telecom Escola Tècnica Superior ddEnginyeria’Enginyeria BCN de Telecomunicació de Barcelona UNIVERSITAT POLITÈCNICA DE CATALUNYA Departament de Teoria del Senyal i Comunicacions FIBER-OPTIC COMMUNICATIONS JOAN M. GENÉ BERNAUS G C O OPTICAL COMMUNICATIONS GROUP FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO CONTENTS 1. INTRODUCTION 2. OPTICAL FIBER 3. OPTICAL SOURCES 4. OPTICAL RECEIVERS 5. OPTICAL AMPLIFIERS 6. FIBER-OPTIC SYSTEMS 27 SEPTEMBER 2010 CONTENTS slide 2 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 1. INTRODUCTION • HISTORICAL PERSPECTIVE • BASIC FIBER‐OPTIC SYSTEM • F.O. COM. ADVANTAGES • 5 GENERATIONS OF OPTICAL COM. • F.O. LOCALIZATION 27 SEPTEMBER 2010 CONTENTS slide 3 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO HISTORICAL PERSPECTIVE 1800 Primitive Signals – Old civilizations used fire or smoke signs as a communication mechanism. Digital Optical Communications. XVIII Century – The optical signals used were produced using flags and flashlights among others. 1792 – Claude Chappe invents the aerial telegraph. A kind of mechilhanical antenna using a secret code (Frenc h R)Rev.). 1900 Transmissions of 100 km with repeaters each 10 km. Speed 1 b/s. 1837 – Sam uel Mooserse ppeseresents the eeectlectri cal teleg rap h. SSatart s the electrical communications. The Morse code spreads out rapidly and the transmission speed increases up to 10 b/s. The transmission distance reaches 1000s of Km. 1866 –First transatlantic telegraph cable. 2000 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 4 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 1800 1876 – Alexander Graham Bell patents the telephone, two hours before Elisha Gray. Recently the invention has been attributed to Antonio Meucci, 1871. Starts the analog communications era. The telephone experiences a worldwide extension until today. 1895 –First radio communications experiments by Guglielmo Marconi. 1931 –Transmission of first TV. images by René Barthélémy. 1900 1940 – First coaxilial cable transmiiission system. OdOrder of MHz. 1948 –First microwave transmission system over coaxial cable. OOderder of GHz. Traasnsmiss ssoion speed up to 100 Mb/s with repeater distance of just 1 Km due to cable losses (5‐10 dB/km). 1956 –First transatlantic telephone cable. 2000 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 5 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 1800 1952 – Physicist Narinder S. Kapany performed first light guiding experiments considered the invention of optical fiber. Kapany based his experiments on John Tyndall’ s theoretical work (Total Internal Reflection – 1850s ) about light guiding in water fountains. 1953 – Maser Theory by Charles H. Townes (Columbia), and independently, Nikolai G. Basov and Aleksandr M. Prokhorov (Soviet Union). Nobel Prize 1964. 1900 1957 – Laser Theory by Charles H. Townes (Columbia) and Arthur Schawlow (Bell Labs). Patented on 1960 and conflict with Gordon Gould (graduate student at Columbia, recognized 1987). 1960 – First Rubi Laser (694 nm) by Theodore H. Maiman (Hugues Research Lab). This allows to think about an optical transmission system with a carrier on the order of 100 THz. D=1mm. We already have source. A little later Ali Javan (Iran) presents the first Gas Laser (He‐N)Ne). 2000 1962 –First pulsed semiconductor GaAs (850 nm) laser by Robert N. Hall and red laser by Nick Holonyak, Jr. (General Electric). 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 6 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 1800 1965 – Charles K. Kao (Nobel Prize 2009) and George A.Hockham (Standard Telephones and Cables) demonstrated that the main attenuation source of silica glass (1000 dB/km) was the presence of impurities. Their studies predicted an attenuation around 20 dB/km. 1970 ‐ Robert D. Maurer et al. (Corning) demostrated an optical fiber (SiO2) transmission with an attenuation of 17 dB/km in the region of 1m. We already have medium. Izuo Hayashy and Morton Panish (Bell Labs), and independently, Zhores Alferov (Soviet Union) develop 1900 the first semiconductor (()GaAs) laser diode working in continuous‐ wave at room temperature using the heterostructure. Dimensions similar to an optical fiber. Development of first LED diodes and photodetectors. 1973 – Developtment of optical fibers with lower attenuation than coaxial cables (4dB/km at 850 nm). 1977 – DlDevelopmen t of thir d widindow by NTT (0. 2dB/km at 1550 nm). 2000 1979 –First Single‐Mode fiber (0.2dB/km at 1550 nm). 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 7 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 1800 1980 –Development of first semiconductor optical amplifiers. First commercial fiber‐optic transmission system. 45 Mb/s and a repeater distance of 10 km. 1986 –First doped fiber optical amplifiers David Payne (U. Southampton) and Emmanuel Desurvire (Bell Laboratories). Became commercial late 80’s and increase the transmitter distance up to 100 km. 1900 1988 – First transatlantic optical cable (TAT‐8) 1996 –First transpacific optical cable (TPC‐5) including WDM technology 20x5 Gb/s. back to ditital optical 2000 communications 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 8 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 1800 1e+15 CAPACITY EVOLUTION WDM 1e+12 opt. amplif. km] fiber optic ∙ 1e+09 /s 1900 t [bi CxD 1e+06 coaxial microowaves 1e+03 telephone telegraph 1e+00 2000 1850 1900 1950 2000 Year 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 9 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO What does 10 Gb/s mean ? Encyclopedia Britannica BCN NYC 32 volumes 44 million words 24,000 photos 1 sec 10 Gb 10 Gb/s 27 SEPTEMBER 2010 1. INTRODUCTION - HISTORICAL PERSPECTIVE slide 10 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO FIBER‐OPTIC TRANSMISSION SYSTEM Information Logical Domain Destination Source Electrical Electrical Domain Electrical TX RX Optical Optical Optical Optical Sources TX Fiber RX Optical Domain LED LASER PIN APD Amplifiers Photodetectors SOA, EDFA 27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 11 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO ELECTRICAL FILTER Fiber‐OtiOptic StSystem ElExample MODULATION TX SIGNAL OPTICAL ELECTRICAL AMPLIFIER OPTICAL FILTER FILTER RX OPTICAL EXTERNAL FIBER LASER MODULATOR PHOTODETECTOR External Jacket Cladding (125 microns) (4 microns thick) SiO2 PVC Internal Jacket Core (9 microns) (250 microns) Acrilate 27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 12 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 13 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 100 st 1 window 70’s m) 2nd widindow 10 3rd window (dB/k ion t 25dB/km2.5dB/km 80’s 1 Attenua 04dB/k0.4dB/km 90’s 0.2dB/km 0.1 600 800 1000 1200 1400 1600 (nm) Lasers AlGaAs InGaAsP InGaAsP SC Amp. AlGaAs InGaAsP Fiber Amp PDFA EDFA Photodet. Si IGAPInGaAsP Ge 27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 14 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO Electromagnetic Spectrum Wavelength (m) 106 105 104 103 102 101 100 10‐1 10‐2 10‐3 10‐4 10‐5 10‐6 10‐7 10‐8 10‐9 t n Far LF HF MF VLF SHF VHF UHF Visible ilimetric Infrared Waves Infrared Audio Ultraviole Designatio M 1.7m ‐ 0.8m Radiofrequency Microwaves cations i Fiber‐Optic Comm. Appl um Appl i Cu Pair Coaxial Wave‐guide Optical Fiber Med 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016 1017 Frequency (Hz) 27 SEPTEMBER 2010 1. INTRODUCTION --BASICBASIC FIBER-FIBER-OPTICOPTIC SYSTEM slide 15 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO AVANTAGES OF FOF.O. COMMUNICATIONS Huge Capacity (Tb/s 1% of the carrier 100 THz) Low attenuation (0.2 dB/km) in a wide freq. range (30 nm –4 THz) Reduced weight and dimensions. Isolator (dielectric medium) – electromagnetic itinter ferences iitimmunity No diaphony (reduced radiation) Temperature stability (‐55°C to 125 °C) Flexible and robust (mechanically) Intrusions security (d(reduce d rad)diation) Potential reduced cost (SiO2 abundance) 27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. COM. ADVANTAGES slide 16 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO DRAWBACKS OF FOF.O. COMMUNICATIONS Transductors necessity E/O‐O/E Expensive devices (shared cost Long‐Haul) Fiber splices complexity Connectors complexity . Tecnology unmaturity t 10,000 Km satellites (microwave links) optical 1000 Km communications e TX dis e TX (fiber & free-spp)ace) e 100 Km fixed wireless access 10 Km coaxial cable ration-fr e 1 Km mobile twisted pair wireless 100 m Regen wireless LAN 10 m 1Kb/1 Kb/s 1Mb/1 Mb/s 1 Gb/s 1Tb/1 Tb/s Data Rate 27 SEPTEMBER 2010 1. INTRODUCTION --F.O.F.O. COM. ADVANTAGES slide 17 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO 5 FIBER‐OPTIC GENERATIONS First Generation 70s Multi‐Mode Fiber (5dB/km) Limited by Became commercilial in 1980 (45 Mb/s ) attenuati on FP mm Laser AlGaAs at 850 nm, LED Bit rate 50‐100 Mb/s early 80s Repeater distance 10 km Second Generation Singl e‐MdMode Fiber (0. 5dB/km) Became commercial in 1987 Limited by FP mm Laser InGaAsP at 1300 nm attenuation Bit rate 100 Mb/s ‐ 1.7 Gb/s Repeater distance 50 km 27 SEPTEMBER 2010 1. INTRODUCTION - 5 GENERATIONS OF OPTICAL COM. slide 18 FIBERFIBER--OPTICOPTIC COMMUNICATIONS GCO Third Generation 80s Single‐Mode Fiber (0.2dB/km) (DSF) Became commercilial in 1990 Limited by DFB sm Laser at 1310 nm & 1550 nm attenuation Bit rate 252.5 Gb/s Repeater distance 100 km 90s Semiconductor optical amplif. (SOA) Fourth Generation Coherent Systems Single‐Mode Fiber (0.2dB/km)
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages22 Page
-
File Size-