Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italic denote figures. Page numbers in bold denote tables. A-train satellite constellation 231, 260, 275 ARTS 116 A’a¯ lava 117 Asama Volcano, Japan 1, 67–82 AATSR 2004 eruption 70–73 ash detection 276, 301–303, 315 2008–2009 eruption 73–76 Eyjafjallajo¨kull 2010 eruption 312–313 Bouguer gravity anomaly 77 Puyehue-Cordo´n Caulle Volcano 305–307 dyke intrusion 72, 76, 77, 81 AeroPod 335, 336, 338 explosivity 67, 68 Aerosol Index 276 ground deformation 72, 75–76 aerosols hazard to Tokyo 67 remote-sensing 276 high-velocity zone 77, 78,79 sulphate 230, 263, 274 lava dome 71 UAV sampling 329–332 magma chamber 81–82 see also ash plumes magma migration 69–70, 72–73 aerostats 330, 335, 336, 343–344 magma pathway 76–77, 81–82 Afar Rift, Ethiopia P-wave velocity 77, 78 Dabbahu dyke intrusion 88 relocated hypocentres 71, 72, 73 remote sensing 2 resistivity 79 Aguilucho Cone, Chile, fumaroles 167, 169 S-wave velocity 80,81 AIRS 261 seismicity 67–70, 72, 73–74 Akita-Komaga-take Volcano, Japan, 1970 eruption, infrared active source tomography 76–79 survey 107 ambient noise tomography 78,79–82 Alaska Volcano Observatory 114, 115, 188 tectonic setting 68 algorithms tephra 71 band residual difference 231, 232 ascending/descending amplitude images 26 eruption forecasting, Bezymianny 193–200 ash clouds see volcanic ash; volcanic clouds fire-detection 116–117 ash plumes 293–316 linear fit 231–234 Asama Volcano 73, 74 nearest neighbour inversion 45 aviation hazard 263, 293–294, 321–323 OMSO2 231–234 mitigation 262–263 SAPHRA 303 Bezymianny Volcano 189 thermal anomaly detection 114–117 climate change 294 Kalman Filter 137 dispersal modelling 4–5 see also MODLEN; MODVOLC; Okmok; ORAC; height 294 temperature-emissivity separation human health 294 Alı´tar Volcano, Chile, hotspots 164, 170, 176 identification 297–299 ALOS 8, 16 Nabro Volcano 309–311 Arenal Volcano 32–34 Puyehue-Cordo´n Caulle Volcano 305–308 Central American Volcanic Arc 17, 18,27 interference with OMI 275–276 Ambrym Volcano, Vanuatu particle size and shape 294–295, 296 OMSO2 image 237, 270 refractive indices 295–297 SO2 emission 273 remote sensing 2, 7–8, 262–263, 300–304, 325, 327 Anatahan Volcano, Northern Mariana Islands AATSR, ash identification 301–303 OMSO2 image 237, 245 calibration and validation 327–328 satellite sensing 107 MIPAS 300–301 Andes, thermal hotspots 161–182, 163, 164, 165 ORAC algorithm 303–304 andesite SAPHRA 303 Asama Volcano 67, 71 SEVIRI 303 Bezymianny Volcano 187 see also volcanic ash Aoba Volcano, Vanuatu, OMSO2 image 237 ASTER 108, 121–129, 261 Arenal Volcano, Costa Rica 21 Andes hotspots 162, 164–166, 167–172 ascending/descending amplitude images 26 characteristics 109, 110, 111 coherence 27 fire-detection algorithms 116–117 OMSO2 monitoring 282, 283 GDEM 4, 24, 25 SAR wavelength comparison 32–34 Mount Erebus, Antarctica 112 Arequipa, Peru, 2001 earthquake 182 Mount Etna 2002 eruption 112 354 INDEX ASTER (Continued ) carbon dioxide, measurement from satellites 7 Surface Kinetic Temperature Product (AST08) 162 Central American Volcanic Arc (CAVA) SWIR observation 112, 116, 117, 121–122 ALOS data 17, 18,25 pixel integrated temperature 113–114 ascending/descending amplitude images 26 TIR observation 113, 121, 122 coherence 27–29 Turrialba Volcano 340–343 InSAR 16, 17–35 Atitla´n Volcano, Guatemala, distortion 25–26 OMSO2 282–284 atmosphere Cerro Azul Volcano, Chile 163, 164, 171, 176 effect on remote sensing 3 Cerro Blanco Volcano, Chile, deformation 181 phase artifacts 17–19, 20 Cerro Hudson Volcano, Chile mitigation potential 22–24 1991 eruption, SO2 detection 260 ATSR 111, 116 deformation 182 Augustine Volcano, Alaska 107, 113, 115 Cerro Overo Volcano, Chile, deformation 181 Aura satellite 230, 231, 260, 261 Chaite´n Volcano, Chile Autonomous Sciencecraft Experiment 116 hotspots 162, 163, 164, 167, 179–180, 181 Avachinsky Volcano, Kamchatka, OMSO2 280, 281 earthquakes 182 AVHRR OMSO2 observation 266, 267 Bezymianny Volcano 189–190, 192 Chikurachki Volcano, Kamchatka, ASTER data 122 characteristics 109, 110, 111 Chile MIR observation 113, 128 2000 earthquake 182 algorithms 114 Maule earthquake, 2010, 162 Okmok Algorithm 114 SO2 emissions 250–253 pixel resolution 113, 129, 138 Chiliques Volcano, Chile, hotspots 162, 163, 164, 170, thermal emissions and volcanic activity 111 177, 179 aviation hazard Chuquicamata smelter, Chile, SO2 252 ash plumes 293–294, 321–323 clouds jet stream 263, 267 meteorological 275 Bezymianny Volcano 187 volcanic see volcanic clouds Eyjafjallajo¨kull 2010 eruption 101–102, 187, 262, coherence 294, 322 Central American Volcanic Arc 27–29 mitigation, ash and SO2 detection 262–263 Arenal Volcano 32–34 unmanned aerial vehicles 323–325 and land use 29, 31–32 volcanic clouds 230, 262–263, 267 modelling 27–29, 30 AVOID 323 pixels 16, 30 Azufre Volcano see Falso Azufre Volcano Colima Volcano, Mexico (see also Volca´n de Colima) OMSO2 monitoring 277, 278, 284 Bagana Volcano, PNG water vapour signals 20 OMSO2 image 237, 270 Colombia, OMI survey 269, 270 SO2 emission 273 column averaging kernel 233–234 balloon sampling 330, 331, 335, 337, 343–344 Cook Inlet volcanoes, Alaska, SO2 emission 263 band residual difference algorithm 231, 232 Copahue Volcano, Chile/Argentina border, hotspots 162, 163, Bezymianny Volcano, Kamchatka 188 164, 167, 172, 176, 177, 181 AVHRR data 189–190, 192 copper smelting, Chile, SO2 emission 250–251, 252 dome growth and explosion 187–188, 189, 192, 194–195 Cordo´n Caulle Volcano see Puyehue-Cordo´n Caulle explosion forecasting 192–200 Volcano, Chile algorithm 193–194 COSPEC 229, 263, 271 KVERT validation 196, 198–199 cropland/vegetation, coherence 31–32 performance 194–196 OMSO2 monitoring 271, 280, 281 Dabbahu dyke intrusion, Ethiopia 88 precursory thermal activity 190–193, 194, 199 decorrelation, interferometric 16–17 TIR observation 113, 122 deflation 86 BIRD 140 deformation see ground deformation Mount Etna 2002 eruption 147–148, 149 degassing see gas emission; sulphur dioxide emission Bouguer gravity anomaly, Asama Volcano 77 Descabezado Grande Volcano, Chile 163, 164, 171 bromine monoxide, OMI data 7, 237 Digital Airborne Imaging Spectrometer 108 Bukavu 2008 earthquake 60, 61, 62 digital elevation models (DEMs) 4 limitations and mitigation 24–25 Calabozos Volcano, Chile, hotspot 163, 164, 171 distortion, InSAR 25–26 Calientes Volcano, Peru, fumaroles 167 DOAS 263 CALIOP, Eyjafjallajo¨kull 2010 eruption 314–316 comparison with OMI 271–272 Callaqui Volcano, Chile, hotspots 163, 164, 166 Dozier method see dual-band method INDEX 355 Dragon Eye UAV 324–325, 326, 331, 335, 336, 337–338, Falso Azufre Volcano, Argentina/Chile border, hotspot 163, 343, 344, 346 164, 171, 176 dual-band method 117–118, 119, 121, 139, 140 Finite Element Analysis 4 ASTER SWIR, Lascar Volcano 122–126 Fourier transform 154 dyke intrusion 5 Fourpeaked Volcano, Alaska, SO2 247, 248, 249, 267 Asama Volcano 72, 76, 77, 81 Fuego Volcano, Guatemala, OMSO2 282, 283 Dabbahu 88 fumaroles East Rift Zone (Napau), Kilauea Volcano 88–89 Andes hotspots 167, 169, 173–175, 176 Miyakejima dyke swarm 99 Nyamuragira 53 Nyamuragira 40, 47–50, 51, 53, 54, 55, 57–58, 59 temperature 112 seismicity and deformation 99–101 thermal analysis 3 dykes, modelling, three dimensional mixed boundary Volca´n de Colima 204, 205, 206, 212, 215 elements method 43–45 see also gas emission Earth Observation (EO) 8–9 Galeras Volcano, Colombia, 1993 casualties 327 earthquakes Garbuna Volcano, PNG, SO2 247, 248, 249, 267 Andes hotspots 182 gas emission Nyamuragira 46, 49, 50, 53, 55, 61, 62 hazards 230 volcano-tectonic 85 long-term monitoring 263–264, 269–272 Asama Volcano 68–70, 72, 73 OMI 229–254, 259–285 Miyakejima dyke swarm 99 comparison with ground-based surveys 271–272 seismicity and deformation joint analysis 99–101 remote sensing 2, 7–8 East African Rift 40 SO2 chemical processing 274 East Rift Zone (Napau), Kilauea Volcano, dyke intrusion UAV sampling 329–332 88–89 see also volcanic clouds Ecuador, OMI survey 269, 270 GEO-CAPE 253–254 comparison with DOAS 271 Global Hawk 323, 324, 344 edifice instability 5 GOES, spatial resolution 8, 110, 113, 129 El Chicho´n Volcano, Mexico, 1982 eruption GOES-R 129, 130 SO2 and ash separation 300 GOME 230, 260, 261 SO2 detection 3, 260 GOME-2 231, 261, 271 El Tatio Volcano, Chile 163, 164, 169, 175, 176 GOSAT 7 El Teniente smelter SO2 252 GPS (Global Positioning System) emissivity 108, 138 ground deformation 85 ENVISAT data, Nyamuragira 52, 53, 55, 57, 58, 59,60 Kilauea Volcano 88–89 ERS-1/2 data, Arenal volcano 32–34 Sierra Negra Volcano 87–88 eruption forecasting 4, 86, 94–99 gravitational loading 5 Bezymianny Volcano 192–200 greenhouse gas, satellite sensing 7 Hekla Volcano 2000 eruption 96, 97 see also sulphur dioxide inflation predictability 97–99 Grı´msvo¨tn Volcano, Iceland Mount Pinatubo 1991 eruption 94–95, 96 IASI ash observation 276 Mount St Helens 1980 eruption 94, 95,96 OMSO2 observation 266, 267 physics-based models 89–94, 101–103 ground deformation epistemic uncertainties 103 Asama Volcano 72, 75–76 Monte Carlo inversion 92–94, 102–103, 104 GPS 85 Soufrie`re Hills Volcano 1997 eruption 95–96 and magma chamber properties 86–87 eruption style, remotely sensed observation 111–112 measurement 85–86 EUFAR 329 Nyamuragira 42, 47, 48, 52,53 EVOSS project 9 mixed boundary element method 43–45 extrusion rate, Vulcanian eruption, radiance 187 remote sensing 2, 5–6, 9 Exupe´ry Volcano Fast Response System 137 InSAR 2–3, 4, 15–17 Eyjafjallajo¨kull 2010 eruption, Iceland and seismicity, joint analysis 99–101 ash dispersal
Recommended publications
  • And Gas-Based Geochemical Prospecting Of
    Water- and gas-based geochemical prospecting of geothermal reservoirs in the Tarapacà and Antofagasta regions of northern Chile Tassi, F.1, Aguilera, F.2, Vaselli, O.1,3, Medina, E.2, Tedesco, D.4,5, Delgado Huertas, A.6, Poreda, R.7 1) Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121, Florence, Italy 2) Departamento de Ciencias Geológicas, Universidad Católica del Norte, Av. Angamos 0610, 1280, Antofagasta, Chile 3) CNR-IGG Institute of Geosciences and Earth Resources, Via G. La Pira 4, 50121, Florence, Italy 4)Department of Environmental Sciences, 2nd University of Naples, Via Vivaldi 43, 81100 Caserta, Italy 5) CNR-IGAG National Research Council, Institute of Environmental Geology and Geo-Engineering, Pzz.e A. Moro, 00100 Roma, Italy. 6) CSIS Estacion Experimental de Zaidin, Prof. Albareda 1, 18008, Granada, Spain. 7) Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627, U.S.A.. Studied area The Andean Central Volcanic Zone, which runs parallel the Central Andean Cordillera crossing from North to This study is mainly focused on the geochemical characteristics of water and gas South the Tarapacà and Antofagasta regions of northern Chile, consists of several volcanoes that have shown phases of thermal fluids discharging in several geothermal areas of northern Chile historical and present activity (e.g. Tacora, Guallatiri, Isluga, Ollague, Putana, Lascar, Lastarria). Such an intense (Fig. 1); volcanism is produced by the subduction process thrusting the oceanic Nazca Plate beneath the South America Plate. The anomalous geothermal gradient related to the geodynamic assessment of this extended area gives El Tatio, Apacheta, Surire, Puchuldiza-Tuya also rise to intense geothermal activity not necessarily associated with the volcanic structures.
    [Show full text]
  • Universita' Degli Studi Di Milano Bicocca
    Dipartimento di Scienze Ambiente e Territorio e Scienze della Terra Università degli studi di Milano-Bicocca Dottorato di Ricerca in Scienze della Terra XXVI ciclo Earthquake-induced static stress change in promoting eruptions Tutore: Prof. Alessandro TIBALDI Co-tutore: Dott.ssa Claudia CORAZZATO Fabio Luca BONALI Matr. Nr. 040546 This work is dedicated to my uncle Eugenio Marcora who led my interest in Earth Sciences and Astronomy during my childhood Abstract The aim of this PhD work is to study how earthquakes could favour new eruptions, focusing the attention on earthquake-induced static effects in three different case sites. As a first case site, I studied how earthquake-induced crustal dilatation could trigger new eruptions at mud volcanoes in Azerbaijan. Particular attention was then devoted to contribute to the understanding of how earthquake-induced magma pathway unclamping could favour new volcanic activity along the Alaska-Aleutian and Chilean volcanic arcs, where 9 seismic events with Mw ≥ 8 occurred in the last century. Regarding mud volcanoes, I studied the effects of two earthquakes of Mw 6.18 and 6.08 occurred in the Caspian Sea on November 25, 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the five years following the earthquakes. Results show that crustal dilatation might have triggered only 7 eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Dynamic rather than static strain is thus likely to have been the dominating “promoting” factor because it affected all the studied unrested volcanoes and its magnitude was much larger.
    [Show full text]
  • Field Excursion Report 2010
    Presented at “Short Course on Geothermal Drilling, Resource Development and Power Plants”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, January 16-22, 2011. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V. GEOTHERMAL ACTIVITY AND DEVELOPMENT IN SOUTH AMERICA: SHORT OVERVIEW OF THE STATUS IN BOLIVIA, CHILE, ECUADOR AND PERU Ingimar G. Haraldsson United Nations University Geothermal Training Programme Orkustofnun, Grensasvegi 9, 108 Reykjavik ICELAND [email protected] ABSTRACT South America holds vast stores of geothermal energy that are largely unexploited. These resources are largely the product of the convergence of the South American tectonic plate and the Nazca plate that has given rise to the Andes mountain chain, with its countless volcanoes. High-temperature geothermal resources in Bolivia, Chile, Ecuador and Peru are mainly associated with the volcanically active regions, although low temperature resources are also found outside them. All of these countries have a history of geothermal exploration, which has been reinvigorated with recent changes in global energy prices and the increased emphasis on renewables to combat global warming. The paper gives an overview of their main regions of geothermal activity and the latest developments in the geothermal sector are reviewed. 1. INTRODUCTION South America has abundant geothermal energy resources. In 1999, the Geothermal Energy Association estimated the continent’s potential for electricity generation from geothermal resources to be in the range of 3,970-8,610 MW, based on available information and assuming the use of technology available at that time (Gawell et al., 1999). Subsequent studies have put the potential much higher, as a preliminary analysis of Chile alone assumes a generation potential of 16,000 MW for at least 50 years from geothermal fluids with temperatures exceeding 150°C, extracted from within a depth of 3,000 m (Lahsen et al., 2010).
    [Show full text]
  • Lpzsttz Et Al Final Ms.Pdf
    Lithium and Brine Geochemistry in the Salars of the Southern Puna, Andean Plateau of Argentina Romina Lucrecia Lopez Steinmetz, Stefano Salvi, Carisa Sarchi, Carla Santamans, Lorena Cecilia Lopez Steinmetz To cite this version: Romina Lucrecia Lopez Steinmetz, Stefano Salvi, Carisa Sarchi, Carla Santamans, Lorena Cecilia Lopez Steinmetz. Lithium and Brine Geochemistry in the Salars of the Southern Puna, Andean Plateau of Argentina. Economic Geology, Society of Economic Geologists, 2020, 115, pp.1079 - 1096. 10.5382/econgeo.4754. hal-02989895 HAL Id: hal-02989895 https://hal.archives-ouvertes.fr/hal-02989895 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Lithium and Brine Geochemistry in the Salars of the Southern Puna, 2 Andean Plateau of Argentina 3 4 Romina Lucrecia López Steinmetz 1 *, Stefano Salvi 2 , Carisa Sarchi 1 , Carla Santamans 1 , 5 Lorena Cecilia López Steinmetz 3 6 7 1 CONICET (INECOA), Instituto de Geología y Minería, Universidad Nacional de Jujuy, Av. 8 Bolivia 1661, S.S. de Jujuy 4600, Argentina 9 2 Université de Toulouse, CNRS, GET, IRD, OMP, 14 Av. Edouard Belin, Toulouse 31400, 10 France 11 3 Instituto de Investigaciones Psicológicas (IIPsi-UNC-CONICET), Universidad Nacional de 12 Córdoba, Boulevard de la Reforma y Enfermera Gordillo s/n., 2do piso, Córdoba 5000, 13 Argentina 14 * corresponding author: [email protected] 15 16 Abstract 17 The Andean plateau is a small region of South America extending between northwest 18 Argentina, southwest Bolivia and northern Chile.
    [Show full text]
  • Eruptive Activity of Planchón-Peteroa Volcano for Period 2010-2011, Southern Andean Volcanic Zone, Chile
    Andean Geology 43 (1): 20-46. January, 2016 Andean Geology doi: 10.5027/andgeoV43n1-a02 www.andeangeology.cl Eruptive activity of Planchón-Peteroa volcano for period 2010-2011, Southern Andean Volcanic Zone, Chile *Felipe Aguilera1, 2, Óscar Benavente3, Francisco Gutiérrez3, Jorge Romero4, Ornella Saltori5, Rodrigo González6, Mariano Agusto7, Alberto Caselli8, Marcela Pizarro5 1 Servicio Nacional de Geología y Minería, Avda. Santa María 0104, Santiago, Chile. 2 Present address: Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 3 Departamento de Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 4 Centro de Investigación y Difusión de Volcanes de Chile, Proyecto Archivo Nacional de Volcanes, Santiago, Chile. [email protected] 5 Programa de Doctorado en Ciencias mención Geología, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile. [email protected]; [email protected] 6 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile. [email protected] 7 Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 1428EHA, Buenos Aires, Argentina. [email protected] 8 Laboratorio de Estudio y Seguimiento de Volcanes Activos (LESVA), Universidad Nacional de Río Negro, Roca 1242, (8332) Roca, Argentina. [email protected] * Corresponding author: [email protected] ABSTRACT. Planchón-Peteroa volcano started a renewed eruptive period between January 2010 and July 2011. This eruptive period was characterized by the occurrence of 4 explosive eruptive phases, dominated by low-intensity phreatic activity, which produced almost permanent gas/steam columns (200-800 m height over the active crater).
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • El Volcán Chiliques Y El" Morar-En-El-Mundo" De Una
    Estudios Atacameños ISSN: 0716-0925 [email protected] Universidad Católica del Norte Chile Moyano, Ricardo; Uríbe, Carlos El volcán chiliques y el "morar-en-el-mundo" de una comunidad atacameña del norte de Chile Estudios Atacameños, núm. 43, 2012, pp. 187-208 Universidad Católica del Norte San Pedro de Atacama, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=31526842010 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto EL VOLCÁN CHILIQUES y EL "MORAR-EN-EL­ MUNDO" DE UNA COMUNIDAD ATACAMEÑA DEL NORTE DE CHILE Ricardo Moyana' y Carlos Uríbe' --+ INTRODUCCIÓN Resumen El volcán Chiliques corresponde a un estrato volcán de En estetrabajosemuestranlosresul tadospreliminares del 5778 rn.s.n.rn., ubicado en la Región de Antofagasta. reconocimiento arqueológico delvolcán Chílíques (2}034'5 /67°42'W /5778 m.s.nm.), desierto deAtacama, nortedeChile. El objetivo fue norte de Chile (23'34'5, 6i42'W) (Figura 1). Esta mon­ confirmar laexistencia desitiosarqueológicos enlazona, asícomo taña no habría registrado actividad volcánica durante los una posible líneaceque proyectadadesdeelcentroceremonial de últimos 10.000 años, sin embargo, en enero de 2002 Socaire. Los resul tadosconfirman laimportancia delvolcán Chiliques una imagen infrarroja obtenida por ASTER (Advanced como propiciadordefenómenos meteorológicos dentrodelsistema de Spaceborne Thermal Emission and Reflection Radio­ montañassagradas invocadas para laceremoníade limpia decanalesdel mesdeoctubreenSocaire. Chílíques habríaconstituidoun "axis mund¡' meter) de la NASA, reveló ciertos hotspots en una zona porlassiguientes razones: su forma cónica yvisibilidad permanente cercana al cráter y edificiovolcánico.' desdeotrosadoratorios prehíspánícos.
    [Show full text]
  • Percepciones Y Analogías De Dos Geografías Desencontradas
    Contretas Véliz, Claudio. Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío Vol. X, No. 10, enero-junio 2020 Sobre fogones y semáforos: Percepciones y analogías de dos geografías desencontradas. El caso del volcán Callaqui en la geografía ancestral pehuenche de Alto Biobío On stoves and traffic lights: Perceptions and analogies of two uneven geographies. The case of the Callaqui volcano in the Pehuenche ancestral geography of Alto Biobío Recibido el 08 de mayo de 2020, aceptado el 08 de junio de 2020 Claudio Contreras Véliz* Resumen En Alto Biobío, área cordillerana del centro sur de Chile, habita parte del pueblo originario Pehuenche, cuyas comunidades o lob mapu, se emplazan alrededor del volcán Callaqui (‘Callavquen’ en la lengua local, que significa ‘celoso de los hom- bres’). El volcán en el último tiempo ha sido monitoreado por la institucionalidad vulcano- lógica y de emergencias del país (SERNAGEOMIN, ONEMI y Universidades), que busca generar planes y acciones para gestionar la alarma de una posible erupción, y advertir a través de un semáforo y escalas de riesgos, la peligrosidad que representa para la población local. No obstante, los pehuenches, habitantes ancestrales del área de influencia del volcán, han convivido con él de una manera intrínseca por genera- ciones, y le han asociado gran parte de sus actividades económicas, sociales y cultu- rales, otorgándole un sentido protector desde sus propias percepciones respecto del macizo montañoso. * Magíster en Geografía con mención en intervención ambiental y territorial de la Universidad Acade- mia de Humanismo Cristiano (PIIT-UAHC), [email protected] 73 Vol.
    [Show full text]
  • University of Nevada, Reno a Study of Pleistocene Volcano Manantial
    University of Nevada, Reno A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Heather Winslow Dr. Philipp Ruprecht, Thesis Advisor May 2018 THE GRADUATE SCHOOL We recommend that the thesis prepared under our supervision by HEATHER WINSLOW Entitled A Study Of Pleistocene Volcano Manantial Pelado, Chile: Unique Access To A Long History Of Primitive Magmas In The Thickened Crust Of The Southern Andes be accepted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Philipp Ruprecht, Ph.D., Advisor Wenrong Cao, Ph.D., Committee Member Adam Csank, Ph.D., Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School May, 2018 i ABSTRACT Textural and geochemical analysis of lavas and tephra from a poorly studied, glacially dissected, mafic, stratocone, Manantial Pelado, in the Southern Andean Volcanic Zone was collected to characterize the volcano’s petrogenesis and assess its primitive nature. Manantial Pelado lies within the transitional segment of the Southern Volcanic Zone (35.5°S) amidst thickened crust (~55 km) while surrounded by extensive silicic volcanism such as the Descabezado Grande-Cerro Azul Volcanic Complex. How mafic magmas reached the surface through thickened continental crust is a larger question at hand, but prior to addressing broader processes at work, initial geochemical characterization is necessary. Understanding the full extent of its primitive nature is crucial for broader insight of proximal vent interactions and relationships as well as insight towards magma genesis.
    [Show full text]
  • Sitting on Top of the World
    Notes from Mineralogy lecture on the chemistry and structure of various minerals (pyroxenes and amphiboles) that could crystallize from slowly cooling ers of lava flows and ash flows basalt magma. The different that built up the mountain. minerals reflect the changing In the regions exposed by conditions (temperature and erosion of these half-million- composition) in a magma chamber deep in the earth's year-old volcanoes, Dr. Wulff is crust. able to sample the lavas that poured out of the vents and built up the volcano, flow upon flow. “Sampling each flow allows us to evaluate the separate cycles of eruptive activity. By looking at the mineral compositions and whole- rock chemistry of the ancient PHOTO BY RYAN FILLOON Andrew Wulff and several undergraduate students take a break from sampling lavas, we can tell something about lava flows to plan the next traverse, under the imposing edifice of Volcan Cerro how the volcano has behaved over Azul in the Chilean Andes. time. This means we can make more accurate predictions of what will happen in the future,” he said. Two of his WKU undergraduate students are working with Chilean lava samples to determine whether SITTING ON TOP the volcanic complex is currently in a period of rapid growth or slower growth. “By compiling all these eruptive events into a composite OF THE WORLD history, we can get a good idea of how this complex behaves, and we can model individual eruptive B Y T O M M Y N E W T O N episodes. That’s a different approach from what most others are doing.” SOMEHOW IT SEEMS FITTING THAT Dr.
    [Show full text]
  • A Structural and Geochronological Study of Tromen Volcano
    Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuqu`enprovince, Argentina) Olivier Galland, Erwan Hallot, Peter Cobbold, Gilles Ruffet, Jean De Bremond d'Ars To cite this version: Olivier Galland, Erwan Hallot, Peter Cobbold, Gilles Ruffet, Jean De Bremond d'Ars. Vol- canism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuqu`enprovince, Argentina). Tectonics, American Geophysical Union (AGU), 2007, 26 (4), pp.TC4010. <10.1029/2006TC002011>. <insu-00180007> HAL Id: insu-00180007 https://hal-insu.archives-ouvertes.fr/insu-00180007 Submitted on 29 Jun 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. TECTONICS, VOL. 26, TC4010, doi:10.1029/2006TC002011, 2007 Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuque´n province, Argentina) Olivier Galland,1,2 Erwan Hallot,1 Peter R. Cobbold,1 Gilles Ruffet,1 and Jean de Bremond d’Ars1 Received 28 June 2006; revised 6 February 2007; accepted 16 March 2007; published 2 August 2007. [1] We document evidence for growth of an active [3] In contrast, a context of crustal thickening, where the volcano in a compressional Andean setting.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]