<<

telecom Escola Tècnica Superior ddEnginyeria’Enginyeria BCN de Telecomunicació de Barcelona UNIVERSITAT POLITÈCNICA DE CATALUNYA Departament de Teoria del Senyal i Comunicacions FIBER-OPTIC COMMUNICATIONS

JOAN M. GENÉ BERNAUS

G C O OPTICAL COMMUNICATIONS GROUP

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

CONTENTS

1. INTRODUCTION 2. OPTICAL FIBER 3. OPTICAL SOURCES 4. OPTICAL RECEIVERS 5. OPTICAL AMPLIFIERS 6. FIBER-OPTIC SYSTEMS

27 SEPTEMBER 2010 CONTENTS slide 2 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

1. INTRODUCTION

• HISTORICAL PERSPECTIVE • BASIC FIBER‐OPTIC SYSTEM • F.O. COM. ADVANTAGES • 5 GENERATIONS OF OPTICAL COM. • F.O. LOCALIZATION

27 SEPTEMBER 2010 CONTENTS slide 3

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO HISTORICAL PERSPECTIVE

1800 Primitive Signals – Old civilizations used fire or smoke signs as a communication mechanism. Digital Optical Communications. XVIII Century – The optical signals used were produced using flags and flashlights among others. 1792 – Claude Chappe invents the aerial telegraph. A kind of mechilhanical antenna using a secret code (Frenc h RR)ev.). 1900 Transmissions of 100 km with repeaters each 10 km. Speed 1 b/s. 1837 – Sam uel Mooserse ppeseresents the eeectlectri cal tel egr aph. SSatart s the electrical communications. The Morse code spreads out rapidly and the transmission speed increases up to 10 b/s. The transmission distance reaches 1000s of Km. 1866 –First transatlantic telegraph cable.

2000

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 4 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

1800 1876 – Alexander Graham Bell patents the telephone, two hours before Elisha Gray. Recently the invention has been attributed to Antonio Meucci, 1871. Starts the analog communications era. The telephone experiences a worldwide extension until today. 1895 –First radio communications experiments by . 1931 –Transmission of first TV. images by René Barthélémy. 1900 1940 – First coaxilial cable transmiiission system. OdOrder of MHz. 1948 –First microwave transmission system over coaxial cable. OOderder of GHz. Traasnsmi ssossion speed up to 100 Mb/s with repeater distance of just 1 Km due to cable losses (5‐10 dB/km). 1956 –First transatlantic telephone cable.

2000

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 5

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

1800 1952 – Narinder S. Kapany performed first light guiding experiments considered the invention of optical fiber. Kapany based his experiments on John Tyndall’ s theoretical work (Total Internal Reflection – 1850s ) about light guiding in water fountains. 1953 – Maser Theory by Charles H. Townes (Columbia), and independently, Nikolai G. Basov and Aleksandr M. Prokhorov (). 1964.

1900 1957 – Theory by Charles H. Townes (Columbia) and Arthur Schawlow (). Patented on 1960 and conflict with Gordon Gould (graduate student at Columbia, recognized 1987). 1960 – First Rubi Laser (694 nm) by Theodore H. Maiman (Hugues Research Lab). This allows to think about an optical transmission system with a carrier on the order of 100 THz. D=1mm. We already have source. A little later Ali Javan (Iran) presents the first Gas Laser (He‐N)Ne).

2000 1962 –First pulsed GaAs (850 nm) laser by Robert N. Hall and red laser by Nick Holonyak, Jr. (General Electric).

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 6 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

1800 1965 – Charles K. Kao (Nobel Prize 2009) and George A.Hockham (Standard Telephones and Cables) demonstrated that the main attenuation source of silica glass (1000 dB/km) was the presence of impurities. Their studies predicted an attenuation around 20 dB/km. 1970 ‐ Robert D. Maurer et al. (Corning) demostrated an optical fiber (SiO2) transmission with an attenuation of 17 dB/km in the region of 1m. We already have medium. Izuo Hayashy and Morton Panish (Bell Labs), and independently, Zhores Alferov (Soviet Union) develop 1900 the first semiconductor (()GaAs) working in continuous‐ wave at room temperature using the heterostructure. Dimensions similar to an optical fiber. Development of first LED diodes and photodetectors. 1973 – Developtment of optical fibers with lower attenuation than coaxial cables (4dB/km at 850 nm). 1977 – DlDevelopmen t of thir d widindow by NTT (0.2dB/k m at 1550 nm).

2000 1979 –First Single‐Mode fiber (0.2dB/km at 1550 nm).

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 7

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

1800 1980 –Development of first semiconductor optical amplifiers. First commercial fiber‐optic transmission system. 45 Mb/s and a repeater distance of 10 km. 1986 –First doped fiber optical amplifiers David Payne (U. Southampton) and Emmanuel Desurvire (Bell Laboratories). Became commercial late 80’s and increase the transmitter distance up to 100 km.

1900 1988 – First transatlantic optical cable (TAT‐8) 1996 –First transpacific optical cable (TPC‐5) including WDM technology 20x5 Gb/s.

back to ditital optical 2000 communications

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 8 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

1800 1e+15 CAPACITY EVOLUTION WDM

1e+12 opt. amplif.

km] fiber optic

∙ 1e+09 /s 1900 t [bi

CxD 1e+06 coaxial microowaves

1e+03 telephone

telegraph 1e+00 2000 1850 1900 1950 2000 Year

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 9

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO What does 10 Gb/s mean ?

Encyclopedia Britannica BCN

NYC 32 volumes 44 million words 24,000 photos 1 sec

10 Gb 10 Gb/s

27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 10 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO FIBER‐OPTIC TRANSMISSION SYSTEM

Information Logical Domain Destination Source

Electrical Electrical Domain Electrical TX RX

Optical Optical Optical Optical Sources TX Fiber RX Optical Domain LED LASER PIN APD Amplifiers Photodetectors SOA, EDFA

27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 11

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

ELECTRICAL FILTER Fiber‐OtiOptic SStystem EElxample MODULATION TX SIGNAL

OPTICAL ELECTRICAL AMPLIFIER OPTICAL FILTER FILTER RX OPTICAL EXTERNAL FIBER LASER MODULATOR PHOTODETECTOR

External Jacket Cladding (125 microns) (4 microns thick)

SiO2 PVC Internal Jacket Core (9 microns) (250 microns) Acrilate

27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 12 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 13

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

100 st 1 window 70’s

m) 2nd widindow 10 3rd window (dB/k

ion t 25dB/km2.5dB/km 80’s 1 Attenua 04dB/k0.4dB/km 90’s 0.2dB/km 0.1 600 800 1000 1200 1400 1600 (nm)

Lasers AlGaAs InGaAsP InGaAsP SC Amp. AlGaAs InGaAsP Fiber Amp PDFA EDFA Photodet. Si IGAPInGaAsP Ge

27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 14 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

Electromagnetic Spectrum Wavelength (m) 106 105 104 103 102 101 100 10‐1 10‐2 10‐3 10‐4 10‐5 10‐6 10‐7 10‐8 10‐9

t n

Far LF HF MF VLF SHF VHF UHF Visible ilimetric Infrared Waves Infrared Audio Ultraviole Designatio M

1.7m ‐ 0.8m Radiofrequency Microwaves cations i Fiber‐Optic Comm. Appl um Appl i Cu Pair Coaxial Wave‐guide Optical Fiber Med

103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 Frequency (Hz)

27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 15

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO AVANTAGES OF FOF.O. COMMUNICATIONS

 Huge Capacity (Tb/s  1% of the carrier 100 THz)  Low attenuation (0.2 dB/km) in a wide freq. range (30 nm –4 THz)  Reduced weight and dimensions.  Isolator (dielectric medium) – electromagnetic itinter ferences iiitmmunity  No diaphony (reduced radiation)  Temperature stability (‐55°C to 125 °C)  Flexible and robust (mechanically)  Intrusions security (d(reduce d radd)iation)

 Potential reduced cost (SiO2 abundance)

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. COM. ADVANTAGES slide 16 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO DRAWBACKS OF FOF.O. COMMUNICATIONS

 Transductors necessity E/O‐O/E  Expensive devices (shared cost  Long‐Haul)  Fiber splices complexity  Connectors complexity .  Tecnology unmaturity t 10,000 Km satellites (microwave links) optical 1000 Km communications

e TX dis e TX (fiber & free-spp)ace) e 100 Km fixed wireless access 10 Km coaxial cable ration-fr

e 1 Km mobile twisted pair wireless 100 m

Regen wireless LAN 10 m 1Kb/1 Kb/s 1Mb/1 Mb/s 1 Gb/s 1Tb/1 Tb/s Data Rate

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. COM. ADVANTAGES slide 17

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 5 FIBER‐OPTIC GENERATIONS

First Generation 70s  Multi‐Mode Fiber (5dB/km) Limited by  Became commercilial in 1980 (45 Mb/s) attenuati on  FP mm Laser AlGaAs at 850 nm, LED  Bit rate 50‐100 Mb/s early 80s

 Repeater distance 10 km Second Generation

Singl e‐MdMode Fiber (0.5dB/k m) 

Became commercial in 1987 

Limited by FP mm Laser InGaAsP at 1300 nm 

attenuation Bit rate 100 Mb/s ‐ 1.7 Gb/s 

 Repeater distance 50 km 

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 18 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

Third Generation 80s  Single‐Mode Fiber (0.2dB/km) (DSF)  Became commercilial in 1990 Limited by  DFB sm Laser at 1310 nm & 1550 nm attenuation  Bit rate 252.5 Gb/s  Repeater distance 100 km 90s  Semiconductor optical amplif. (SOA)

Fourth Generation  Coherent Systems 

Single‐Mode Fiber (0.2dB/km) (DCF)

Became commercial in 1996 (TPC‐5) 

Limited by 

DBR sm Laser at 1550 nm  dispersion 

Capacity 1‐128 x 2.5‐10 Gb/s (WDM)

Repeater distance 100 km  

Erbium‐dddoped ffbiber ampllfifier ()(EDFA) 

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 19

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

Fifth Generation late 90s – early 2000  Single‐Mode Fiber (0.2dB/km) (LEAF)  Became commercilial in 2007 Limited by  EC sm at 1550 nm NL & PMD  VCSELs cheap lasers  Capacity 250 x 40 Gb/s (DWDM) 5 Fiber-Optic System Generations  Repeater distance 100 km 1e+16  Advanced Modulations 1e+15 EDFA 1e+14 WDM  Raman Amplifiers m] 1550 nm k 1+131e+13 1300 nm SM laser SM fiber 1e+12 Solitons 1e+11 850 nm [bit/s [bit/s · MM fiber L 1e+10 B 1e+09 1e+08 1970 1980 1990 2000 2010 Year

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 20 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

Next Generation 2010  Single‐Mode Fiber (0.2dB/km) (PCF)  Will Become commerciilal in 2015 ‐ 2020  Broadband tunable Lasers Limited by  Capacity N x 100 Gb/s (100G Ethernet) NL & PMD  Fiber‐to‐the Home (FTTH)  Repeater distance 100 km  Advanced Modulations  Coherent Detection  Broadband & distributed Amplification  Digital Signal Processing (optical/electronic)

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 21

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 22 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

WDM WAVELENGTH DIVISION MULTIPLEXING

8 channels x 10 Gb/s = 80 Gb/s

TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64 TX STM‐64 RX STM‐64

TX STM‐64 WDM RX STM‐64

TX STM‐64 RX STM‐64

TX STM‐64 RX STM‐64 X

TX STM‐64 X RX STM‐64 U U TX STM‐64 RX STM‐64 M DM TX STM‐64 RX STM‐64

TX STM‐64 RX STM‐64

TX STM‐64 RX STM‐64

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 23

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

WDM transmission Bands

10 4 THz nm nm nm nm nm nm nm

0 0 0 5 5 5 dB/Km) 60 6 6 3 6 2 7 ( 12 14 15 15 16 16 13

1 tion O E S C L U enua t

at 0.1 1100 1200 1300 1400 1500 1600 1700 wavelength (nm) O – original C – conventional (()erbium) L – long wavelength E – extended S – short wavelength U – ultralong wavelength

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 24 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO Main Impairments

CS

BW Old Fiber Plant

GVD, PMD Attenuation L Crosstalk Dispersion NL Crosstalk Inter XPM. Inter FWM SPM, Intra XPM. Intra FWM NL Effects ASE, Shot, Thermal, Phase Noise MUX, OXC Filteri ng channel effects attenuation

noise

optical fiber dis tor tion

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 25

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO System Capacity

Transmission Bandwidth

#1 #2 #N spectrum

 R Channel Spacing b

freq. Capacity = Channels x Bit Rate

Channels = Bandwidth / Spacing RB bs   Hz Capacity = Bandwidth x Bit Rate / Spacing CS 

Spectral Efficiency

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 26 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO System Capacity

Terabit Transmissions

Decrease Channel Extend Spectral Increase Channel Spacing Range Bit‐rate

200 GHz 30 nm 2.5 Gb/s 100 GHz 80 nm 10 Gb/s 50 GHz 120 nm 40 Gb/s 25 GHz 150 nm 100 Gb/s Status of commercial Year 1995 Year 2000 Year 2005 Year 2010 equipment (per fiber) TDM line bit‐rate 2.5 Gb/s 2.5‐10 Gb/s 10‐40 Gb/s 10‐40‐100 Gb/s WDM channels 8 64‐128 128‐256 128‐256 Channel Spacing 200 GHz 100‐50 GHz 50‐25 GHz 25 GHz Overall Capacity 20 Gb/s 1 Tb/s 5 Tb/s 10 Tb/s

27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 27

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO FIBER‐OPTIC LOCALIZATION

Longh‐Haul (1000 km)

Regional (100 km)

Metropolitan (20 km)

Access (10 km)

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 28 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

Ownership ? 79 % 929.2 % 6.6 % 5.2 %

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 29

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 30 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 31

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

1 % 68.6 % 363.6 % 25 %

1.6 %

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 32 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 33

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 34 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

RidilResidential SSiervice RRiequirements

Application Downstream Upstream HDTV (3 per home at 20 Mb/s ) 60 Mb/s < 1 Mb/s standard TV  4.5 Mb/s OliOnline GGiaming 2‐20 Mb/s 2‐20 Mb/s VoIP Telephone 0.3 Mb/s 0.3 Mb/s (3 per home at 100 Kb/s) Data / email ... 10 Mb/s 10 Mb/s DVD rental 14 Mb/s < 1 Mb/s (download time <10 minutes) TOTAL ~ 100 Mb/s ~ 30 Mb/s

27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. LOCALIZATION slide 35

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

APPENDIX

CMT 2005 data

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 36 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

PióPenetració 12%

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 37

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 38 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 39

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 40 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 41

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 42 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 43

FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO

SPANISH SITUATION (CMT2005)

27 SEPTEMBER 2010 1. INTRODUCTION - APPENDIX slide 44