Metals, Semiconductors, and Insulators Every Solid Has Its Own Characteristic Energy Band Structure

Total Page:16

File Type:pdf, Size:1020Kb

Metals, Semiconductors, and Insulators Every Solid Has Its Own Characteristic Energy Band Structure Metals, Semiconductors, and Insulators Every solid has its own characteristic energy band structure. In order for a material to be conductive, both free electrons and empty states must be available. Metals have free electrons and partially filled valence bands, therefore they are highly conductive (a). Semimetals have their highest band filled. This filled band, however, overlaps with the next higher band, therefore they are conductive but with slightly higher resistivity than normal metals (b). Examples: arsenic, bismuth, and antimony. Insulators have filled valence bands and empty conduction bands, separated by a large band gap Eg(typically >4eV), they have high resistivity (c ). Semiconductors have similar band structure as insulators but with a much smaller band gap. Some electrons can jump to the empty conduction band by thermal or optical excitation (d). Eg=1.1 eV for Si, 0.67 eV for Ge and 1.43 eV for GaAs Conduction in Terms of Band Metals An energy band is a range of allowed electron energies. The energy band in a metal is only partially filled with electrons. Metals have overlapping valence and conduction bands Drude Model of Electrical Conduction in Metals Conduction of electrons in metals – A Classical Approach: In the absence of an applied electric field (ξ) the electrons move in random directions colliding with random impurities and/or lattice imperfections in the crystal arising from thermal motion of ions about their equilibrium positions. The frequency of electron-lattice imperfection collisions can be described by a mean free path λ -- the average distance an electron travels between collisions. When an electric field is applied the electron drift (on average) in the direction opposite to that of the field with drift velocity v The drift velocity is much less than the effective instantaneous speed (v) of the random motion −2 − 1 8− 1 1 2 3 In copperv ≈ 10 cm. swhilev≈10 cm. swherem v= k T 2 e 2 B The drift speed can be calculated in terms of the applied electric field ξ and of v and λ When an electric field is applied to an electron in the metal it experiences a force qξ qξ resulting in acceleration (a) a = me Then the electron collides with a lattice imperfection and changes its direction λ randomly. The mean time between collisions is τ = q ⋅ξ ⋅τ q ⋅ξ ⋅λ v The drift velocity isv = a ⋅τ = = me me ⋅ v If n is the number of conduction electrons per unit volume and J is the current density Combining with the definition of resistivity ivesJ g = nqν =σξ n⋅ q2 ⋅λ q ⋅λ q ⋅τ σ = μ = = me ⋅ v me ⋅ v me q=1.6x10-19C For an electron to become free to conduct, it must be promoted into an empty available energy state For metals, these empty states are adjacent to the filled states Generally, energy supplied by an electric field is enough to stimulate electrons into an empty state “Freedom” Empty States Energy Band States Filled with Electrons Electron Energy Distance Band Diagram: Metal T > 0 EC Fermi “filling” Energy band to function be “filled” EF Conduction band (Partially Filled) E = 0 At T = 0, all levels in conduction band below the Fermi energy EF are filled with electrons, while all levels above EF are empty. Electrons are free to move into “empty” states of conduction band with only a small electric field E, leading to high electrical conductivity! At T > 0, electrons have a probability to be thermally “excited” from below the Fermi energy to above it. Resistivity (ρ) in Metals Resistivity typically increases linearly with temperature: ρt = ρo + αT Phonons scatter electrons. Where ρo and α are constants for an specific material Impurities tend to increase resistivity: Impurities scatter electrons in metals Plastic Deformation tends to raise resistivity dislocations scatter electrons 1 σ= =nqμ ρ The electrical conductivity is controlled by controlling the number of charge carriers in the material (n) and the mobility or “ease of movement” of the charge carriers (μ) Temperature Dependence, Metals There are three contributions to ρ: ρt due to phonons (thermal) ρi due to impurities ρd due to deformation ρ = ρt + ρi+ ρd The number of electrons in the conduction band does not vary with temperature. All the observed temperature dependence of σ in metals arise from changes in μ ScatteringScattering byby ImpuritiesImpurities andand PhononsPhonons Thermal: Phonon scattering Proportional to temperature ρt= ρ o +a T Impurity or Composition scattering Independent of temperature Proportional to impurity concentration Solid Solution ρi=Ac( i 1− i c ) Two Phase ρt =αρVV α+ ρ β β Deformation ρd must= experiment be ally determined Insulator The valence band and conduction band are separated by a large (> 4eV) energy gap, which is a “forbidden” range of energies. Electrons must be promoted across the energy gap to conduct, but the energy gap is large. Energy gap º Eg “Conduction Band” Empty “Forbidden” Energy Gap Electron Energy “Valence Band” Filled with Electrons Distance Band Diagram: Insulator T > 0 Conduction band (Empty) EC Egap EF E Valence band V (Filled) At T = 0, lower valence band is filled with electrons and upper conduction band is empty, leading to zero conductivity. Fermi energy EF is at midpoint of large energy gap (2-10 eV) between conduction and valence bands. At T > 0, electrons are usually NOT thermally “excited” from valence to conduction band, leading to zero conductivity. Conduction in Ionic Materials (Insulators) Conduction by electrons (Electronic Conduction): In a ceramic, all the outer (valence) electrons are involved in ionic or covalent bonds and thus they are restricted to an ambit of one or two atoms. −Eg 2 BTk If Eg is the energy gap, the fraction of electrons in the conduction band is: e A good insulator will have a band gap >>5eV and kBT~0.025eV at room temperature As a result of thermal excitation, the fraction of electrons in the conduction band is ~e-200 or 10-80. There are other ways of changing the electrical conductivity in the ceramic which have a far greater effect than temperature. •Doping with an element whose valence is different from the atom it replaces. The doping levels in an insulator are generally greater than the ones used in semiconductors. Turning it around, material purity is important in making a good insulator. •If the valence of an ion can be variable (like iron), “hoping” of conduction can occur, also known as “polaron” conduction. Transition elements. •Transition elements: Empty or partially filled d or f orbitals can overlap providing a conduction network throughout the solid. Conduction by Ions: ionic conduction It often occurs by movement of entire ions, since the energy gap is too large for electrons to enter the conduction band. Z q.. D μ = The mobility of the ions (charge carriers) is given by: kB . T Where q is the electronic charge ; D is the diffusion coefficient ; kB is Boltzmann’s constant, T is the absolute temperature and Z is the valence of the ion. The mobility of the ions is many orders of magnitude lower than the mobility of the electrons, hence the conductivity is very small: σ n= Z... μ q Example: Suppose that the electrical conductivity of MgO is determined primarily by the diffusion of Mg2+ ions. Estimate the mobility of Mg2+ ions and calculate the electrical conductivity of MgO at 1800oC. Data: Diffusion Constant of Mg in MgO = 0.0249cm2/s ; lattice parameter of MgO a=0.396x10-7cm ; Activation Energy for the Diffusion of Mg2+ in MgO = -19 79,000cal/mol ; kB=1.987cal/K=k-mol; For MgO Z=2/ion; q=1.6x10 C; -23 kB=1.38x10 J/K-mol First, we need to calculate the diffusion coefficient D 2 ⎛ −QD ⎞ cm ⎛ − 79000cal/ mol ⎞ DD= o exp⎜ 0⎟ = . 0239 exp⎜ ⎟ ⎝ kT ⎠ s 1⎝./()cal 987 mol−1800 Kx + K 273⎠ D=1.119x10-10cm2/s Next, we need to find the mobility −19 −10 2 Z.. q( Dcarriers2 /1 6 )( . 10 ion× C )( 1× . 1 10 ) C−9 . cm μ= = −23 1= 12. × 10 k1B . T 38( . 10× )( 1800+ ) 273 J. s C ~ Amp . sec ; J ~ Amp . sec .Volt μ=1.12x10-9 cm2/V.s MgO has the NaCl structure (with 4 Mg2+ and 4O2- per cell) Thus, the Mg2+ ions per cubic cm is: Mg4 2+ ions/ cell n = 6= 4. × ions 1022 / 3 cm 0(. 396× −7cm 10) 3 6σ= 4nZq( 10 . μ = 2 )( ×22 1 )( 6 .× 10−19 )(× 1 .−9 12 ) 10 C. cm2 22σ=. 94 × −6 10 cm3..V s C ~ Amp.sec ; V ~ Amp.Ω σ = 2.294 x 10-5 (Ω.cm)-1 Example: The soda silicate glass of composition 20%Na2O-80%SiO2 and a density of approximately 2.4g.cm-3 has a conductivity of 8.25x10-6 (Ω-m)-1 at 150oC. If the conduction occurs by the diffusion of Na+ ions, what is their drift mobility? Data: Atomic masses of Na, O and Si are 23, 16 and 28.1 respectively Solution: We can calculate the drift mobility (μ) of the Na+ ions from the conductivity expression σ =ni × q× μi + Where ni is the concentration of Na ions in the structure. 20%Na2O-80%SiO2 can0 be 2written 2 as=.M 23At ( × ( 1 ) 16 (+ )) 0 + . 8 ( × (1 . 281 ) + ( 1 )) 2 16 (Na O) -(SiO ) . Its mass can be −1 2 0.2 2 0.8 M 60= ..g 48 mol calculated as: At The number of (Na2O)0.2-(SiO2)0.8 units per unit volume can be found from the density −3 23− 1 ρ2×NA 4(..)(.g cm 6× x 023 mol 10) n = = −1 M At 60..g 48 mol 22 −3 2n=.()()Na 39 × O 102 0 SiO 2.
Recommended publications
  • Lecture Notes: BCS Theory of Superconductivity
    Lecture Notes: BCS theory of superconductivity Prof. Rafael M. Fernandes Here we will discuss a new ground state of the interacting electron gas: the superconducting state. In this macroscopic quantum state, the electrons form coherent bound states called Cooper pairs, which dramatically change the macroscopic properties of the system, giving rise to perfect conductivity and perfect diamagnetism. We will mostly focus on conventional superconductors, where the Cooper pairs originate from a small attractive electron-electron interaction mediated by phonons. However, in the so- called unconventional superconductors - a topic of intense research in current solid state physics - the pairing can originate even from purely repulsive interactions. 1 Phenomenology Superconductivity was discovered by Kamerlingh-Onnes in 1911, when he was studying the transport properties of Hg (mercury) at low temperatures. He found that below the liquifying temperature of helium, at around 4:2 K, the resistivity of Hg would suddenly drop to zero. Although at the time there was not a well established model for the low-temperature behavior of transport in metals, the result was quite surprising, as the expectations were that the resistivity would either go to zero or diverge at T = 0, but not vanish at a finite temperature. In a metal the resistivity at low temperatures has a constant contribution from impurity scattering, a T 2 contribution from electron-electron scattering, and a T 5 contribution from phonon scattering. Thus, the vanishing of the resistivity at low temperatures is a clear indication of a new ground state. Another key property of the superconductor was discovered in 1933 by Meissner.
    [Show full text]
  • Concepts of Condensed Matter Physics Spring 2015 Exercise #1
    Concepts of condensed matter physics Spring 2015 Exercise #1 Due date: 21/04/2015 1. Adding long range hopping terms In class we have shown that at low energies (near half-filling) electrons in graphene have a doubly degenerate Dirac spectrum located at two points in the Brillouin zone. An important feature of this dispersion relation is the absence of an energy gap between the upper and lower bands. However, in our analysis we have restricted ourselves to the case of nearest neighbor hopping terms, and it is not clear if the above features survive the addition of more general terms. Write down the Bloch-Hamiltonian when next nearest neighbor and next-next nearest neighbor terms are included (with amplitudes 푡’ and 푡’’ respectively). Draw the spectrum for the case 푡 = 1, 푡′ = 0.4, 푡′′ = 0.2. Show that the Dirac cones survive the addition of higher order terms, and find the corresponding low-energy Hamiltonian. In the next question, you will study under which circumstances the Dirac cones remain stable. 2. The robustness of Dirac fermions in graphene –We know that the lattice structure of graphene has unique symmetries (e.g. 3-fold rotational symmetry of the honeycomb lattice). The question is: What protects the Dirac spectrum? Namely, what inherent symmetry in graphene we need to violate in order to destroy the massless Dirac spectrum of the electrons at low energies (i.e. open a band gap). In this question, consider only nearest neighbor terms. a. Stretching the graphene lattice - one way to reduce the symmetry of graphene is to stretch its lattice in one direction.
    [Show full text]
  • Semiconductors Band Structure
    Semiconductors Basic Properties Band Structure • Eg = energy gap • Silicon ~ 1.17 eV • Ge ~ 0.66 eV 1 Intrinsic Semiconductors • Pure Si, Ge are intrinsic semiconductors. • Some electrons elevated to conduction band by thermal energy. Fermi-Dirac Distribution • The probability that a particular energy state ε is filled is just the F-D distribution. • For intrinsic conductors at room temperature the chemical potential, µ, is approximately equal to the Fermi Energy, EF. • The Fermi Energy is in the middle of the band gap. 2 Conduction Electrons • If ε - EF >> kT then • If we measure ε from the top of the valence band and remember that EF lies in the middle of the band gap then Conduction Electrons • A full analysis taking into account the number of states per energy (density of states) gives an estimate for the fraction of electrons in the conduction band of 3 Electrons and Holes • When an electron in the valence band is excited into the conduction band it leaves behind a hole. Holes • The holes act like positive charge carriers in the valence band. Electric Field 4 Holes • In terms of energy level electrons tend to fall into lower energy states which means that the holes tends to rise to the top of the valence band. Photon Excitations • Photons can excite electrons into the conduction band as well as thermal fluctuations 5 Impurity Semiconductors • An impurity is introduced into a semiconductor (doping) to change its electronic properties. • n-type have impurities with one more valence electron than the semiconductor. • p-type have impurities with one fewer valence electron than the semiconductor.
    [Show full text]
  • Junction Analysis and Temperature Effects in Semi-Conductor
    Junction analysis and temperature effects in semi-conductor heterojunctions by Naresh Tandan A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Electrical Engineering Montana State University © Copyright by Naresh Tandan (1974) Abstract: A new classification for semiconductor heterojunctions has been formulated by considering the different mutual positions of conduction-band and valence-band edges. To the nine different classes of semiconductor heterojunction thus obtained, effects of different work functions, different effective masses of carriers and types of semiconductors are incorporated in the classification. General expressions for the built-in voltages in thermal equilibrium have been obtained considering only nondegenerate semiconductors. Built-in voltage at the heterojunction is analyzed. The approximate distribution of carriers near the boundary plane of an abrupt n-p heterojunction in equilibrium is plotted. In the case of a p-n heterojunction, considering diffusion of impurities from one semiconductor to the other, a practical model is proposed and analyzed. The effect of temperature on built-in voltage leads to the conclusion that built-in voltage in a heterojunction can change its sign, in some cases twice, with the choice of an appropriate doping level. The total change of energy discontinuities (&ΔEc + ΔEv) with increasing temperature has been studied, and it is found that this change depends on an empirical constant and the 0°K Debye temperature of the two semiconductors. The total change of energy discontinuity can increase or decrease with the temperature. Intrinsic semiconductor-heterojunction devices are studied? band gaps of value less than 0.7 eV.
    [Show full text]
  • Introduction to Semiconductor
    Introduction to semiconductor Semiconductors: A semiconductor material is one whose electrical properties lie in between those of insulators and good conductors. Examples are: germanium and silicon. In terms of energy bands, semiconductors can be defined as those materials which have almost an empty conduction band and almost filled valence band with a very narrow energy gap (of the order of 1 eV) separating the two. Types of Semiconductors: Semiconductor may be classified as under: a. Intrinsic Semiconductors An intrinsic semiconductor is one which is made of the semiconductor material in its extremely pure form. Examples of such semiconductors are: pure germanium and silicon which have forbidden energy gaps of 0.72 eV and 1.1 eV respectively. The energy gap is so small that even at ordinary room temperature; there are many electrons which possess sufficient energy to jump across the small energy gap between the valence and the conduction bands. 1 Alternatively, an intrinsic semiconductor may be defined as one in which the number of conduction electrons is equal to the number of holes. Schematic energy band diagram of an intrinsic semiconductor at room temperature is shown in Fig. below. b. Extrinsic Semiconductors: Those intrinsic semiconductors to which some suitable impurity or doping agent or doping has been added in extremely small amounts (about 1 part in 108) are called extrinsic or impurity semiconductors. Depending on the type of doping material used, extrinsic semiconductors can be sub-divided into two classes: (i) N-type semiconductors and (ii) P-type semiconductors. 2 (i) N-type Extrinsic Semiconductor: This type of semiconductor is obtained when a pentavalent material like antimonty (Sb) is added to pure germanium crystal.
    [Show full text]
  • Periodic Trends Lab CHM120 1The Periodic Table Is One of the Useful
    Periodic Trends Lab CHM120 1The Periodic Table is one of the useful tools in chemistry. The table was developed around 1869 by Dimitri Mendeleev in Russia and Lothar Meyer in Germany. Both used the chemical and physical properties of the elements and their tables were very similar. In vertical groups of elements known as families we find elements that have the same number of valence electrons such as the Alkali Metals, the Alkaline Earth Metals, the Noble Gases, and the Halogens. 2Metals conduct electricity extremely well. Many solids, however, conduct electricity somewhat, but nowhere near as well as metals, which is why such materials are called semiconductors. Two examples of semiconductors are silicon and germanium, which lie immediately below carbon in the periodic table. Like carbon, each of these elements has four valence electrons, just the right number to satisfy the octet rule by forming single covalent bonds with four neighbors. Hence, silicon and germanium, as well as the gray form of tin, crystallize with the same infinite network of covalent bonds as diamond. 3The band gap is an intrinsic property of all solids. The following image should serve as good springboard into the discussion of band gaps. This is an atomic view of the bonding inside a solid (in this image, a metal). As we can see, each of the atoms has its own given number of energy levels, or the rings around the nuclei of each of the atoms. These energy levels are positions that electrons can occupy in an atom. In any solid, there are a vast number of atoms, and hence, a vast number of energy levels.
    [Show full text]
  • Energy Bands in Crystals
    Energy Bands in Crystals This chapter will apply quantum mechanics to a one dimensional, periodic lattice of potential wells which serves as an analogy to electrons interacting with the atoms of a crystal. We will show that as the number of wells becomes large, the allowed energy levels for the electron form nearly continuous energy bands separated by band gaps where no electron can be found. We thus have an interesting quantum system which exhibits many dual features of the quantum continuum and discrete spectrum. several tenths nm The energy band structure plays a crucial role in the theory of electron con- ductivity in the solid state and explains why materials can be classified as in- sulators, conductors and semiconductors. The energy band structure present in a semiconductor is a crucial ingredient in understanding how semiconductor devices work. Energy levels of “Molecules” By a “molecule” a quantum system consisting of a few periodic potential wells. We have already considered a two well molecular analogy in our discussions of the ammonia clock. 1 V -c sin(k(x-b)) V -c sin(k(x-b)) cosh βx sinhβ x V=0 V = 0 0 a b d 0 a b d k = 2 m E β= 2m(V-E) h h Recall for reasonably large hump potentials V , the two lowest lying states (a even ground state and odd first excited state) are very close in energy. As V →∞, both the ground and first excited state wave functions become completely isolated within a well with little wave function penetration into the classically forbidden central hump.
    [Show full text]
  • Study of Density of States and Energy Band Structure in Bi₂te₃ by Using
    International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015 ISSN: 2395-3470 www.ijseas.com Study of density of states and energy band structure in Bi Te by using FP-LAPW method 1 1 Dandeswar DekaP ,P A. RahmanP P and R. K. Thapa ₂ ₃ Department of Physics, Condensed Matter Theory Research Group, Mizoram University, Aizawl 796 004, Mizoram 1 P DepartmentP of Physics, Gauhati University, Guwahati 781014 Abstract. The electronic structures for Bi Te have been investigated by first principles full potential- linearized augmented plane wave (FP-LAPW) method with Generalized Gradient Approximation (GGA). The calculated density of states (DOS) and ₂band₃ structure show semiconducting behavior of Bi Te with a narrow direct energy band gap of 0.3 eV. Keywords: DFT, FP-LAPW, DOS, energy band structure, energy band gap. ₂ ₃ PACS: 71.15.-m, 71.15.Dx, 71.15.Mb, 71.20.-b, 75.10.-b 1. INTRODUCTION In recent years the scientific research among the narrow band gap semicondutors are the latest trend due to their applicability in various technological sectors. Bismuth telluride (Bi Te ), a semiconductor with narrow energy band gap, is a unique multifunctional material. Semiconductors can be grown with various compositions from monoatomic layer to nano-scale islands, rows,₂ arrays,₃ in the art of quantum technologies and the numbers of conceivable new electronic devices are manufactured [1]. Bi Te is a classic room temperature thermoelectric material[2], and it is the chalcogenide of poor metal having important technological applications in optoelectronic nano devices [3], field-emission₂ ₃ electronic devices [4], photo-detectors and photo-electronic devices [5] and photovoltaic convertors, thermoelectric cooling technologies based on the Peltier effect [6,7].
    [Show full text]
  • Optical Properties and Electronic Density of States* 1 ( Manuel Cardona2 > Brown University, Providence, Rhode Island and DESY, Homburg, Germany
    t JOU RN AL O F RESEAR CH of th e National Bureau of Sta ndards -A. Ph ysics and Chemistry j Vol. 74 A, No.2, March- April 1970 7 Optical Properties and Electronic Density of States* 1 ( Manuel Cardona2 > Brown University, Providence, Rhode Island and DESY, Homburg, Germany (October 10, 1969) T he fundame nta l absorption spectrum of a so lid yie lds information about critical points in the opti· cal density of states. This informati on can be used to adjust parameters of the band structure. Once the adju sted band structure is known , the optical prope rties and the de nsity of states can be generated by nume ri cal integration. We revi ew in this paper the para metrization techniques used for obtaining band structures suitable for de nsity of s tates calculations. The calculated optical constants are compared with experim enta l results. The e ne rgy derivative of these opti cal constants is di scussed in connection with results of modulated re fl ecta nce measure ments. It is also shown that information about de ns ity of e mpty s tates can be obtained fro m optical experime nt s in vo lving excit ati on from dee p core le ve ls to the conduction band. A deta il ed comparison of the calc ul ate d one·e lectron opti cal line s hapes with experime nt reveals deviations whi ch can be interpre ted as exciton effects. The acc umulating ex pe rime nt al evide nce poin t· in g in this direction is reviewed togethe r with the ex isting theo ry of these effects.
    [Show full text]
  • Semiconductor: Types and Band Structure
    Semiconductor: Types and Band structure What are Semiconductors? Semiconductors are the materials which have a conductivity and resistivity in between conductors (generally metals) and non-conductors or insulators (such ceramics). Semiconductors can be compounds such as gallium arsenide or pure elements, such as germanium or silicon. Properties of Semiconductors Semiconductors can conduct electricity under preferable conditions or circumstances. This unique property makes it an excellent material to conduct electricity in a controlled manner as required. Unlike conductors, the charge carriers in semiconductors arise only because of external energy (thermal agitation). It causes a certain number of valence electrons to cross the energy gap and jump into the conduction band, leaving an equal amount of unoccupied energy states, i.e. holes. Conduction due to electrons and holes are equally important. Resistivity: 10-5 to 106 Ωm Conductivity: 105 to 10-6 mho/m Temperature coefficient of resistance: Negative Current Flow: Due to electrons and holes Semiconductor acts like an insulator at Zero Kelvin. On increasing the temperature, it works as a conductor. Due to their exceptional electrical properties, semiconductors can be modified by doping to make semiconductor devices suitable for energy conversion, switches, and amplifiers. Lesser power losses. Semiconductors are smaller in size and possess less weight. Their resistivity is higher than conductors but lesser than insulators. The resistance of semiconductor materials decreases with the increase in temperature and vice-versa. Examples of Semiconductors: Gallium arsenide, germanium, and silicon are some of the most commonly used semiconductors. Silicon is used in electronic circuit fabrication and gallium arsenide is used in solar cells, laser diodes, etc.
    [Show full text]
  • XI. Band Theory and Semiconductors I
    XI. ELECTRONIC PROPERTIES (DRAFT) 11.1 THE ALLOWED ENERGIES OF ELECTRONS Over the next few weeks we are going to explore the electrical properties of materials. Our starting point for this investigation is simply to ask the question, “Why do some materials conduct electricity and others don’t?” It should come as no surprise that the answer to this question can be found in structure, in this case the structure of the electrons density, which in turn is related to the electron energies and how these may change when a material is subjected to an electrical potential difference, i.e., hooked up to a battery. Up until the early part of the twentieth century it was thought that electrons obeyed the laws of classical mechanics, and, just like everything we could observe at that time, an electron could be made to move in a way that it would take on any energy we wished. For example, if we want a ball with the mass of 0.25 kg to have a kinetic energy of 0.5 J, all we need do is accelerate it to exactly 2 m/sec. If we want its kinetic energy to be 0.501 J, then we need to accelerate it to 2.001999 m/sec. If we want it to have a kinetic energy of X, it must have a velocity of exactly (8X)1/2. According to the principles of classical mechanics, there is nothing that prevents us from doing this. However, it turns out that these principles are not quite right, under some circumstances the ball cannot be made to take on any energy we desire, it can only possess specific energies, which we often denote with a subscript, En.
    [Show full text]
  • Development of Metal Oxide Solar Cells Through Numerical Modelling
    Development of Metal Oxide Solar Cells through Numerical Modelling Le Zhu Doctor of Philosophy awarded by The University of Bolton August, 2012 Institute for Renewable Energy and Environment Technologies, University of Bolton Acknowledgements I would like to acknowledge Professor Jikui (Jack) Luo and Professor Guosheng Shao for the professional and patient guidance during the whole research. I would also like to thank the kind help by and the academic discussion with the members of solar cell group and other colleagues in the department, Mr. Liu Lu, Dr. Xiaoping Han, Dr. Xiaohong Xia, Mr. Yonglong Shen, Miss. Quanrong Deng and Mr. Muhammad Faruq. I would also like to acknowledge the financial support from the Technology Strategy Board under the grant number TP11/LCE/6/I/AE142J. For my beloved parents Thank you for your love and support. I Abstract Photovoltaic (PV) devices become increasingly important due to the foreseeable energy crisis, limitation in natural fossil fuel resources and associated green-house effect caused by carbon consumption. At present, silicon-based solar cells dominate the photovoltaic market owing to the well-established microelectronics industry which provides high quality Si-materials and reliable fabrication processes. However ever- increased demand for photovoltaic devices with better energy conversion efficiency at low cost drives researchers round the world to search for cheaper materials, low-cost processing, and thinner or more efficient device structures. Therefore, new materials and structures are desired to improve the performance/price ratio to make it more competitive to traditional energy. Metal Oxide (MO) semiconductors are one group of the new low cost materials with great potential for PV application due to their abundance and wide selections of properties.
    [Show full text]