Zhores Alferov
The History of Semiconductor
Heterostructures Reserch: from Early Double Heterostructure
Concept to Modern Quantum Dot
Structures
St Petersburg Academic University —
Nanotechnology Research and Education Centre RAS
• Introduction • Transistor discovery • Discovery of laser-maser principle and birth of optoelectronics
• Heterostructure early proposals • Double heterostructure concept: classical, quantum well and superlattice heterostructure. “God-made” and “Man-made” crystals
• Heterostructure electronics • Quantum dot heterostructures and development of quantum dot lasers
• Future trends in heterostructure technology • Summary
2
The Nobel Prize in Physics 1956
"for their researches on semiconductors and their discovery of the transistor effect"
- William Bradford
- Walter Houser
- John
Shockley
1910–1989
Brattain
1902–1987
Bardeen
1908–1991
- 3
- 4
- 5
- 6
W. Shockley and A. Ioffe. Prague. 1960.
7
The Nobel Prize in Physics 1964
"for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle"
- Charles Hard
- Aleksandr
- Nicolay
- Townes
- Prokhorov
- Basov
1922–2001
- b. 1915
- 1916–2002
- 8
- 9
Proposals of semiconductor injection lasers
• N. Basov, O. Krochin and Yu. Popov
(Lebedev Institute, USSR Academy of Sciences, Moscow) JETP, 40, 1879 (1961)
• M.G.A. Bernard and G. Duraffourg
(Centre National d’Etudes des Telecommunications, Issy-les-Moulineaux, Seine) Physica Status Solidi, 1, 699 (1961)
10
Lasers and LEDs on p–n junctions
• January 1962: observations of superlumenscences in GaAs p-n junctions
(Ioffe Institute, USSR).
• Sept.-Dec. 1962: laser action in GaAs and GaAsP p-n junctions
(General Electric , IBM (USA); Lebedev Institute (USSR).
Wavelength
“+”
EFn
LDn
LDp
p
- Eg
- hν
GaAs
n
EFp
Cleaved mirror
“–”
En – Ep > Eg
Condition of optical gain:
- F
- F
11
The Nobel Prize in Physics 2000
"for basic work on information and communication technology"
“for developing semiconductor heterostructures used in high-speed- and opto-electronics”
“for his part in the invention of the integrated circuit”
Zhores I.
Herbert
Jack S.
Alferov
Kilby
1923–2005
Kroemer
b. 1930 b. 1928
- 12
- 13
circuit
- 14
- 15
- 16
Fundamental physical phenomena in classical heterostructures
Electrons
E
(a) (b) (c)
c
One-side Injection
Propozal — 1948 (W. Shokley) Experiment — 1965 (Zh. Alferov et al.)
∆E
c
F
n
F
p
Holes
∆E
v
Superinjection
Theory — 1966 (Zh. Alferov et al.)
Experiment — 1968 (Zh. Alferov et al.)
Electrons
F
E
nc
F
p
E
v
Holes
Diffusion in built-in quasielectric field
Electrons
Theory — 1956 (H. Kroemer) Experiment — 1967 (Zh. Alferov et al.)
17
Fundamental physical phenomena in classical heterostructures
(d)
Electron and optical confinement
Propozal — 1963 (Zh. Alferov, R. Kazarinov)
(H. Kroemer)
E
c
F
n
F E
Experiment — 1968 (Zh. Alferov et al.)
pv
(e)
Superlattices
Theory — 1962 (L.V. Keldysh) Experiment —1970 (L. Esaki et al.)
E E
c
Stimulated emission:
v
Theory — 1971 (R. Kazarinov and R. Suris)
Experiment —1994 (F. Capasso et al.)
18
Heterojunctions—a new kind of semiconductor materials:
Long journey from infinite interface recombination to ideal heterojunction
Lattice matched heterojunctions
2.8
AlP
• Ge–GaAs–1959
(R. L. Anderson)
GaP
2.0
1.2 0.4
AlSb
• AlGaAs–1967
(Zh. Alferov et al., J. M. Woodall & H. S. Rupprecht)
InP
GaAs
GaSb
InAs
Ge
• Quaternary HS
(InGaAsP & AlGaAsSb)
Proposal–1970
5.40 5.56 5.72 5.88 6.04 6.20
Lattice constant ( ) [300 K]
(Zh. Alferov et al.)
Å
First experiment–1972
(Antipas et al.)
19
Radiation spectrum for the first low threshold
AlxGa1–xAs DHS laser at room temperature
(a)
(3)
1.59 eV
1.39 eV
300 K Jth = 4300 A/cm2
×100
(b)
1.59 eV
1.61 eV
(2)
(2)
1.61 eV
(1)
(1)
7760
Wavelength (
- 7820
- 7100 7700 8300 8900
- Wavelength (
- Å)
- Å)
20