Environmental Life Cycle Assessment of Commercial Space Transportation

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Life Cycle Assessment of Commercial Space Transportation ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF COMMERCIAL SPACE TRANSPORTATION ACTIVITIES IN THE UNITED STATES BY SHELIA SCOTT NEUMANN, P.E. Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2018 Supervising Committee: Supervising Professor, Melanie Sattler Mostafa Ghandehari Hyeok Choi Susan Ferreira Kamesh Subbarao Copyright © by Shelia S. Neumann 2018 All Rights Reserved i Acknowledgements I would like to express my sincere gratitude to my academic advisor and supervising professor, Dr. Melanie Sattler. She was one of the best professors I have had for graduate work who cares about the student and their learning. She was always available to address questions and provided excellent guidance and direction. I truly appreciate her time, expertise, and efforts to make this dissertation successful and worthwhile. Thank you! I would also like to express my appreciation to my committee members for their willingness to be part of this effort, Dr. Mostafa Ghandehari, Dr. Hyeok Choi, Dr. Susan Ferreira and Dr. Kamesh Subbarao. Their varying experience in both academics and industry contributed to the dissertation topic and its direction. They inspired me in their classes and in our conversations. For believing in my ability to pursue the Ph.D. with their endorsement and encouragement, I am grateful to Dr. Jill Jermano, Dr. Leigh Abts, and Dr. Michel Johnson. I would like to also thank everyone who I reached out to for knowledge, information, generosity, and support along the way: Michael Stock; Edgar Zapata; Andrew Wilson; Thibaut Maury; Jakob Huesing; Julian Austin; Colonels Kirk Phillips and Mark Smallwood; Stacey Zee; Shari Miller; Michael Blaylock; Ken Davidian; Lieutenant Colonels Francisco Catala and Steven Lange; John Cirucci; Andrew Rak; Dr. Shannon Lloyd; John Langett; Eduardo Manual Dias Lopes; Jordan Klovstad; Krista Rand; Kelly Busquets; Sam Higuchi; Jeff Haynes; Dr. Andrei Zagrai; Michael Bruckner and others who were willing to speak with me and share their time and information. Thank you all so very much! I am very grateful to my mother, Mignon, and my father, Shelby, for their love, prayers, and support in every aspect of life. They have always encouraged me to be who God wanted me to be. I would also like to thank my husband, Scott, for his love, faith and belief in me. He is my most trusted sounding board who offered valuable insights into the Commercial Space industry. I love you! Finally, my faith in Jesus Christ has given me the courage, discipline, and vision to pursue the dreams He put in my heart. I can do all things through Christ who strengthens me; Philippians 4:13. ii Abstract The Commercial Space Transportation (CST) activities in the United States are increasing and have increased over 50% in the last year. The launches in the United States for commercial purposes are expected to increase another 50% in the next 3-5 years. National Environmental Policy Act (NEPA) environmental assessments do provide the regulatory environmental analysis for launching space vehicles within the United States. However, the environmental impacts from these launches have not been fully characterized. One method to characterize environmental impacts from a system is through conducting a Life Cycle Assessment (LCA) based on an international standard, ISO14040. The results from this environmental LCA will augment the NEPA efforts for launch activities. The European Space Agency uses LCAs to evaluate their environmental impacts or burdens for specific launchers. Instead of evaluating a specific launcher, this study focused on the consumables used for the launch of one space vehicle. Therefore, this study had the overall goal to characterize those environmental burdens and impacts of one space vehicle launch in the United States with emphasis on the Use Phase. Specific objectives for this environmental life cycle assessment (ELCA) included: 1. To conduct a base-case life cycle environmental inventory and impact assessment of CST activities in the United States based on ISO 14040 and 14044 focused on: Use Phase (launch) with six consumables: reusable and expendable rocket boosters; liquid propellants (liquid oxygen/liquid hydrogen (LOx/LH2), liquid oxygen/liquefied natural gas (LOx/LNG), liquid oxygen/kerosene (LOX/RP-1)), water, electricity, and chemicals, Use Phase outputs of greenhouse gases, traditional air pollutants (criteria air pollutants), solid and hazardous wastes, water contamination, and noise. 2. To identify a range of impacts due to sensitivity in model inputs (sensitivity analysis). 3. To conduct additional LCAs incorporating “green technologies” to identify strategies for reducing environmental impacts. 4. To operationalize this ELCA and develop an operational tool, space transportation environmental profile for launch (STEP-L) Dashboard. iii The research contribution of this study advances knowledge and analytic application of the LCA to U.S. space launch operations. This study is the first ELCA to begin to characterize environmental domain from the launch of one space vehicle. Each of the objectives added new knowledge to identify and illustrate those environmental impacts from CST launch activities in the United States. From the sensitivity analysis, essential data and process information was identified so a U.S. space mission LCA can be more refined for future LCAs and to enhance options for reduced environmental impacts and better decision making in mission profiles and eco-design. Finally, the STEP-Ls generated a quick-look view for operators, environmental professionals, systems engineers, and other decision makers on each of the launch missions evaluated in this study. SimaPro Software version 8.3.2 and IMPACT2002+ was used to conduct the life cycle inventory and assessment. Data inputs were gathered from public accessible documents, industry websites, technical journals, and textbooks. Each consumable was assessed one-at-a-time (OAT) to determine its environmental impacts per Launch and then all the consumables were analyzed as a whole system per Launch. The reusable rocket booster impacted the Human health and Resources the most, whereas, the expendable rocket impacted Human health and Climate change damage areas the most. Since the 1st Stage in the reusable rocket was the only element of the rocket that was reused, the mineral extraction was 89% less than the expendable rocket booster. The propellants, in particular the LOx, and the engine components and their material makeup generate or influence the greatest environmental burden per Launch for a space vehicle launch into orbit. All three propellants impacted Human health and Resources damage areas the most. Comparatively, LH2 influenced the characterization categories and damage areas the least of the three propellants. This result is primarily due the lower quantity of LH2 modeled in this study. The various chemicals used and stored at the launch facility can make a difference as to the environmental burden. Hydrazine, diesel and liquid nitrogen had the highest impact for the chemicals considered. The Chemicals consumable impacted Human health and Resources damage areas the most. iv Finally, electricity and water are minimal contributors to the environmental burden. However, the diesel-generator was the largest contributor of impact within the electricity consumable. Finding another source of electricity for back-up power and other support equipment rather than using the diesel would decrease the environmental impacts significantly. Transportation was evaluated for consumables traveling to the launch facility from the manufacturing. The west and southeast data for both diesel and gasoline trucks were used in this study. The diesel truck on the west showed higher contributions in both the characterization and the damage areas than the diesel truck in the southeast. This higher contribution might be due to the additives and refining processes used to produce the diesel in the west. A qualitative input using the Delphi Method was applied to compare the base-case results with the results of a panel of selected experts. An online tool, QUALTRICs© was used to administer the Delphi method surveys. The comparison showed the top two damage areas for Delphi Method and SimaPro results agreement were in: the reusable rocket booster impacted Human health, expendable rocket impacted Climate change, LOx/LH2 impacted Human Health and Resources, and the other propellants impacted Resources. Five sensitivity parameters were evaluated: reusable rocket life uses, electricity substitute for diesel, material composition change for engine, test firings propellant quantity, and chemical quantity changes. The highest influencer was the propellant amount used in a test firing as part of the launch campaign. Scenario analysis was performed on the frequency of launches and number of engines. The results of an expendable rocket with three engines would have more impacts than the reusable rocket booster with 27 engines. Reusability is validated as a key way to minimize environmental burdens. Green technology recommendations included replace diesel with solar for the electricity, replacing titanium process (Kroll) with the Armstrong® process, replacing conventional manufacturing for parts with 3-D additive manufacturing, and replacing kerosene (RP-1) with methane as a fuel. A notional green technology STEP-L was generated
Recommended publications
  • Cape Canaveral Air Force Station Support to Commercial Space Launch
    The Space Congress® Proceedings 2019 (46th) Light the Fire Jun 4th, 3:30 PM Cape Canaveral Air Force Station Support to Commercial Space Launch Thomas Ste. Marie Vice Commander, 45th Space Wing Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ste. Marie, Thomas, "Cape Canaveral Air Force Station Support to Commercial Space Launch" (2019). The Space Congress® Proceedings. 31. https://commons.erau.edu/space-congress-proceedings/proceedings-2019-46th/presentations/31 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Cape Canaveral Air Force Station Support to Commercial Space Launch Colonel Thomas Ste. Marie Vice Commander, 45th Space Wing CCAFS Launch Customers: 2013 Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs; Blue text – in work; * – sub-orbital CCAFS Launch Customers: 2013 Complex 39B: NASA SLS Complex 41: ULA Atlas V (CST-100) Complex 40: SpaceX Falcon 9 Complex 37: ULA Delta IV; Delta IV Heavy NASA Space Launch System Launch Complex 39B February 4, 2013 Complex 46: Space Florida, Navy* Skid Strip: NGIS Pegasus Atlantic Ocean: Navy Trident II* Black text – current programs;
    [Show full text]
  • Small Satellite Launchers
    SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT
    [Show full text]
  • Space Coast Is Getting Busy: 6 New Rockets Coming to Cape Canaveral, KSC
    4/16/2019 Space Coast is getting busy: 6 new rockets coming to Cape Canaveral, KSC Space Coast is getting busy: 6 new rockets coming to Cape Canaveral, Kennedy Space Center Emre Kelly, Florida Today Published 4:04 p.m. ET April 11, 2019 | Updated 7:53 a.m. ET April 12, 2019 COLORADO SPRINGS, Colo. – If schedules hold, the Space Coast will live up to its name over the next two years as a half-dozen new rockets target launches from sites peppered across the Eastern Range. Company, government and military officials here at the 35th Space Symposium, an annual space conference, have reaffirmed their plans to launch rockets ranging from more traditional heavy-lift behemoths to smaller vehicles that take advantage of new manufacturing technologies. Even if some of these schedules slip, at least one thing is apparent to several spaceflight experts here: The Eastern Range is seeing an unprecedented growth in commercial space companies and efforts. Space Launch System: 2020 NASA's Space Launch System rocket launches from Kennedy Space Center's pad 39B in this rendering by the agency. (Photo: NASA) NASA's long-awaited SLS, a multibillion-dollar rocket announced in 2011, is slated to become the most powerful launch vehicle in history if it can meet a stringent late 2020 deadline. The 322-foot-tall rocket is expected to launch on its first flight – Exploration Mission 1 – from Kennedy Space Center with an uncrewed Orion capsule for a mission around the moon, which fits in with the agency's wider goal of putting humans on the surface by 2024.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 6 April-June 2020 CONTENTS FOCUS ..................................................................................................................... 6 The Crew Dragon mission to the ISS and the Commercial Crew Program ..................................... 6 SPACE POLICY AND PROGRAMMES .................................................................................... 7 EUROPE ................................................................................................................. 7 COVID-19 and the European space sector ....................................................................... 7 Space technologies for European defence ...................................................................... 7 ESA Earth Observation Missions ................................................................................... 8 Thales Alenia Space among HLS competitors ................................................................... 8 Advancements for the European Service Module ............................................................... 9 Airbus for the Martian Sample Fetch Rover ..................................................................... 9 New appointments in ESA, GSA and Eurospace ................................................................ 10 Italy introduces Platino, regions launch Mirror Copernicus .................................................. 10 DLR new research observatory ..................................................................................
    [Show full text]
  • RS-25 for NASA's Space Launch System
    AEROJET ROCKETDYNE PROPRIETARY 0 THIS DOCUMENT CONTAINS NO EXPORT CONTROLLED – ITAR/USML CATEGORY IV September 2016 Aerojet Rocketdyne Footprint International Offices: Redmond, WA Moscow Tokyo London Belfast UAE Picatinny Arsenal, NJ Sacramento, CA Clearfield, UT ARDÉ, NJ Headquarters Washington, D.C. Denver, CO Gainesville, VA Orange, VA Los Angeles, CA Jonesboro, TN Vernon, CA Camden, AR Socorro, NM Tucson, AZ Huntsville, AL Headquarters Dallas, TX Orlando, FL Operating Locations Stennis, MS Eglin AFB, FL Field Offices West Palm Beach, FL Nearly 5,000 Employees Across 14 States 140 and Growing at NASA Stennis Space Center Aerojet Rocketdyne Proprietary 1 Aerojet Rocketdyne & NASA Stennis Space Center (SSC): A Fifty Year Partnership • NASA-SSC is the nation’s Center of Excellence for large space transportation propulsion systems testing • Tested each of the F-1 rocket engines that powered the first stage of the Saturn V launch vehicle for the Apollo missions • Early 1970s, SSC’s facilities were modified to test the space shuttle's main engines (SSMEs) • All the 405 flown engines supporting 135 shuttle flights tested and proven flight-worthy at SSC • SSC’s state-of-the-art facilities continues to assemble and test components and engines for future Space Launch System (SLS) missions (RS-25 and J-2X) • RS-68/A engines supporting the Delta IV program launching national security satellites and recently the Orion Capsule for NASA’s Exploration Flight Test-1 Aerojet Rocketdyne Proprietary 2 SSC Facilities Occupied by Aerojet Rocketdyne • A1 Test Stand– RS-25 (1st Stage booster for SLS) • Primary Customer – NASA • Aerojet Rocketdyne Test Article Contractor • B Test Stand • B1 - RS-68 (1st Stage booster for Delta-IV) • Primary Customer – Air Force (ULA) • Test Stand is operated under a Space Act Agreement • B2 (RS-25 Space Launch System Stage Testing) • B Complex Test Control Center (BTCC) • Engine Assembly Facility (EAF – Bldg.
    [Show full text]
  • The Right Rocket for the Job: Small Launch Providers Target Small Satellites
    The Right Rocket for the Job: Small Launch Providers Target Small Satellites An STS Research Paper presented to the faculty of the School of Engineering and Applied Science University of Virginia by Gabriel Norris May 11, 2020 On my honor as a University student, I have neither given nor received unauthorized aid on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments. Signed: _________________________________________________ Approved: _______________________________________ Date ________________________ Peter Norton, Department of Engineering and Society 2 The University of Virginia Department of Mechanical and Aerospace Engineering has its first satellite, Libertas, now in orbit and plans to launch two more within the next three years. This sudden activity is representative of the vastly increased smallsat1 launch cadence by a variety of groups around the world. The trend is facilitated by the reduced cost and relative ease of assembly conferred by CubeSats, which collectively make up 70 percent of satellites launched today (Halt & Wieger, 2019). Startups, underdeveloped countries, and universities that, just ten years ago, would have been incapable of any kind of space mission are now launching several. From 2012 to 2019, 663 CubeSats were manufactured by private companies, nearly 300 by governments or militaries, and 371 by academic institutions. Yearly satellite launches have increased six-fold in this time (Halt & Wieger, 2019; fig. 1). This marked increase in customers underscores a sociotechnical problem in the rocketry industry: most rockets are fairly large and cater primarily to large satellites, leaving behind a large number of customers in the smallsat domain. Satellites broadly fall within four categories of use: remote sensing, communication, technology demonstration, and scientific investigation.
    [Show full text]
  • Undergraduate Thesis Prospectus Design And
    Undergraduate Thesis Prospectus Design and Construction of an Amateur Radio CubeSat (technical research project in Aerospace Engineering) The Right Rocket for the Job: Small Launch Providers Target Small Satellites (STS research project) by Gabriel Norris October 31, 2019 technical project collaborators: MAE 4690/4700 Spacecraft Design Team On my honor as a University student, I have neither given nor received unauthorized aid on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments. signed: __________________________________________ date: ________________ approved: ________________________________________ date: ________________ Peter Norton, Department of Engineering and Society approved: ________________________________________ date: ________________ Christopher Goyne, Department of Aerospace Engineering 2 General Research Problem: Small Satellites in Low Earth Orbit How can we efficiently and reliably put scientific and communications equipment into orbit? The development of radio telecommunications transformed human communication. The line-of-sight propagation of most radio signals, however, kept the technology from enabling truly global communication for some time. By 1927, it was possible to bounce high-energy radio waves off the ionosphere, which enabled transcontinental radiotelephony, but at a very high cost and with poor signal quality. In October 1945, Arthur C. Clarke published an article proposing the concept of a satellite constellation for the purpose of relaying signals around the world, a full twelve years before the launch of Sputnik 1 (Clarke, 1945). In 1958, Clarke’s vision came to pass with the launch of the first communications satellite SCORE, which broadcast a Christmas greeting from President Eisenhower to the entire world (Martin, 2007). Now over 2,000 satellites orbit the Earth and the world is more interconnected than ever.
    [Show full text]
  • Aerojet Rocketdyne, ULA Announce Public-Private Partnership with USAF to Develop RD-180 Replacement Engine
    February 29, 2016 Aerojet Rocketdyne, ULA Announce Public-Private Partnership With USAF to Develop RD-180 Replacement Engine SACRAMENTO, Calif., Feb. 29, 2016 (GLOBE NEWSWIRE) -- The U.S. Air Force selected Aerojet Rocketdyne, a subsidiary of Aerojet Rocketdyne Holdings, Inc. (NYSE:AJRD), and United Launch Alliance (ULA) to share in a public-private partnership to develop jointly the AR1 engine - an American-made rocket propulsion system. A photo accompanying this release is available at http://www.globenewswire.com/NewsRoom/AttachmentNg/3625c94e- cad1-4880-9a09-46c63666412e AR1 image for AR-ULA-USAF Partnership news rls APPROVED (1).jpg The Air Force decision—coupled with a large internal investment in the AR1 engine—is a major step forward in ensuring that the U.S. has a domestically-built rocket engine to replace the Russian-built RD-180 engines currently used to launch many Pentagon payloads into orbit. The total agreement is valued at $804 million with the U.S. Air Force investing two-thirds of the funding required to complete development of the AR1 engine by 2019. "This award from the U.S. government demonstrates its support of AR1 and recognizes the priority of assured access to space for our critical national security assets," said Eileen Drake, CEO and President of Aerojet Rocketdyne. "The AR1 engine is the option with the least technical risk that allows the United States to quickly and efficiently transition off its use of Russian-supplied engines currently used on the Atlas V launch vehicle." The work is expected to be completed no later than Dec. 31, 2019.
    [Show full text]
  • Assessing the Impact of US Air Force National Security Space Launch Acquisition Decisions
    C O R P O R A T I O N BONNIE L. TRIEZENBERG, COLBY PEYTON STEINER, GRANT JOHNSON, JONATHAN CHAM, EDER SOUSA, MOON KIM, MARY KATE ADGIE Assessing the Impact of U.S. Air Force National Security Space Launch Acquisition Decisions An Independent Analysis of the Global Heavy Lift Launch Market For more information on this publication, visit www.rand.org/t/RR4251 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0399-5 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2020 RAND Corporation R® is a registered trademark. Cover: Courtesy photo by United Launch Alliance. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface The U.S.
    [Show full text]
  • Systems-Theoretic Process Analysis of Space Launch Vehicles ⁎ John M
    The Journal of Space Safety Engineering xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect The Journal of Space Safety Engineering journal homepage: www.elsevier.com/locate/jsse Systems-Theoretic Process Analysis of space launch vehicles ⁎ John M. Risinga, , Nancy G. Levesonb a Massachusetts Institute of Technology, USA b Aeronautics and Astronautics, Massachusetts Institute of Technology, USA ABSTRACT This article demonstrates how Systems-Theoretic Process Analysis (STPA) can be used as a powerful tool to identify, mitigate, and eliminate hazards throughout the space launch system lifecycle. Hazard analysis tech- niques commonly used to evaluate launch vehicle safety use reliability theory as their foundation, but most modern space launch vehicle accidents have resulted from design errors or other factors independent of com- ponent reliability. This article reviews safety analysis methods as they are applied to space launch vehicles, and demonstrates that they are unable to treat many of the causal factors associated with modern launch accidents. Next, it describes how STPA can be applied to the design of space launch vehicles to treat these casual factors. Safety-guided design with STPA is then demonstrated with a hypothetical small-lift launch vehicle, launch safety system, and upper stage propulsion system. 1. Introduction reliability-based tools often used to evaluate safety are unable to predict or analyze software and component interactions. Furthermore, the 1.1. Motivation growing popularity of autonomous flight termination systems (AFTS) reinforces the need for software safety analysis tools. Designers of The causal factors of launch vehicle accidents are changing. Early launch systems need hazard analysis tools that are better equipped to accidents were often caused by electromechanical component failures, handle these new causes of launch vehicle accidents.
    [Show full text]
  • Start-Up Space Report 2020
    Start-Up Space Update on Investment in Commercial Space Ventures 2020 i Bryce Space and Technology brycetech.com CONTENTS EXECUTIVE SUMMARY ........................................... III INTRODUCTION. 1 Purpose and Background . 1 Methodology ...................................................1 OVERVIEW OF START-UP SPACE VENTURES. 3 TYPES OF SPACE INVESTOR ......................................4 SPACE INVESTMENT BY THE NUMBERS ...........................11 Seed Funding . 15 Venture Capital . 16 Private Equity . 17 Acquisition ...................................................18 Public Offering ................................................19 Debt Financing . 19 Investment Across All Types .....................................19 Valuation ....................................................21 Casualties ...................................................22 SPACE INVESTORS BY THE NUMBERS ............................23 Overall ......................................................23 Angels ......................................................27 Venture Capital Firms . 28 Private Equity Groups ..........................................31 Corporations . 32 Banks and Other Financial Institutions .............................33 SPECIAL TOPIC: CHINESE ACTIVITY IN START-UP SPACE VENTURES. 35 START-UP SPACE: WHAT’S NEXT?. 38 ACKNOWLEDGEMENTS. 41 ii brycetech.com Bryce Space and Technology EXECUTIVE SUMMARY Three significant trends are shaping the start-up space environment as we enter the 2020s. First, investors continue to pour large amounts
    [Show full text]