Aerojet Rocketdyne, ULA Announce Public-Private Partnership with USAF to Develop RD-180 Replacement Engine

Total Page:16

File Type:pdf, Size:1020Kb

Aerojet Rocketdyne, ULA Announce Public-Private Partnership with USAF to Develop RD-180 Replacement Engine February 29, 2016 Aerojet Rocketdyne, ULA Announce Public-Private Partnership With USAF to Develop RD-180 Replacement Engine SACRAMENTO, Calif., Feb. 29, 2016 (GLOBE NEWSWIRE) -- The U.S. Air Force selected Aerojet Rocketdyne, a subsidiary of Aerojet Rocketdyne Holdings, Inc. (NYSE:AJRD), and United Launch Alliance (ULA) to share in a public-private partnership to develop jointly the AR1 engine - an American-made rocket propulsion system. A photo accompanying this release is available at http://www.globenewswire.com/NewsRoom/AttachmentNg/3625c94e- cad1-4880-9a09-46c63666412e AR1 image for AR-ULA-USAF Partnership news rls APPROVED (1).jpg The Air Force decision—coupled with a large internal investment in the AR1 engine—is a major step forward in ensuring that the U.S. has a domestically-built rocket engine to replace the Russian-built RD-180 engines currently used to launch many Pentagon payloads into orbit. The total agreement is valued at $804 million with the U.S. Air Force investing two-thirds of the funding required to complete development of the AR1 engine by 2019. "This award from the U.S. government demonstrates its support of AR1 and recognizes the priority of assured access to space for our critical national security assets," said Eileen Drake, CEO and President of Aerojet Rocketdyne. "The AR1 engine is the option with the least technical risk that allows the United States to quickly and efficiently transition off its use of Russian-supplied engines currently used on the Atlas V launch vehicle." The work is expected to be completed no later than Dec. 31, 2019. The Air Force intends to initially obligate $115.3 million with Aerojet Rocketdyne and ULA contributing $57.7 million. The total potential government investment, including all options, is $536 million. The total The U.S. Air Force selected Aerojet Rocketdyne and potential investment by Aerojet Rocketdyne and its partners, including United Launch Alliance to share in a public-private all options, is $268 million. partnership to jointly develop the AR1 engine, shown above in an artist rendition. "AR1 will return the United States to the forefront of kerosene rocket propulsion technology," added Drake. "We are incorporating the latest advances in modern manufacturing, while capitalizing on our rich knowledge of rocket engines to produce a new, state-of-the-art engine that will end our reliance on a foreign supplier to launch our nation's national security assets." The liquid oxygen/kerosene-fueled AR1 booster engine uses an advanced oxidizer-rich staged combustion engine cycle and will be available for commercial sale to any U.S. launch provider. AR1 will be the nation's first domestically produced oxidizer-rich staged combustion kerosene engine. According to Drake, "This engine will be available for use on the Atlas V, Vulcan and other launch vehicles currently in development." "ULA is fully committed to transitioning as quickly and affordably as possible to a domestic engine," said ULA President and CEO Tory Bruno. "Our supplier, Aerojet Rocketdyne, is moving us toward one of two viable options with the excellent progress on the AR1 engine development." Because of each company's strong commitment to ending reliance of the Russian RD-180 engine on the Atlas V, Aerojet Rocketdyne and ULA have been investing in AR1 ahead of a public-private partnership agreement. The U.S. Air Force, The Aerospace Corporation, NASA and other government and industry experts have been kept apprised of progress on the AR1 since its inception. Most recently, Aerojet Rocketdyne held a major design review for the AR1 program with all stakeholders. The AR1 passed with flying colors, allowing the team to proceed with design implementation. Drake confirms, "AR1 remains on track for a flight-qualified engine delivery in 2019, which will fly in 2020." Aerojet Rocketdyne is an innovative company delivering solutions that create value for its customers in the aerospace and defense markets. The company is a world-recognized aerospace and defense leader that provides propulsion and energetics to the space, missile defense and strategic systems, tactical systems and armaments areas, in support of domestic and international markets. Additional information about Aerojet Rocketdyne can be obtained by visiting our websites at www.Rocket.com and www.AerojetRocketdyne.com. Glenn Mahone, Aerojet Rocketdyne, 202-302-9941 [email protected] Mary Engola, Aerojet Rocketdyne, 571-289-1371 [email protected] Primary Logo Source: Aerojet Rocketdyne, Inc. News Provided by Acquire Media .
Recommended publications
  • RD-180—Or Bust?
    RD-180—or By Autumn A. Arnett, Associate Editor As it stands, the US could sustain its Bust? manifest for two years with the current supply of RD-180 engines. But a new he United States’ sustained access he doesn’t really know what that R&D engine could take seven or more years to space is in question. Heavily amounts to, but said he is hopeful the to be operational, making LaPlante’s Treliant on the Russian-made En- partnership will mean a new engine on “$64 million question” a “hydra-headed ergomash RD-180 engine to power its the market soon. monster,” in the words of former AFSPC launches, US military space personnel “Three years of development is better Commander Gen. William L. Shelton. are looking for a replacement because than starting at ground zero,” Hyten said. “I don’t think we build the world’s best of the tense and uncertain status of “If we start at ground zero to build a rocket engine,” Shelton said last July. “I American and Russian relations. new engine in the hydrocarbon technology would love for us as a nation to regain the Funds are already being appropriated area we’re fi ve years away from produc- lead in liquid rocket propulsion.” for research and development of a new tion, roughly, maybe four, maybe six. Both LaPlante and Hyten are propo- engine, but Gen. John E. Hyten, com- The one thing you would have to do is nents of the United States continuing to mander of Air Force Space Command, spend the next year or two driving down fund research and development of a new considers the issue to be urgent.
    [Show full text]
  • ULA Atlas V Launch to Feature Full Complement of Aerojet Rocketdyne Solid Rocket Boosters
    April 13, 2018 ULA Atlas V Launch to Feature Full Complement of Aerojet Rocketdyne Solid Rocket Boosters SACRAMENTO, Calif., April 13, 2018 (GLOBE NEWSWIRE) -- The upcoming launch of the U.S. Air Force Space Command (AFSPC)-11 satellite aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station, Florida, will benefit from just over 1.74 million pounds of added thrust from five AJ-60A solid rocket boosters supplied by Aerojet Rocketdyne. The mission marks the eighth flight of the Atlas V 551 configuration, the most powerful Atlas V variant that has flown to date. The Atlas V 551 configuration features a 5-meter payload fairing, five AJ-60As and a Centaur upper stage powered by a single Aerojet Rocket RL10C-1 engine. This configuration of the U.S. government workhorse launch vehicle is capable of delivering 8,900 kilograms of payload to geostationary transfer orbit (GTO), and also has been used to send scientific probes to explore Jupiter and Pluto. The Centaur upper stage also uses smaller Aerojet Rocketdyne thrusters for pitch, yaw and roll control, while both stages of the Atlas V employ pressurization vessels built by Aerojet Rocketdyne's ARDÉ subsidiary. "The Atlas V is able to perform a wide variety of missions for both government and commercial customers, and the AJ-60A is a major factor in that versatility," said Aerojet Rocketdyne CEO and President Eileen Drake. "Aerojet Rocketdyne developed the AJ-60A specifically for the Atlas V, delivering the first booster just 42 months after the contract award, which underscores our team's ability to design and deliver large solid rocket motors in support of our nation's strategic goals and efforts to explore our solar system." The flight of the 100th AJ-60A, the largest monolithically wound solid rocket booster ever flown, took place recently as part of a complement of four that helped an Atlas V 541 place the nation's newest weather satellite into GTO.
    [Show full text]
  • 6. Chemical-Nuclear Propulsion MAE 342 2016
    2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20
    [Show full text]
  • Jpc-Final-Program.Pdf
    49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (JPC) Advancing Propulsion Capabilities in a New Fiscal Reality 14–17 July 2013 San Jose Convention Center 11th International Energy Conversion San Jose, California Engineering Conference (IECEC) FINAL PROGRAM www.aiaa.org/jpc2013 www.iecec.org #aiaaPropEnergy www.aiaa.org/jpc2013 • www.iecec.org 1 #aiaaPropEnergy GET YOUR CONFERENCE INFO ON THE GO! Download the FREE Conference Mobile App FEATURES • Browse Program – View the program at your fingertips • My Itinerary – Create your own conference schedule • Conference Info – Including special events • Take Notes – Take notes during sessions • Venue Map – San Jose Convention Center • City Map – See the surrounding area • Connect to Twitter – Tweet about what you’re doing and who you’re meeting with #aiaaPropEnergy HOW TO DOWNLOAD Any version can be run without an active Internet connection! You can also sync an Compatible with itinerary you created online with the app by entering your unique itinerary name. iPhone/iPad, MyItinerary Mobile App MyItinerary Web App Android, and • For optimal use, we recommend • For optimal use, we recommend: rd BlackBerry! iPhone 3GS, iPod Touch (3 s iPhone 3GS, iPod Touch (3rd generation), iPad iOS 4.0, or later generation), iPad iOS 4.0, • Download the MyItinerary app by or later searching for “ScholarOne” in the s Most mobile devices using Android App Store directly from your mobile 2.2 or later with the default browser device. Or, access the link below or scan the QR code to access the iTunes s BlackBerry Torch or later device Sponsored by: page for the app.
    [Show full text]
  • Los Motores Aeroespaciales, A-Z
    Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales.
    [Show full text]
  • Aerojet Marks 70 Years Serving the Warfighter and Powering Exploration
    March 19, 2012 Aerojet Marks 70 Years Serving the Warfighter and Powering Exploration SACRAMENTO, Calif., March 19, 2012 (GLOBE NEWSWIRE) -- Aerojet, a GenCorp (NYSE:GY) company, announced its 70th anniversary today, marking the March 19, 1942 founding of Aerojet Engineering Corporation by world-renowned aerodynamicist Dr. Theodore von Kármán and five California Institute of Technology colleagues. These rocket pioneers leveraged their ingenuity and shared passion for rocketry to create a company that today has powered some of the nation's most critical defense and exploration missions. Launching as a single-product company, Aerojet manufactured critical Jet Assisted Take Off (JATO) propulsion, which led to increased allied pilot safety by enabling heavily laden aircraft to take off from short runways and carrier decks. Following the allied forces' victory in WWII, Aerojet's production efforts turned to the development of solid rocket propellant motors for the Intercontinental Ballistic Missile (ICBM) Minuteman, as well as solid rocket motors for the two-stage submarine- launched ballistic missile, Polaris. Aerojet also began work on the Titan program. The company ultimately spent the next 50 years producing liquid rocket engines for the entire Titan launcher family: Titan I, Titan II, Titan III and Titan IV. Space Exploration and Defending Freedom With the launch of the space race in the 1960s, Aerojet's propulsion expertise powered the nation's early exploration accomplishments. In 1966, three of every four rockets launched from Cape Canaveral, Fla. were powered by Aerojet propulsion systems. Following the two-man missions of Gemini, Aerojet's Service Propulsion System placed Apollo astronauts in orbit around the moon and brought them home again.
    [Show full text]
  • Nspc UAG NOTES FOURTH PUBLIC MEETING AGENDA October 21, 2019
    NSpC UAG NOTES FOURTH PUBLIC MEETING AGENDA October 21, 2019 Courtyard by Marriott, Washington Downtown / Convention Center Shaw Ballroom 901 L Street NW Washington, DC 20001 1:00-1:15 CALL TO ORDER, OPENING REMARKS, & MEETING GOALS James Joseph “JJ” Miller – UAG Executive Secretary Admiral James Ellis, Jr., USN, Retired – UAG Chair 1:15-2:15 EXPERIENCES AND ISSUES OF THE NATIONAL POSITIONING, NAVIGATION, AND TIMING ADVISORY BOARD Dr. Bradford Parkinson – 1st Vice Chair, PNT Advisory Board 2:15-2:45 EXPLORATION & DISCOVERY SUBCOMMITTEE REPORT General Lester Lyles, USAF, Retired – Subcommittee Chair 2:45-3:30 OUTREACH & EDUCATION SUBCOMMITTEE REPORT Colonel Eileen Collins, USAF, Retired – Subcommittee Chair 3:30-3:45 BREAK 3:45-4:15 SPACE POLICY & INTERNATIONAL ENGAGEMENT SUBCOMMITTEE REPORT Dr. David Wolf – Subcommittee Chair 4:15-4:30 NATIONAL SECURITY SUBCOMMITTEE REPORT Admiral James Ellis, Jr., USN, Retired – Subcommittee Chair 4:30-4:45 TECHNOLOGY & INNOVATION SUBCOMMITTEE REPORT Colonel Pamela Melroy, USAF, Retired – Subcommittee Chair 4:45-5:15 ECONOMIC DEVELOPMENT & INDUSTRIAL BASE SUBCOMMITTEE REPORT Dr. Mary Lynne Dittmar and Eric Stallmer – Subcommittee Co-Chairs 5:15-5:30 PUBLIC COMMENT 5:30 ADJOURN ORGANIZATIONAL CHART National Space Council Executive Secretary Chair of Users’ Advisory Group Economic Exploration & Development & Discovery IndustrIal Base National Six Outreach & Security Subcommittees Education Space Policy & Technology & International Innovation Engagement USERS’ ADVISORY GROUP SUBCOMMITTEES ECONOMIC EXPLORATION AND NATIONAL SECURITY DEVELOPMENT AND DISCOVERY INDUSTRIAL BASE Adm. James Ellis, Jr. Gen. Lester Lyles (USN, Ret.), Chair Dr. Mary Lynne Dittmar, (USAF, Ret.), Chair Co-Chair Tory Bruno Eric Stallmer, Co-Chair Col. Buzz Aldrin (USAF, Ret.) Dean Cheng Tory Bruno Tim Ellis Tory Bruno Dr.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • RS-25 for NASA's Space Launch System
    AEROJET ROCKETDYNE PROPRIETARY 0 THIS DOCUMENT CONTAINS NO EXPORT CONTROLLED – ITAR/USML CATEGORY IV September 2016 Aerojet Rocketdyne Footprint International Offices: Redmond, WA Moscow Tokyo London Belfast UAE Picatinny Arsenal, NJ Sacramento, CA Clearfield, UT ARDÉ, NJ Headquarters Washington, D.C. Denver, CO Gainesville, VA Orange, VA Los Angeles, CA Jonesboro, TN Vernon, CA Camden, AR Socorro, NM Tucson, AZ Huntsville, AL Headquarters Dallas, TX Orlando, FL Operating Locations Stennis, MS Eglin AFB, FL Field Offices West Palm Beach, FL Nearly 5,000 Employees Across 14 States 140 and Growing at NASA Stennis Space Center Aerojet Rocketdyne Proprietary 1 Aerojet Rocketdyne & NASA Stennis Space Center (SSC): A Fifty Year Partnership • NASA-SSC is the nation’s Center of Excellence for large space transportation propulsion systems testing • Tested each of the F-1 rocket engines that powered the first stage of the Saturn V launch vehicle for the Apollo missions • Early 1970s, SSC’s facilities were modified to test the space shuttle's main engines (SSMEs) • All the 405 flown engines supporting 135 shuttle flights tested and proven flight-worthy at SSC • SSC’s state-of-the-art facilities continues to assemble and test components and engines for future Space Launch System (SLS) missions (RS-25 and J-2X) • RS-68/A engines supporting the Delta IV program launching national security satellites and recently the Orion Capsule for NASA’s Exploration Flight Test-1 Aerojet Rocketdyne Proprietary 2 SSC Facilities Occupied by Aerojet Rocketdyne • A1 Test Stand– RS-25 (1st Stage booster for SLS) • Primary Customer – NASA • Aerojet Rocketdyne Test Article Contractor • B Test Stand • B1 - RS-68 (1st Stage booster for Delta-IV) • Primary Customer – Air Force (ULA) • Test Stand is operated under a Space Act Agreement • B2 (RS-25 Space Launch System Stage Testing) • B Complex Test Control Center (BTCC) • Engine Assembly Facility (EAF – Bldg.
    [Show full text]
  • NASA Kennedy
    NASA Kennedy Vice President Pence Hosts National Space Council at NASA's Kennedy Space Center By Bob Granath NASA's Kennedy Space Center, Florida Vice President Mike Pence returned to NASA's Kennedy Space Center in Florida on Feb. 20, this time to chair a meeting of the recently re-established National Space Council. During his first trip to Kennedy on July 6, 2017, Pence spoke to center employees and toured numerous facilities supporting ongoing work at the premier, multi-user spaceport. After his arrival this time, Vice President Pence visited facilities at both Kennedy and Cape Canaveral Air Force Station. He also participated in an aerospace industry reception. Watch this video as Vice President Mike Pence tours the Kennedy Space Center, America's premier, multi-user spaceport. Vice President Mike Pence addresses a meeting of the National Space Council in the high bay of the Space Station Processing Facility at NASA's Kenne- But the primary focus for the vice president's trip was the second dy Space Center in Florida, on Feb. 21, 2018. meeting of the National Space Council taking place Feb. 21 in the Chaired by the Vice President, the council heard high bay of the center's Space Station Processing Facility. The testimony from representatives from civil space, commercial space and national security space event's theme was “Moon, Mars and Worlds Beyond: Winning the industry representatives. Next Frontier” and included testimonials from leaders in the civil, Credits: NASA/Kim Shiflet commercial and national security sectors about the importance of the United States’ space enterprise.
    [Show full text]
  • Assessing the Impact of US Air Force National Security Space Launch Acquisition Decisions
    C O R P O R A T I O N BONNIE L. TRIEZENBERG, COLBY PEYTON STEINER, GRANT JOHNSON, JONATHAN CHAM, EDER SOUSA, MOON KIM, MARY KATE ADGIE Assessing the Impact of U.S. Air Force National Security Space Launch Acquisition Decisions An Independent Analysis of the Global Heavy Lift Launch Market For more information on this publication, visit www.rand.org/t/RR4251 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0399-5 Published by the RAND Corporation, Santa Monica, Calif. © Copyright 2020 RAND Corporation R® is a registered trademark. Cover: Courtesy photo by United Launch Alliance. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface The U.S.
    [Show full text]
  • Mr. Les Kovacs
    United Launch Alliance Overview 2016 ITEA Symposium Les Kovacs Director, Executive Branch Affairs October 5, 2016 Copyright © 2012 United Launch Alliance, LLC. Unpublished Work. All Rights Reserved. United Launch Alliance Overview Delta Family Atlas V Family EELV Provides Assured Access for National Security Space Missions Two World Class Launch Systems – Atlas V, Delta IV More Than a Century of Combined Experience in Expendable Launch Systems – Pooled Experience of > 1300 Launches – Legacy Reaching Back to the 1950s Commercial Sales Through Lockheed Commercial Launch Services or 401 431 551 Medium Medium Heavy Boeing Launch Services 4,2 5,4 GTO LEO GTO LEO 4,750 kg – 8,900 kg 8,080 kg – 15,760 kg 4,210 kg – 13,810 kg 7,690 kg – 23,560 kg 10,470 lb – 19,620 lb 17,820 lb – 34,750 lb 9,280 lb – 30,440 lb 16,960 lb – 51,950 lb One Team, One Infrastructure , 100% Mission Success 11 October 2016 | 1 A Sampling of Notable Launches… MSL New Horizons EFT-1 JUNO WGS OTV GPS 11 October 2016 | 2 30 Year Product Road Map Delta-M RD180 Delta-Hvy 2045 Retired Retired Retired BE4 Replaces the RD180 11 OctoberLater 2016 | 3 Upgrade to ACES Retires Delta-Heavy for ¼ the Lift Cost 500 Series Configuration Expanded Existing Centaur Second Stage New Composite New (Common) 5.4m Interstage Diameter Booster New Solid Rocket Boosters Existing 5.4m New Existing PLF BE-4 Avionics Engines & Software New 5.4m Lower PLF Adapter New Composite Heat Shield 1111 October October 2016 2016| 4 | 4 Atlas - Vulcan Evolution 38 34 30 26 5m PLF Single 22 Common Avionics
    [Show full text]