124 NP Volcano-arc -99 -99 1868 125 NP Volcano-arc -99 -99 1869 126 NP Volcano-arc -99 -99 1870 127 NP Volcano-arc -99 -99 1871 128 NP Volcano-arc -99 -99 1872 129 NP Volcano-arc -99 -99 1873 130 NP Volcano-arc -99 -99 1874 131 NP Volcano-arc -99 -99 1875 132 NP Volcano-arc -99 -99
Recommended publications
  • ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito De Tarata – Región Tacna)
    ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI – CASIRI (2020 - 2021) (Distrito de Tarata – Región Tacna) Informe Técnico N°010-2021/IGP CIENCIAS DE LA TIERRA SÓLIDA Lima – Perú Mayo, 2021 Instituto Geofísico del Perú Presidente Ejecutivo: Hernando Tavera Director Científico: Edmundo Norabuena Informe Técnico Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni - Casiri (2020 – 2021). Distrito de Tarata – Región Tacna Autores Yanet Antayhua Lizbeth Velarde Katherine Vargas Hernando Tavera Juan Carlos Villegas Este informe ha sido producido por el Instituto Geofísico del Perú Calle Badajoz 169 Mayorazgo Teléfono: 51-1-3172300 Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) ACTIVIDAD SÍSMICA EN EL ENTORNO DE LA FALLA PACOLLO Y VOLCANES PURUPURUNI - CASIRI (2020 – 2021) Distrito de Tarata – Región Tacna Lima – Perú Mayo, 2021 2 Instituto Geofísico del Perú Actividad sísmica en el entorno de la falla Pacollo y volcanes Purupuruni – Casiri (2020 – 2021) RESUMEN Este estudio analiza las características sismotectónicas de la actividad sísmica ocurrida en el entorno de la falla Pacollo y volcanes Purupuruni- Casiri (distrito de Tarata – región Tacna), durante el periodo julio de 2020 a mayo de 2021. Desde mayo de 2020 hasta mayo de 2021, en el área de estudio se ha producido dos periodos de crisis sísmica separados por otro en donde la ocurrencia de sismos era constante, pero con menor frecuencia. El primer periodo de crisis sísmica ocurrió en el periodo del 15 al 30 de julio del 2020 con la ocurrencia de 3 eventos sísmicos que alcanzaron magnitud de M4.2.
    [Show full text]
  • Chronology and Impact of the 2011 Cordón Caulle Eruption, Chile
    Nat. Hazards Earth Syst. Sci., 16, 675–704, 2016 www.nat-hazards-earth-syst-sci.net/16/675/2016/ doi:10.5194/nhess-16-675-2016 © Author(s) 2016. CC Attribution 3.0 License. Chronology and impact of the 2011 Cordón Caulle eruption, Chile Manuela Elissondo1, Valérie Baumann1, Costanza Bonadonna2, Marco Pistolesi3, Raffaello Cioni3, Antonella Bertagnini4, Sébastien Biass2, Juan-Carlos Herrero1, and Rafael Gonzalez1 1Servicio Geológico Minero Argentino (SEGEMAR), Buenos Aires, Argentina 2Department of Earth Sciences, University of Geneva, Geneva, Switzerland 3Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italia 4Istituto Nazionale di Geofisica e Vulcanologia, Pisa, Italia Correspondence to: Costanza Bonadonna ([email protected]) Received: 7 July 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 8 September 2015 Accepted: 29 January 2016 – Published: 10 March 2016 Abstract. We present a detailed chronological reconstruction 1 Introduction of the 2011 eruption of the Cordón Caulle volcano (Chile) based on information derived from newspapers, scientific re- Recent volcanic crises (e.g. Chaitén 2008, Cordón Caulle ports and satellite images. Chronology of associated volcanic 2011 and Calbuco 2015, Chile; Eyjafjallajökull 2010, Ice- processes and their local and regional effects (i.e. precursory land) clearly demonstrated that even small–moderate to sub- activity, tephra fallout, lahars, pyroclastic density currents, plinian eruptions, particularly if long-lasting, can paralyze lava flows) are also presented. The eruption had a severe entire sectors of societies with a significant economic im- impact on the ecosystem and on various economic sectors, pact. The increasing complexity of the impact of eruptions on including aviation, tourism, agriculture and fishing industry.
    [Show full text]
  • Freshwater Diatoms in the Sajama, Quelccaya, and Coropuna Glaciers of the South American Andes
    Diatom Research ISSN: 0269-249X (Print) 2159-8347 (Online) Journal homepage: http://www.tandfonline.com/loi/tdia20 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups To cite this article: D. Marie Weide , Sherilyn C. Fritz, Bruce E. Brinson, Lonnie G. Thompson & W. Edward Billups (2017): Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes, Diatom Research, DOI: 10.1080/0269249X.2017.1335240 To link to this article: http://dx.doi.org/10.1080/0269249X.2017.1335240 Published online: 17 Jul 2017. Submit your article to this journal Article views: 6 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdia20 Download by: [Lund University Libraries] Date: 19 July 2017, At: 08:18 Diatom Research,2017 https://doi.org/10.1080/0269249X.2017.1335240 Freshwater diatoms in the Sajama, Quelccaya, and Coropuna glaciers of the South American Andes 1 1 2 3 D. MARIE WEIDE ∗,SHERILYNC.FRITZ,BRUCEE.BRINSON, LONNIE G. THOMPSON & W. EDWARD BILLUPS2 1Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA 2Department of Chemistry, Rice University, Houston, TX, USA 3School of Earth Sciences and Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA Diatoms in ice cores have been used to infer regional and global climatic events. These archives offer high-resolution records of past climate events, often providing annual resolution of environmental variability during the Late Holocene.
    [Show full text]
  • Universita' Degli Studi Di Milano Bicocca
    Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger.
    [Show full text]
  • Cantidades De Votantes Por Grupos Etarios En Cada Sexo Por Comuna Y
    CANTIDADES DE VOTANTES POR GRUPOS ETARIOS Página 1 de 25 EN CADA SEXO POR COMUNA Y TOTALES DEL PAIS ELECCIONES MUNICIPALES 23 DE OCTUBRE DE 2016 Comuna Sexo [ 18 - 19 ][ 20 - 24 ][ 25 - 29 ][ 30 - 34 ][ 35 - 39 ][ 40 - 44 ][ 45 - 49 ][ 50 - 54 ][ 55 - 59 ][ 60 - 64 ][ 65 - 69 ][ 70 - 74 ][ 75 - 79 ] [ 80 + ] Total REGION DE TARAPACA ALTO HOSPICIO M 242 693 766 742 748 824 988 1.030 770 591 376 243 138 76 8.227 ALTO HOSPICIO V 181 435 549 462 494 544 648 769 636 512 379 181 87 58 5.935 Total ALTO HOSPICIO T 423 1.128 1.315 1.204 1.242 1.368 1.636 1.799 1.406 1.103 755 424 225 134 14.162 CAMIÑA M 34 86 88 63 77 89 96 87 76 63 55 24 33 19 890 CAMIÑA V 22 62 69 65 65 75 66 75 80 66 37 32 22 36 772 Total CAMIÑA T 56 148 157 128 142 164 162 162 156 129 92 56 55 55 1.662 COLCHANE M 54 149 156 128 153 106 88 72 41 47 38 31 16 19 1.098 COLCHANE V 49 120 128 132 130 108 86 60 45 48 50 33 32 21 1.042 Total COLCHANE T 103 269 284 260 283 214 174 132 86 95 88 64 48 40 2.140 HUARA M 26 84 103 116 112 129 128 142 117 108 78 46 33 47 1.269 HUARA V 20 82 77 102 111 93 110 108 127 99 86 63 35 50 1.163 Total HUARA T 46 166 180 218 223 222 238 250 244 207 164 109 68 97 2.432 IQUIQUE M 535 1.262 1.649 2.022 2.174 2.245 2.295 2.621 2.669 2.470 1.814 1.295 778 704 24.533 IQUIQUE V 418 1.000 1.378 1.826 1.939 2.226 2.116 2.307 2.501 2.411 1.742 1.215 655 548 22.282 Total IQUIQUE T 953 2.262 3.027 3.848 4.113 4.471 4.411 4.928 5.170 4.881 3.556 2.510 1.433 1.252 46.815 PICA M 32 113 144 140 121 149 169 145 160 134 136 81 77 68 1.669 PICA V 48 93 116 128 118 108
    [Show full text]
  • Field Excursion Report 2010
    Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010).
    [Show full text]
  • A Chronology of Middle Missouri Plains Village Sites
    Smithsonian Institution Scholarly Press smithsonian contributions to botany • n u m b e r 9 2 Smithsonian Institution Scholarly Press TaxonomicA Chronology Revision of of the MiddleChiliotrichum Missouri Group Plains Villagesensu stricto Sites (Compositae: Astereae) By Craig M. Johnson Joséwith Mauricio contributions Bonifacino by Stanley A. Ahler, Herbert Haas, and Georges Bonani SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions in History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines.
    [Show full text]
  • Dynamics of Large Pyroclastic Currents Inferred by the Internal Architecture of the Campanian Ignimbrite Claudio Scarpati*, Domenico Sparice & Annamaria Perrotta
    www.nature.com/scientificreports OPEN Dynamics of large pyroclastic currents inferred by the internal architecture of the Campanian Ignimbrite Claudio Scarpati*, Domenico Sparice & Annamaria Perrotta Large ignimbrites are the product of devastating explosive eruptions that have repeatedly impacted climate and life on global scale. The assemblage of vertical and lateral lithofacies variations within an ignimbrite sheet, its internal architecture, may help to determine how the parental pyroclastic current evolves in time and space. The 39 ka Campanian Ignimbrite eruption, vented from Campi Flegrei caldera, laid down a thick ignimbrite over an area of thousands of km2. A detailed reconstruction of the vertical and lateral variation of the seven lithofacies recognised in the ignimbrite medial sequence constrains the behaviour of this event. The pyroclastic current fowed over a wide area around Campi Flegrei without depositing (bypass zone), and inundated a huge area during most of the paroxysmal, waxing phase, emplacing a mainly incipiently- to strongly- welded ignimbrite. Following this waxing phase, the leading edge of the current retreated back towards the source as the current waned, impacting a progressively smaller area and leaving an unconsolidated ash and lapilli deposit, later lithifed. Our study illustrates how large pyroclastic currents can evolve in time and space and the importance of both internal (eruptive and transport mechanisms) and external (topography, surfcial water and rain) factors in governing their behaviour. Catastrophic pyroclastic currents impact huge regions and represent one of the most devastating natural phenomena1. Large pyroclastic currents emplace thick sequences of ash- and vesiculated juvenile-rich deposits (ignimbrite2,3). Large ignimbrites show changes in facies on a regional scale 4.
    [Show full text]
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Remobilization of Crustal Carbon May Dominate Volcanic Arc Emissions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ESC Publications - Cambridge Univesity Submitted Manuscript: Confidential Title: Remobilization of crustal carbon may dominate volcanic arc emissions Authors: Emily Mason1, Marie Edmonds1,*, Alexandra V Turchyn1 Affiliations: 1 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ *Correspondence to: [email protected]. Abstract: The flux of carbon into and out of Earth’s surface environment has implications for Earth’s climate and habitability. We compiled a global dataset for carbon and helium isotopes from volcanic arcs and demonstrated that the carbon isotope composition of mean global volcanic gas is considerably heavier, at -3.8 to -4.6 ‰, than the canonical Mid-Ocean-Ridge Basalt value of -6.0 ‰. The largest volcanic emitters outgas carbon with higher δ13C and are located in mature continental arcs that have accreted carbonate platforms, indicating that reworking of crustal limestone is an important source of volcanic carbon. The fractional burial of organic carbon is lower than traditionally determined from a global carbon isotope mass balance and may have varied over geological time, modulated by supercontinent formation and breakup. One Sentence Summary: Reworking of crustal carbon dominates volcanic arc outgassing, decreasing the estimate of fractional organic carbon burial. Main Text: The core, mantle and crust contain 90% of the carbon on Earth (1), with the remaining 10% partitioned between the ocean, atmosphere and biosphere. Due to the relatively short residence time of carbon in Earth’s surface reservoirs (~200,000 years), the ocean, atmosphere and biosphere may be considered a single carbon reservoir on million-year timescales.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Evaluación Del Riesgo Volcánico En El Sur Del Perú
    EVALUACIÓN DEL RIESGO VOLCÁNICO EN EL SUR DEL PERÚ, SITUACIÓN DE LA VIGILANCIA ACTUAL Y REQUERIMIENTOS DE MONITOREO EN EL FUTURO. Informe Técnico: Observatorio Vulcanológico del Sur (OVS)- INSTITUTO GEOFÍSICO DEL PERÚ Observatorio Vulcanológico del Ingemmet (OVI) – INGEMMET Observatorio Geofísico de la Univ. Nacional San Agustín (IG-UNSA) AUTORES: Orlando Macedo, Edu Taipe, José Del Carpio, Javier Ticona, Domingo Ramos, Nino Puma, Víctor Aguilar, Roger Machacca, José Torres, Kevin Cueva, John Cruz, Ivonne Lazarte, Riky Centeno, Rafael Miranda, Yovana Álvarez, Pablo Masias, Javier Vilca, Fredy Apaza, Rolando Chijcheapaza, Javier Calderón, Jesús Cáceres, Jesica Vela. Fecha : Mayo de 2016 Arequipa – Perú Contenido Introducción ...................................................................................................................................... 1 Objetivos ............................................................................................................................................ 3 CAPITULO I ........................................................................................................................................ 4 1. Volcanes Activos en el Sur del Perú ........................................................................................ 4 1.1 Volcán Sabancaya ............................................................................................................. 5 1.2 Misti ..................................................................................................................................
    [Show full text]