Semiconductor Science and Leds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semiconductor Heterostructures and Their Application
Zhores Alferov The History of Semiconductor Heterostructures Reserch: from Early Double Heterostructure Concept to Modern Quantum Dot Structures St Petersburg Academic University — Nanotechnology Research and Education Centre RAS • Introduction • Transistor discovery • Discovery of laser-maser principle and birth of optoelectronics • Heterostructure early proposals • Double heterostructure concept: classical, quantum well and superlattice heterostructure. “God-made” and “Man-made” crystals • Heterostructure electronics • Quantum dot heterostructures and development of quantum dot lasers • Future trends in heterostructure technology • Summary 2 The Nobel Prize in Physics 1956 "for their researches on semiconductors and their discovery of the transistor effect" William Bradford John Walter Houser Shockley Bardeen Brattain 1910–1989 1908–1991 1902–1987 3 4 5 6 W. Shockley and A. Ioffe. Prague. 1960. 7 The Nobel Prize in Physics 1964 "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle" Charles Hard Nicolay Aleksandr Townes Basov Prokhorov b. 1915 1922–2001 1916–2002 8 9 Proposals of semiconductor injection lasers • N. Basov, O. Krochin and Yu. Popov (Lebedev Institute, USSR Academy of Sciences, Moscow) JETP, 40, 1879 (1961) • M.G.A. Bernard and G. Duraffourg (Centre National d’Etudes des Telecommunications, Issy-les-Moulineaux, Seine) Physica Status Solidi, 1, 699 (1961) 10 Lasers and LEDs on p–n junctions • January 1962: observations -
Chapter 5 Semiconductor Laser
Chapter 5 Semiconductor Laser _____________________________________________ 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must exist but it was not until 1960 that TH Maiman first achieved laser at optical frequency in solid state ruby. Semiconductor laser is similar to the solid state laser like the ruby laser and helium-neon gas laser. The emitted radiation is highly monochromatic and produces a highly directional beam of light. However, the semiconductor laser differs from other lasers because it is small in 0.1mm long and easily modulated at high frequency simply by modulating the biasing current. Because of its uniqueness, semiconductor laser is one of the most important light sources for optical-fiber communication. It can be used in many other applications like scientific research, communication, holography, medicine, military, optical video recording, optical reading, high speed laser printing etc. The analysis of physics of laser is quite difficult and we summarize with the simplified version here. The application of laser although with a slow start in the 1960s but now very often new applications are found such as those mentioned earlier in the text. 5.1 Emission and Absorption of Radiation As mentioned in earlier Chapter, when an electron in an atom undergoes transition between two energy states or levels, it either absorbs or emits photon. When the electron transits from lower energy level to higher energy level, it absorbs photon. When an electron transits from higher energy level to lower energy level, it releases photon. -
First Line of Title
GALLIUM NITRIDE AND INDIUM GALLIUM NITRIDE BASED PHOTOANODES IN PHOTOELECTROCHEMICAL CELLS by John D. Clinger A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science with a major in Electrical and Computer Engineering Winter 2010 Copyright 2010 John D. Clinger All Rights Reserved GALLIUM NITRIDE AND INDIUM GALLIUM NITRIDE BASED PHOTOANODES IN PHOTOELECTROCHEMICAL CELLS by John D. Clinger Approved: __________________________________________________________ Robert L. Opila, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ James Kolodzey, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Kenneth E. Barner, Ph.D. Chair of the Department of Electrical and Computer Engineering Approved: __________________________________________________________ Michael J. Chajes, Ph.D. Dean of the College of Engineering Approved: __________________________________________________________ Debra Hess Norris, M.S. Vice Provost for Graduate and Professional Education ACKNOWLEDGMENTS I would first like to thank my advisors Dr. Robert Opila and Dr. James Kolodzey as well as my former advisor Dr. Christiana Honsberg. Their guidance was invaluable and I learned a great deal professionally and academically while working with them. Meghan Schulz and Inci Ruzybayev taught me how to use the PEC cell setup and gave me excellent ideas on preparing samples and I am very grateful for their help. A special thanks to Dr. C.P. Huang and Dr. Ismat Shah for arrangements that allowed me to use the lab and electrochemical equipment to gather my results. Thanks to Balakrishnam Jampana and Dr. Ian Ferguson at Georgia Tech for growing my samples, my research would not have been possible without their support. -
Junction Analysis and Temperature Effects in Semi-Conductor
Junction analysis and temperature effects in semi-conductor heterojunctions by Naresh Tandan A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Electrical Engineering Montana State University © Copyright by Naresh Tandan (1974) Abstract: A new classification for semiconductor heterojunctions has been formulated by considering the different mutual positions of conduction-band and valence-band edges. To the nine different classes of semiconductor heterojunction thus obtained, effects of different work functions, different effective masses of carriers and types of semiconductors are incorporated in the classification. General expressions for the built-in voltages in thermal equilibrium have been obtained considering only nondegenerate semiconductors. Built-in voltage at the heterojunction is analyzed. The approximate distribution of carriers near the boundary plane of an abrupt n-p heterojunction in equilibrium is plotted. In the case of a p-n heterojunction, considering diffusion of impurities from one semiconductor to the other, a practical model is proposed and analyzed. The effect of temperature on built-in voltage leads to the conclusion that built-in voltage in a heterojunction can change its sign, in some cases twice, with the choice of an appropriate doping level. The total change of energy discontinuities (&ΔEc + ΔEv) with increasing temperature has been studied, and it is found that this change depends on an empirical constant and the 0°K Debye temperature of the two semiconductors. The total change of energy discontinuity can increase or decrease with the temperature. Intrinsic semiconductor-heterojunction devices are studied? band gaps of value less than 0.7 eV. -
Introduction to Semiconductor
Introduction to semiconductor Semiconductors: A semiconductor material is one whose electrical properties lie in between those of insulators and good conductors. Examples are: germanium and silicon. In terms of energy bands, semiconductors can be defined as those materials which have almost an empty conduction band and almost filled valence band with a very narrow energy gap (of the order of 1 eV) separating the two. Types of Semiconductors: Semiconductor may be classified as under: a. Intrinsic Semiconductors An intrinsic semiconductor is one which is made of the semiconductor material in its extremely pure form. Examples of such semiconductors are: pure germanium and silicon which have forbidden energy gaps of 0.72 eV and 1.1 eV respectively. The energy gap is so small that even at ordinary room temperature; there are many electrons which possess sufficient energy to jump across the small energy gap between the valence and the conduction bands. 1 Alternatively, an intrinsic semiconductor may be defined as one in which the number of conduction electrons is equal to the number of holes. Schematic energy band diagram of an intrinsic semiconductor at room temperature is shown in Fig. below. b. Extrinsic Semiconductors: Those intrinsic semiconductors to which some suitable impurity or doping agent or doping has been added in extremely small amounts (about 1 part in 108) are called extrinsic or impurity semiconductors. Depending on the type of doping material used, extrinsic semiconductors can be sub-divided into two classes: (i) N-type semiconductors and (ii) P-type semiconductors. 2 (i) N-type Extrinsic Semiconductor: This type of semiconductor is obtained when a pentavalent material like antimonty (Sb) is added to pure germanium crystal. -
Piezo-Phototronic Effect Enhanced UV Photodetector Based on Cui/Zno
Liu et al. Nanoscale Research Letters (2016) 11:281 DOI 10.1186/s11671-016-1499-1 NANO EXPRESS Open Access Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double- shell grown on flexible copper microwire Jingyu Liu1†, Yang Zhang1†, Caihong Liu1, Mingzeng Peng1, Aifang Yu1, Jinzong Kou1, Wei Liu1, Junyi Zhai1* and Juan Liu2* Abstract In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain. Keywords: Photodetector, Flexible nanodevice, Heterojunction, Piezo-phototronic effect, Double-shell nanostructure Background nanostructured ZnO devices with flexible capability, Wurtzite-structured zinc oxide and gallium nitride are force/strain-modulated photoresponsing behaviors resulted gaining much attention due to their exceptional optical, from the change of Schottky barrier height (SBH) at the electrical, and piezoelectric properties which present metal-semiconductor heterojunction or the modification of potential applications in the diverse areas including the band diagram of semiconductor composites [15, 16]. -
17 Band Diagrams of Heterostructures
Herbert Kroemer (1928) 17 Band diagrams of heterostructures 17.1 Band diagram lineups In a semiconductor heterostructure, two different semiconductors are brought into physical contact. In practice, different semiconductors are “brought into contact” by epitaxially growing one semiconductor on top of another semiconductor. To date, the fabrication of heterostructures by epitaxial growth is the cleanest and most reproducible method available. The properties of such heterostructures are of critical importance for many heterostructure devices including field- effect transistors, bipolar transistors, light-emitting diodes and lasers. Before discussing the lineups of conduction and valence bands at semiconductor interfaces in detail, we classify heterostructures according to the alignment of the bands of the two semiconductors. Three different alignments of the conduction and valence bands and of the forbidden gap are shown in Fig. 17.1. Figure 17.1(a) shows the most common alignment which will be referred to as the straddled alignment or “Type I” alignment. The most widely studied heterostructure, that is the GaAs / AlxGa1– xAs heterostructure, exhibits this straddled band alignment (see, for example, Casey and Panish, 1978; Sharma and Purohit, 1974; Milnes and Feucht, 1972). Figure 17.1(b) shows the staggered lineup. In this alignment, the steps in the valence and conduction band go in the same direction. The staggered band alignment occurs for a wide composition range in the GaxIn1–xAs / GaAsySb1–y material system (Chang and Esaki, 1980). The most extreme band alignment is the broken gap alignment shown in Fig. 17.1(c). This alignment occurs in the InAs / GaSb material system (Sakaki et al., 1977). -
Semiconductor: Types and Band Structure
Semiconductor: Types and Band structure What are Semiconductors? Semiconductors are the materials which have a conductivity and resistivity in between conductors (generally metals) and non-conductors or insulators (such ceramics). Semiconductors can be compounds such as gallium arsenide or pure elements, such as germanium or silicon. Properties of Semiconductors Semiconductors can conduct electricity under preferable conditions or circumstances. This unique property makes it an excellent material to conduct electricity in a controlled manner as required. Unlike conductors, the charge carriers in semiconductors arise only because of external energy (thermal agitation). It causes a certain number of valence electrons to cross the energy gap and jump into the conduction band, leaving an equal amount of unoccupied energy states, i.e. holes. Conduction due to electrons and holes are equally important. Resistivity: 10-5 to 106 Ωm Conductivity: 105 to 10-6 mho/m Temperature coefficient of resistance: Negative Current Flow: Due to electrons and holes Semiconductor acts like an insulator at Zero Kelvin. On increasing the temperature, it works as a conductor. Due to their exceptional electrical properties, semiconductors can be modified by doping to make semiconductor devices suitable for energy conversion, switches, and amplifiers. Lesser power losses. Semiconductors are smaller in size and possess less weight. Their resistivity is higher than conductors but lesser than insulators. The resistance of semiconductor materials decreases with the increase in temperature and vice-versa. Examples of Semiconductors: Gallium arsenide, germanium, and silicon are some of the most commonly used semiconductors. Silicon is used in electronic circuit fabrication and gallium arsenide is used in solar cells, laser diodes, etc. -
XI. Band Theory and Semiconductors I
XI. ELECTRONIC PROPERTIES (DRAFT) 11.1 THE ALLOWED ENERGIES OF ELECTRONS Over the next few weeks we are going to explore the electrical properties of materials. Our starting point for this investigation is simply to ask the question, “Why do some materials conduct electricity and others don’t?” It should come as no surprise that the answer to this question can be found in structure, in this case the structure of the electrons density, which in turn is related to the electron energies and how these may change when a material is subjected to an electrical potential difference, i.e., hooked up to a battery. Up until the early part of the twentieth century it was thought that electrons obeyed the laws of classical mechanics, and, just like everything we could observe at that time, an electron could be made to move in a way that it would take on any energy we wished. For example, if we want a ball with the mass of 0.25 kg to have a kinetic energy of 0.5 J, all we need do is accelerate it to exactly 2 m/sec. If we want its kinetic energy to be 0.501 J, then we need to accelerate it to 2.001999 m/sec. If we want it to have a kinetic energy of X, it must have a velocity of exactly (8X)1/2. According to the principles of classical mechanics, there is nothing that prevents us from doing this. However, it turns out that these principles are not quite right, under some circumstances the ball cannot be made to take on any energy we desire, it can only possess specific energies, which we often denote with a subscript, En. -
Development of Metal Oxide Solar Cells Through Numerical Modelling
Development of Metal Oxide Solar Cells through Numerical Modelling Le Zhu Doctor of Philosophy awarded by The University of Bolton August, 2012 Institute for Renewable Energy and Environment Technologies, University of Bolton Acknowledgements I would like to acknowledge Professor Jikui (Jack) Luo and Professor Guosheng Shao for the professional and patient guidance during the whole research. I would also like to thank the kind help by and the academic discussion with the members of solar cell group and other colleagues in the department, Mr. Liu Lu, Dr. Xiaoping Han, Dr. Xiaohong Xia, Mr. Yonglong Shen, Miss. Quanrong Deng and Mr. Muhammad Faruq. I would also like to acknowledge the financial support from the Technology Strategy Board under the grant number TP11/LCE/6/I/AE142J. For my beloved parents Thank you for your love and support. I Abstract Photovoltaic (PV) devices become increasingly important due to the foreseeable energy crisis, limitation in natural fossil fuel resources and associated green-house effect caused by carbon consumption. At present, silicon-based solar cells dominate the photovoltaic market owing to the well-established microelectronics industry which provides high quality Si-materials and reliable fabrication processes. However ever- increased demand for photovoltaic devices with better energy conversion efficiency at low cost drives researchers round the world to search for cheaper materials, low-cost processing, and thinner or more efficient device structures. Therefore, new materials and structures are desired to improve the performance/price ratio to make it more competitive to traditional energy. Metal Oxide (MO) semiconductors are one group of the new low cost materials with great potential for PV application due to their abundance and wide selections of properties. -
Msc Thesis Optimization of Heterojunction C-Si Solar Cells with Front Junction Architecture
Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Optimization of heterojunction c-Si solar cells with front junction architecture by Camilla Massacesi MSc Thesis Optimization of heterojunction c-Si solar cells with front junction architecture by Camilla Massacesi to obtain the degree of Master of Science in Sustainable Energy Technology at the Delft University of Technology, to be defended publicly on Thursday October 5, 2017 at 9:30 AM. Student number: 4512308 Project duration: October 25, 2016 – October 5, 2017 Supervisors: Dr. O. Isabella, Dr. G. Yang Assessment Committee: Prof. dr. M. Zeman, Dr. M. Mastrangeli, Dr. O. Isabella, Dr. G. Yang I know I will always burn to be The one who seeks so I may find The more I search, the more my need Time was never on my side So you remind me what left this outlaw torn. Abstract Wafer-based crystalline silicon (c-Si) solar cells currently dominate the photovoltaic (PV) market with high-thermal budget (T > 700 ∘퐶) architectures (e.g. i-PERC and PERT). However, also low-thermal (T < 250 ∘퐶) budget heterojunction architecture holds the potential to become mainstream owing to the achievable high efficiency and the relatively simple lithography-free process. A typical heterojunction c-Si solar cell is indeed based on textured n-type and high bulk lifetime wafer. Its front and rear sides are passivated with less than 10-푛푚 thick intrinsic (i) hydrogenated amorphous silicon (a-Si:H) and front and rear side coated with less than 10-푛푚 thick doped a-Si:H layers. -
CHAPTER 1: Semiconductor Materials & Physics
Chapter 1 1 CHAPTER 1: Semiconductor Materials & Physics In this chapter, the basic properties of semiconductors and microelectronic devices are discussed. 1.1 Semiconductor Materials Solid-state materials can be categorized into three classes - insulators, semiconductors, and conductors. As shown in Figure 1.1, the resistivity of semiconductors, ρ, is typically between 10-2 and 108 Ω-cm. The portion of the periodic table related to semiconductors is depicted in Table 1.1. Figure 1.1: Typical range of conductivities for insulators, semiconductors, and conductors. Semiconductors can be composed of a single element such as silicon and germanium or consist of two or more elements for compound semiconductors. A binary III-V semiconductor is one comprising one element from Column III (such as gallium) and another element from Column V (for instance, arsenic). The common element and compound semiconductors are displayed in Table 1.2. City University of Hong Kong Chapter 1 2 Table 1.1: Portion of the Periodic Table Related to Semiconductors. Period Column II III IV V VI 2 B C N Boron Carbon Nitrogen 3 Mg Al Si P S Magnesium Aluminum Silicon Phosphorus Sulfur 4 Zn Ga Ge As Se Zinc Gallium Germanium Arsenic Selenium 5 Cd In Sn Sb Te Cadmium Indium Tin Antimony Tellurium 6 Hg Pd Mercury Lead Table 1.2: Element and compound semiconductors. Elements IV-IV III-V II-VI IV-VI Compounds Compounds Compounds Compounds Si SiC AlAs CdS PbS Ge AlSb CdSe PbTe BN CdTe GaAs ZnS GaP ZnSe GaSb ZnTe InAs InP InSb City University of Hong Kong Chapter 1 3 1.2 Crystal Structure Most semiconductor materials are single crystals.