The TRAX, DISC1, and GSK3 Complex in Mental Disorders and Therapeutic Interventions Yu-Ting Weng1,2, Ting Chien1, I-I Kuan1 and Yijuang Chern1,2*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
DISC1 a Key Molecular Lead in Psychiatry and Neurodevelopment: No-More Disrupted-In-Schizophrenia 1
Molecular Psychiatry (2016) 21, 1488–1489 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1359-4184/16 www.nature.com/mp NEWS AND COMMENTARY DISC1 a key molecular lead in psychiatry and neurodevelopment: No-More Disrupted-in-Schizophrenia 1 M Niwa1, T Cash-Padgett1,4, K-I Kubo2,4, A Saito1,4, K Ishii1,4, A Sumitomo3, Y Taniguchi1, K Ishizuka1, H Jaaro-Peled1, T Tomoda3, K Nakajima2, A Sawa1 and A Kamiya1 Molecular Psychiatry (2016) 21, 1488–1489; doi:10.1038/ second, although DISC1 is a multifunctional intracellular hub mp.2016.154; published online 6 September 2016 protein, we still do not know which specific function of DISC1 underlies each endophenotype or phenotype in mental conditions. Since the middle of the past century, we have serendipitously To address the first question on genetic validity, Sullivan7 come across treatment regimens that can partially ameliorate pointed out that DISC1 is unlikely to be an important ‘genetic’ psychosis and depression. Nonetheless, the mechanisms under- factor for schizophrenia defined by the Diagnostic and Statistical lying such severe mental conditions still remain elusive. Such lack Manual of Mental Disorders (DSM). This discussion is fairly valid, of mechanistic insight into major mental illnesses has hampered and we agree with this statement and conclude as ‘No-More the establishment of precise diagnostic framework, precluding Disrupted-in-Schizophrenia 1.’ Regarding the second question, Tsuboi further discovery of fundamental treatments for these disorders. et al.8 have recently encouraged the field to reinforce the evidence Meanwhile, understanding of the brain at the molecular level that supports the role for DISC1 in early development. -
Cyclin-Dependent Kinases and Their Role in Inflammation, Endothelial Cell Migration
Cyclin-Dependent Kinases and their role in Inflammation, Endothelial Cell Migration and Autocrine Activity Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Shruthi Ratnakar Shetty Graduate Program in Pharmaceutical Sciences The Ohio State University 2020 Dissertation Committee Dale Hoyt, Advisor Liva Rakotondraibe Moray Campbell Keli Hu Copyrighted by Shruthi Ratnakar Shetty 2020 Abstract Inflammation is the body’s response to infection or injury. Endothelial cells are among the different players involved in an inflammatory cascade. In response to an inflammatory stimuli such as bacterial lipopolysaccharide (LPS), endothelial cells get activated which is characterized by the production of important mediators, such as inducible nitric oxide synthase (iNOS) which, catalyzes the production of nitric oxide (NO) and reactive nitrogen species and cyclooxygenase-2 (COX-2) that catalyzes the production of prostaglandins. Though the production of these mediators is required for an inflammatory response, it is important that their levels are regulated. Continued production of iNOS results in increased accumulation of reactive nitrogen species (RNS) that might lead to cytotoxicity, whereas lack of/suppression results in endothelial and vascular dysfunction. On the other hand, severe cardiovascular, intestinal and renal side effects are observed with significant suppression of COX-2. Thus, studying factors that could regulate the levels of iNOS and COX-2 could provide useful insights for developing novel therapeutic targets. Regulation of protein levels involves control of protein induction or turnover. Since protein induction requires transcription, in this dissertation we studied the role of a promoter of transcription “Cyclin- dependent kinase 7 (CDK7)” in iNOS and COX-2 protein induction. -
New Insights in RBM20 Cardiomyopathy
Current Heart Failure Reports (2020) 17:234–246 https://doi.org/10.1007/s11897-020-00475-x TRANSLATIONAL RESEARCH IN HEART FAILURE (J BACKS & M VAN DEN HOOGENHOF, SECTION EDITORS) New Insights in RBM20 Cardiomyopathy D. Lennermann1,2 & J. Backs1,2 & M. M. G. van den Hoogenhof1,2 Published online: 13 August 2020 # The Author(s) 2020 Abstract Purpose of Review This review aims to give an update on recent findings related to the cardiac splicing factor RNA-binding motif protein 20 (RBM20) and RBM20 cardiomyopathy, a form of dilated cardiomyopathy caused by mutations in RBM20. Recent Findings While most research on RBM20 splicing targets has focused on titin (TTN), multiple studies over the last years have shown that other splicing targets of RBM20 including Ca2+/calmodulin-dependent kinase IIδ (CAMK2D) might be critically involved in the development of RBM20 cardiomyopathy. In this regard, loss of RBM20 causes an abnormal intracellular calcium handling, which may relate to the arrhythmogenic presentation of RBM20 cardiomyopathy. In addition, RBM20 presents clinically in a highly gender-specific manner, with male patients suffering from an earlier disease onset and a more severe disease progression. Summary Further research on RBM20, and treatment of RBM20 cardiomyopathy, will need to consider both the multitude and relative contribution of the different splicing targets and related pathways, as well as gender differences. Keywords RBM20 . Dilated cardiomyopathy . CaMKIIδ . Calcium handling . Gender differences . Titin Introduction (ARVC), where a small number of genes account for most of the genetic causes, DCM-causing mutations have been ob- Dilated cardiomyopathy (DCM), as defined by left ventricular served in a variety of genes of diverse ontology [2]. -
TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. -
A Critical Role for Kalirin in NGF Signaling Through Trka
MOLECULAR AND CELLULAR BIOLOGY, June 2005, p. 5106–5118 Vol. 25, No. 12 0270-7306/05/$08.00ϩ0 doi:10.1128/MCB.25.12.5106–5118.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Critical Role for Kalirin in Nerve Growth Factor Signaling through TrkA Kausik Chakrabarti,1 Rong Lin,1 Noraisha I. Schiller,1 Yanping Wang,1 David Koubi,2 Ying-Xin Fan,3 Brian B. Rudkin,2 Gibbes R. Johnson,3 and Martin R. Schiller1* University of Connecticut Health Center, Department of Neuroscience, 263 Farmington Ave., Farmington, Connecticut 06030-43011; Laboratoire de Biologie Moleculaire de la Cellule, UMR 5161 CNRS, INRA U1237, Ecole Normale Supe´rieure de Lyon, IFR 128 “BioSciences Lyon-Gerland,” 69364 Lyon cedex 07, France2; and Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 208923 Received 30 June 2004/Returned for modification 16 September 2004/Accepted 10 March 2005 Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. -
DISC1-Binding Proteins in Neural Development, Signalling and Schizophrenia
Edinburgh Research Explorer DISC1-binding proteins in neural development, signalling and schizophrenia Citation for published version: Bradshaw, NJ & Porteous, DJ 2012, 'DISC1-binding proteins in neural development, signalling and schizophrenia', Neuropharmacology, vol. 62, no. 3, pp. 1230-41. https://doi.org/10.1016/j.neuropharm.2010.12.027 Digital Object Identifier (DOI): 10.1016/j.neuropharm.2010.12.027 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Neuropharmacology Publisher Rights Statement: Available under Open Access General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 Neuropharmacology 62 (2012) 1230e1241 Contents lists available at ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm DISC1-binding proteins in neural development, signalling and schizophrenia Nicholas J. Bradshaw*, David J. Porteous Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, Midlothian EH4 2XU, UK article info abstract Article history: In the decade since Disrupted in Schizophrenia 1 (DISC1)wasfirst identified it has become one of the most Received 29 October 2010 convincing risk genes for major mental illness. -
Structural and Functional Analysis of Translocation in DISC1 Gene and Impact on Schizophrenia
CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, ISLAMABAD Structural and Functional Analysis of Translocation in DISC1 gene and Impact on Schizophrenia by Jaweria Zia A thesis submitted in partial fulfillment for the degree of Master of Science in the Faculty of Health and Life Sciences Department of Bioinformatics and Biosciences 2021 i Copyright © 2021 by Jaweria Zia All rights reserved. No part of this thesis may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, by any information storage and retrieval system without the prior written permission of the author. ii I dedicate this thesis to my parents and my teachers. CERTIFICATE OF APPROVAL Structural and Functional Analysis of Translocation in DISC1 gene and Impact on Schizophrenia by Jaweria Zia (MBS191024) THESIS EXAMINING COMMITTEE S. No. Examiner Name Organization (a) External Examiner Dr. Mazhar Qayyam PMAS-UAAR, Rawalpindi (b) Internal Examiner Dr. Erum Dilshad CUST, Islamabad (c) Supervisor Dr. Syeda Marriam Bakhtiar CUST, Islamabad Dr. Syeda Marriam Bakhtiar Thesis Supervisor April, 2021 Dr. Sahar Fazal Dr. Muhammad Abdul Qadir Head Dean Dept. of Biosciences & Bioinformatics Faculty of Health & Life Sciences April, 2021 April, 2021 iv Author's Declaration I, Jaweria Zia hereby state that my MS thesis titled \Structural and Func- tional Analysis of Translocation in DISC1 gene and Impact on Schizophre- nia" is my own work and has not been submitted previously by me for taking any degree from Capital University of Science and Technology, Islamabad or anywhere else in the country/abroad. At any time if my statement is found to be incorrect even after my graduation, the University has the right to withdraw my MS Degree. -
The Guanine Nucleotide Exchange Factor Kalirin-7 Is a Novel Synphilin-1 Interacting Protein and Modifies Synphilin-1 Aggregate Transport and Formation
The Guanine Nucleotide Exchange Factor Kalirin-7 Is a Novel Synphilin-1 Interacting Protein and Modifies Synphilin-1 Aggregate Transport and Formation Yu-Chun Tsai, Olaf Riess, Anne S. Soehn., Huu Phuc Nguyen*. Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany Abstract Synphilin-1 has been identified as an interaction partner of a-synuclein, a key protein in the pathogenesis of Parkinson disease (PD). To further explore novel binding partners of synphilin-1, a yeast two hybrid screening was performed and kalirin-7 was identified as a novel interactor. We then investigated the effect of kalirin-7 on synphilin-1 aggregate formation. Coexpression of kalirin-7 and synphilin-1 caused a dramatic relocation of synphilin-1 cytoplasmic small inclusions to a single prominent, perinuclear inclusion. These perinuclear inclusions were characterized as being aggresomes according to their colocalization with microtubule organization center markers, and their formation was microtubule-dependent. Furthermore, kalirin-7 increased the susceptibility of synphilin-1 inclusions to be degraded as demonstrated by live cell imaging and quantification of aggregates. However, the kalirin-7-mediated synphilin-1 aggresome response was not dependent on the GEF activity of kalirin-7 since various dominant negative small GTPases could not inhibit the formation of aggresomes. Interestingly, the aggresome response was blocked by HDAC6 catalytic mutants and the HDAC inhibitor trichostatin A (TSA). Moreover, kalirin-7 decreased the level of acetylated a-tubulin in response to TSA, which suggests an effect of kalirin-7 on HDAC6-mediated protein transportation and aggresome formation. In summary, this is the first report demonstrating that kalirin-7 leads to the recruitment of synphilin-1 into aggresomes in a HDAC6-dependent manner and also links kalirin-7 to microtubule dynamics. -
Rho Guanine Nucleotide Exchange Factors: Regulators of Rho Gtpase Activity in Development and Disease
Oncogene (2014) 33, 4021–4035 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease DR Cook1, KL Rossman2,3 and CJ Der1,2,3 The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger). Oncogene (2014) 33, 4021–4035; doi:10.1038/onc.2013.362; published online 16 September 2013 Keywords: Rac1; RhoA; Cdc42; guanine nucleotide exchange factors; cancer; -
Abnormalities Induced by a Disc1 Mutation Modelling a Translocation Linked to Major Mental Illness Elise L
Malavasi et al. Translational Psychiatry (2018) 8:184 DOI 10.1038/s41398-018-0228-1 Translational Psychiatry ARTICLE Open Access DISC1 regulates N-methyl-D-aspartate receptor dynamics: abnormalities induced by a Disc1 mutation modelling a translocation linked to major mental illness Elise L. V. Malavasi1,KyriakosD.Economides2, Ellen Grünewald1, Paraskevi Makedonopoulou1, Philippe Gautier3, Shaun Mackie1, Laura C. Murphy1,HannahMurdoch4,DarraghCrummie1, Fumiaki Ogawa1,DanielL.McCartney1, Shane T. O’Sullivan1,KarenBurr5, Helen S. Torrance1, Jonathan Phillips1, Marion Bonneau1,SusanM.Anderson1, Paul Perry3, Matthew Pearson3, Costas Constantinides1, Hazel Davidson-Smith1, Mostafa Kabiri6, Barbara Duff7, Mandy Johnstone 1,7,H.GregPolites8,StephenM.Lawrie 7, Douglas H. Blackwood 7, Colin A. Semple3, Kathryn L. Evans1, Michel Didier9, Siddharthan Chandran5,AndrewM.McIntosh 7, David J. Price10,MilesD.Houslay11, David J. Porteous 1 and J. Kirsty Millar1 Abstract The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-methyl-D-aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity.