Development of Metal Oxide Solar Cells Through Numerical Modelling

Total Page:16

File Type:pdf, Size:1020Kb

Development of Metal Oxide Solar Cells Through Numerical Modelling Development of Metal Oxide Solar Cells through Numerical Modelling Le Zhu Doctor of Philosophy awarded by The University of Bolton August, 2012 Institute for Renewable Energy and Environment Technologies, University of Bolton Acknowledgements I would like to acknowledge Professor Jikui (Jack) Luo and Professor Guosheng Shao for the professional and patient guidance during the whole research. I would also like to thank the kind help by and the academic discussion with the members of solar cell group and other colleagues in the department, Mr. Liu Lu, Dr. Xiaoping Han, Dr. Xiaohong Xia, Mr. Yonglong Shen, Miss. Quanrong Deng and Mr. Muhammad Faruq. I would also like to acknowledge the financial support from the Technology Strategy Board under the grant number TP11/LCE/6/I/AE142J. For my beloved parents Thank you for your love and support. I Abstract Photovoltaic (PV) devices become increasingly important due to the foreseeable energy crisis, limitation in natural fossil fuel resources and associated green-house effect caused by carbon consumption. At present, silicon-based solar cells dominate the photovoltaic market owing to the well-established microelectronics industry which provides high quality Si-materials and reliable fabrication processes. However ever- increased demand for photovoltaic devices with better energy conversion efficiency at low cost drives researchers round the world to search for cheaper materials, low-cost processing, and thinner or more efficient device structures. Therefore, new materials and structures are desired to improve the performance/price ratio to make it more competitive to traditional energy. Metal Oxide (MO) semiconductors are one group of the new low cost materials with great potential for PV application due to their abundance and wide selections of properties. However, the development of MO solar cells is very limited so far mostly due to the poor materials and poor understanding of the materials and devices. This research conducts a systematic numerical investigation on MO thin film solar cells. Various MO semiconductors are used to explore different structures and combinations for solar cells; and the effects of material properties and structures are optimised for the best performances. For the ideal cases, it is found that a TiO2/CuO hetero-junction solar cell shows a conversion efficiency of ~16% with the CuO film thickness only 1.5µm. When a back surface field layer, such as Cu2O, is added at the back of this device, the open circuit voltage (VOC) can be improved by 70% without sacrificing short circuit current, resulting in a conversion efficiency of ~28%, increased by ~70% as compared to the two-layered structure. This is close to the theoretical maximum efficiency of silicon single junction solar cell, which requires a 200~400µm thickness film. Modelling also shows the alternative Schottky barrier type MO semiconductor solar cells can perform well. For an ideal Metal/CuO Schottky barrier solar cell, the conversion efficiency could be as high as ~17%, better than the TiO2/CuO hetero-junction solar cell. II The effects of defects and interface states are then considered for more realistic cases as there exists vast amount of defects mostly due to oxygen/metal vacancies/interstitials in the films, and vast amount of interface states due to the large lattice mismatch of the two materials used. All defects and interface states in the solar cell layers, hetero-junction interfaces and metal/semiconductor contacts are found detrimental to the cells. For example, if the defect concentration in the CuO layer in 16 -3 TiO2/CuO structure is compatible to the acceptor concentration of 1x10 cm , the cell efficiency would be reduced dramatically to 7%. With defect concentration even as 13 -3 low as 1x10 cm , the significant VOC improvements in the TiO2/CuO/Cu2O would be reduced to an ignorable value. For interface states, they capture and recombine both electrons and hols passing through the hetero-junction interface, leading to deteriorated performance. The simulation shows that the interface states have a detrimental effect on the performance if its density is higher than 1012cm-2. However it was found that by increasing the difference of doping concentration in p-n junctions, the interface state effect minimized significantly. Furthermore, it is found the optical reflection at hetero-junction interface may induce a serious conversion efficiency loss, if the n-type semiconductors and p-type semiconductors have very different refractive indices. For some MO devices such as TiO2/CuO and ZnO/Cu2O, the reflection rate is around 5%, while for other material systems such as ZnO/Si, or ITO/Ge, the interfacial optical reflection may reach 10~30%, resulting in an efficiency loss by ~10%. It is also found that the interfacial reflection should be calculated through experimental data of refractive index at each photon frequency, rather than the dielectric constant. Otherwise, huge error may be introduced to the simulation results. III Table of Contents Table of Contents ........................................................................................................................... IV List of Tables and Figures ............................................................................................................. VII List of Abbreviations and Symbols ................................................................................................ XV Chapter 1 Introduction .................................................................................................................. 1 1.1 Background Information ...................................................................................... 2 1.2 Solar Cell Simulation Work, the Research Topic.................................................... 4 1.3 Thesis Structure ................................................................................................... 5 Chapter 2 Literature Review .......................................................................................................... 8 2.1 History Background.............................................................................................. 8 2.2 Modern PV Solar Cells .......................................................................................... 9 2.2.1 Si­based Solar Cells.......................................................................................... 9 2.2.2 III­V Compound Semiconductor Solar Cells .....................................................14 2.2.3 Chalcogenide Semiconductor Solar Cells ........................................................15 2.2.4 Metal Oxide Semiconductor Solar Cells ..........................................................18 2.3 Device Simulation .............................................................................................. 22 2.3.1 Key Fundamental Equations and Simulation Tools ................................................22 2.3.2 One­Dimensional Device Simulation ...............................................................26 2.4 Summary ........................................................................................................... 34 Chapter 3 The Semiconductor Theory Contained in the Simulation Approach ............................50 3.1 Materials ........................................................................................................... 50 3.1.1 Energy bands and material classification ........................................................50 3.1.2 Intrinsic semiconductors ................................................................................52 3.1.3 Extrinsic semiconductors ................................................................................53 3.2 Joining Materials Together ................................................................................. 54 3.2.1 P­n junction formation ...................................................................................55 3.2.2 Band offsets at interfaces ...............................................................................57 3.2.3 Interface­states (ISt) density...........................................................................60 3.3 Carrier Generation, Transportation and Recombination ..................................... 60 3.3.1 Poisson’s equation .........................................................................................61 IV 3.3.2 Generation and recombination ......................................................................62 3.3.3 Continuity equations ......................................................................................64 3.3.4 Optical modelling ...........................................................................................66 3.4 Solar cell efficiency ............................................................................................ 67 3.5 Summary ........................................................................................................... 68 Chapter 4 Silicon Solar Cell Simulation .......................................................................................70 4.1 Simulation Settings ............................................................................................ 70 4.2 Results and Discussion ....................................................................................... 72 4.2.1 Validation of simulation packages ..................................................................72 For the purpose of validation of simulation packages, a simple solar
Recommended publications
  • Junction Analysis and Temperature Effects in Semi-Conductor
    Junction analysis and temperature effects in semi-conductor heterojunctions by Naresh Tandan A thesis submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Electrical Engineering Montana State University © Copyright by Naresh Tandan (1974) Abstract: A new classification for semiconductor heterojunctions has been formulated by considering the different mutual positions of conduction-band and valence-band edges. To the nine different classes of semiconductor heterojunction thus obtained, effects of different work functions, different effective masses of carriers and types of semiconductors are incorporated in the classification. General expressions for the built-in voltages in thermal equilibrium have been obtained considering only nondegenerate semiconductors. Built-in voltage at the heterojunction is analyzed. The approximate distribution of carriers near the boundary plane of an abrupt n-p heterojunction in equilibrium is plotted. In the case of a p-n heterojunction, considering diffusion of impurities from one semiconductor to the other, a practical model is proposed and analyzed. The effect of temperature on built-in voltage leads to the conclusion that built-in voltage in a heterojunction can change its sign, in some cases twice, with the choice of an appropriate doping level. The total change of energy discontinuities (&ΔEc + ΔEv) with increasing temperature has been studied, and it is found that this change depends on an empirical constant and the 0°K Debye temperature of the two semiconductors. The total change of energy discontinuity can increase or decrease with the temperature. Intrinsic semiconductor-heterojunction devices are studied? band gaps of value less than 0.7 eV.
    [Show full text]
  • Introduction to Semiconductor
    Introduction to semiconductor Semiconductors: A semiconductor material is one whose electrical properties lie in between those of insulators and good conductors. Examples are: germanium and silicon. In terms of energy bands, semiconductors can be defined as those materials which have almost an empty conduction band and almost filled valence band with a very narrow energy gap (of the order of 1 eV) separating the two. Types of Semiconductors: Semiconductor may be classified as under: a. Intrinsic Semiconductors An intrinsic semiconductor is one which is made of the semiconductor material in its extremely pure form. Examples of such semiconductors are: pure germanium and silicon which have forbidden energy gaps of 0.72 eV and 1.1 eV respectively. The energy gap is so small that even at ordinary room temperature; there are many electrons which possess sufficient energy to jump across the small energy gap between the valence and the conduction bands. 1 Alternatively, an intrinsic semiconductor may be defined as one in which the number of conduction electrons is equal to the number of holes. Schematic energy band diagram of an intrinsic semiconductor at room temperature is shown in Fig. below. b. Extrinsic Semiconductors: Those intrinsic semiconductors to which some suitable impurity or doping agent or doping has been added in extremely small amounts (about 1 part in 108) are called extrinsic or impurity semiconductors. Depending on the type of doping material used, extrinsic semiconductors can be sub-divided into two classes: (i) N-type semiconductors and (ii) P-type semiconductors. 2 (i) N-type Extrinsic Semiconductor: This type of semiconductor is obtained when a pentavalent material like antimonty (Sb) is added to pure germanium crystal.
    [Show full text]
  • XI. Band Theory and Semiconductors I
    XI. ELECTRONIC PROPERTIES (DRAFT) 11.1 THE ALLOWED ENERGIES OF ELECTRONS Over the next few weeks we are going to explore the electrical properties of materials. Our starting point for this investigation is simply to ask the question, “Why do some materials conduct electricity and others don’t?” It should come as no surprise that the answer to this question can be found in structure, in this case the structure of the electrons density, which in turn is related to the electron energies and how these may change when a material is subjected to an electrical potential difference, i.e., hooked up to a battery. Up until the early part of the twentieth century it was thought that electrons obeyed the laws of classical mechanics, and, just like everything we could observe at that time, an electron could be made to move in a way that it would take on any energy we wished. For example, if we want a ball with the mass of 0.25 kg to have a kinetic energy of 0.5 J, all we need do is accelerate it to exactly 2 m/sec. If we want its kinetic energy to be 0.501 J, then we need to accelerate it to 2.001999 m/sec. If we want it to have a kinetic energy of X, it must have a velocity of exactly (8X)1/2. According to the principles of classical mechanics, there is nothing that prevents us from doing this. However, it turns out that these principles are not quite right, under some circumstances the ball cannot be made to take on any energy we desire, it can only possess specific energies, which we often denote with a subscript, En.
    [Show full text]
  • Msc Thesis Optimization of Heterojunction C-Si Solar Cells with Front Junction Architecture
    Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Optimization of heterojunction c-Si solar cells with front junction architecture by Camilla Massacesi MSc Thesis Optimization of heterojunction c-Si solar cells with front junction architecture by Camilla Massacesi to obtain the degree of Master of Science in Sustainable Energy Technology at the Delft University of Technology, to be defended publicly on Thursday October 5, 2017 at 9:30 AM. Student number: 4512308 Project duration: October 25, 2016 – October 5, 2017 Supervisors: Dr. O. Isabella, Dr. G. Yang Assessment Committee: Prof. dr. M. Zeman, Dr. M. Mastrangeli, Dr. O. Isabella, Dr. G. Yang I know I will always burn to be The one who seeks so I may find The more I search, the more my need Time was never on my side So you remind me what left this outlaw torn. Abstract Wafer-based crystalline silicon (c-Si) solar cells currently dominate the photovoltaic (PV) market with high-thermal budget (T > 700 ∘퐶) architectures (e.g. i-PERC and PERT). However, also low-thermal (T < 250 ∘퐶) budget heterojunction architecture holds the potential to become mainstream owing to the achievable high efficiency and the relatively simple lithography-free process. A typical heterojunction c-Si solar cell is indeed based on textured n-type and high bulk lifetime wafer. Its front and rear sides are passivated with less than 10-푛푚 thick intrinsic (i) hydrogenated amorphous silicon (a-Si:H) and front and rear side coated with less than 10-푛푚 thick doped a-Si:H layers.
    [Show full text]
  • CHAPTER 1: Semiconductor Materials & Physics
    Chapter 1 1 CHAPTER 1: Semiconductor Materials & Physics In this chapter, the basic properties of semiconductors and microelectronic devices are discussed. 1.1 Semiconductor Materials Solid-state materials can be categorized into three classes - insulators, semiconductors, and conductors. As shown in Figure 1.1, the resistivity of semiconductors, ρ, is typically between 10-2 and 108 Ω-cm. The portion of the periodic table related to semiconductors is depicted in Table 1.1. Figure 1.1: Typical range of conductivities for insulators, semiconductors, and conductors. Semiconductors can be composed of a single element such as silicon and germanium or consist of two or more elements for compound semiconductors. A binary III-V semiconductor is one comprising one element from Column III (such as gallium) and another element from Column V (for instance, arsenic). The common element and compound semiconductors are displayed in Table 1.2. City University of Hong Kong Chapter 1 2 Table 1.1: Portion of the Periodic Table Related to Semiconductors. Period Column II III IV V VI 2 B C N Boron Carbon Nitrogen 3 Mg Al Si P S Magnesium Aluminum Silicon Phosphorus Sulfur 4 Zn Ga Ge As Se Zinc Gallium Germanium Arsenic Selenium 5 Cd In Sn Sb Te Cadmium Indium Tin Antimony Tellurium 6 Hg Pd Mercury Lead Table 1.2: Element and compound semiconductors. Elements IV-IV III-V II-VI IV-VI Compounds Compounds Compounds Compounds Si SiC AlAs CdS PbS Ge AlSb CdSe PbTe BN CdTe GaAs ZnS GaP ZnSe GaSb ZnTe InAs InP InSb City University of Hong Kong Chapter 1 3 1.2 Crystal Structure Most semiconductor materials are single crystals.
    [Show full text]
  • High Performance N-Type Polymer Semiconductors for Printed Logic
    High Performance n-Type Polymer Semiconductors for Printed Logic Circuits by Bin Sun A thesis presented at University of Waterloo in fulfillment of the thesis requirement for the degree of Doctoral of Philosophy in Chemical Engineering Waterloo, Ontario, Canada, 2016 © Bin Sun 2016 Author’s Declaration I hereby declare that this thesis consists of materials all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contribution This thesis contains materials from several published or submitted papers, some of which resulted from collaboration with my colleagues in the group. The content in Chapter 2 has been partially published in Adv. Mater. 2014, 26, 2636. B. Sun, W. Hong, Z. Yan, H. Aziz, Y. Li The content in Chapter 3 has been partially published in Polym. Chem. 2015, 6, 938. B. Sun, W. Hong, H. Aziz, Y. Li The content in Chapter 4 has been partially published in Org. Electron. 2014, 15, 3787. B. Sun, W. Hong, E. Thibau, H. Aziz, Z. Lu, Y. Li The content in Chapter 5 has been partially published in ACS Appl Mater Interfaces 2015, 7, 18662. B. Sun, W. Hong, E. Thibau, H. Aziz, Z. Lu, Y. Li, iii Abstract Solution processable polymer semiconductors open up potential applications for radio-frequency identification (RFID) tags, flexible displays, electronic paper and organic memory due to their low cost, large area processability, flexibility and good mechanical properties.
    [Show full text]
  • Semiconductor Science and Leds
    Optoelectronics EE/OPE 451, OPT 444 Fall 2009 Section 1: T/Th 9:30- 10:55 PM John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville, Huntsville, AL 35899 Ph. (256) 824-2898 email: [email protected] Office Hours: Tues/Thurs 2-3PM JDW, ECE Fall 2009 SEMICONDUCTOR SCIENCE AND LIGHT EMITTING DIODES • 3.1 Semiconductor Concepts and Energy Bands – A. Energy Band Diagrams – B. Semiconductor Statistics – C. Extrinsic Semiconductors – D. Compensation Doping – E. Degenerate and Nondegenerate Semiconductors – F. Energy Band Diagrams in an Applied Field • 3.2 Direct and Indirect Bandgap Semiconductors: E-k Diagrams • 3.3 pn Junction Principles – A. Open Circuit – B. Forward Bias – C. Reverse Bias – D. Depletion Layer Capacitance – E. Recombination Lifetime • 3.4 The pn Junction Band Diagram – A. Open Circuit – B. Forward and Reverse Bias • 3.5 Light Emitting Diodes – A. Principles – B. Device Structures • 3.6 LED Materials • 3.7 Heterojunction High Intensity LEDs Prentice-Hall Inc. • 3.8 LED Characteristics © 2001 S.O. Kasap • 3.9 LEDs for Optical Fiber Communications ISBN: 0-201-61087-6 • Chapter 3 Homework Problems: 1-11 http://photonics.usask.ca/ Energy Band Diagrams • Quantization of the atom • Lone atoms act like infinite potential wells in which bound electrons oscillate within allowed states at particular well defined energies • The Schrödinger equation is used to define these allowed energy states 2 2m e E V (x) 0 x2 E = energy, V = potential energy • Solutions are in the form of
    [Show full text]
  • Metals, Semiconductors, and Insulators Every Solid Has Its Own Characteristic Energy Band Structure
    Metals, Semiconductors, and Insulators Every solid has its own characteristic energy band structure. In order for a material to be conductive, both free electrons and empty states must be available. Metals have free electrons and partially filled valence bands, therefore they are highly conductive (a). Semimetals have their highest band filled. This filled band, however, overlaps with the next higher band, therefore they are conductive but with slightly higher resistivity than normal metals (b). Examples: arsenic, bismuth, and antimony. Insulators have filled valence bands and empty conduction bands, separated by a large band gap Eg(typically >4eV), they have high resistivity (c ). Semiconductors have similar band structure as insulators but with a much smaller band gap. Some electrons can jump to the empty conduction band by thermal or optical excitation (d). Eg=1.1 eV for Si, 0.67 eV for Ge and 1.43 eV for GaAs Conduction in Terms of Band Metals An energy band is a range of allowed electron energies. The energy band in a metal is only partially filled with electrons. Metals have overlapping valence and conduction bands Drude Model of Electrical Conduction in Metals Conduction of electrons in metals – A Classical Approach: In the absence of an applied electric field (ξ) the electrons move in random directions colliding with random impurities and/or lattice imperfections in the crystal arising from thermal motion of ions about their equilibrium positions. The frequency of electron-lattice imperfection collisions can be described by a mean free path λ -- the average distance an electron travels between collisions. When an electric field is applied the electron drift (on average) in the direction opposite to that of the field with drift velocity v The drift velocity is much less than the effective instantaneous speed (v) of the random motion −2 − 1 8− 1 1 2 3 In copperv ≈ 10 cm.
    [Show full text]
  • A Study of Processing of Indium Doped Semiconductor Material
    A Study of Processing of Indium Doped Semiconductor Material. A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology In Metallurgical and Materials Engineering Submitted by Rama Chandra Sarangi Roll No. 211MM1369 Department of Metallurgical & Materials Engineering National Institute of Technology Rourkela 2011-2013 Acknowledgement I express my sincere gratitude to Dr. S. C.Mishra(Prof.) and Dr. S. Sarkar (Assistant Professor) of the Department of Metallurgical and Material Engineering, National Institute of Technology, Rourkela, for giving me this great opportunity to work under his guidance. I am also thankful to him for his valuable suggestions and constructive criticism which has helped me in the development of this work. I am also thankful to his optimistic nature which has helped this project to come a long way through. I am sincerely thankful to Prof. B. C. Ray, Professor and Head of Metallurgical and Materials Engineering Department for providing me necessary facility for my work. I express my sincere thanks to Prof A. K. mondal, the M.Tech Project co-ordinators of Metallurgical & Materials Engineering department. Special thanks to my family members always encouraging me for higher studies, all department members specially Mr. Rajesh, Lab assistant of SEM lab and Mr. Sahoo, Lab assistant of Material Science lab all my friends of department of Metallurgical and Materials Engineering for being so supportive and helpful in every possible way. RAMACHANDRASARANGI Roll No. : 211MM1369 CONTENTS Title Page No. Certificate i Acknowledgement ii Abstract iii Contents iv List of figures vii 1. INTRODUCTION 1 1.1 Resistance and its origin 1 1.1.1 Causes of resistance 1 1.1.2Temperaturedependenceofresistance 2 1.2 Resistivity 2 1.3 Material Description 4 1.4 Objective 6 2.
    [Show full text]
  • Lecture 7: Extrinsic Semiconductors - Fermi Level
    Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 EF in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < Ts)................7 3.2 Medium temperature regime (Ts < T < Ti)...........8 1 Dopant materials Typical doping concentrations in semiconductors are in ppm (10−6) and ppb (10−9). This small addition of `impurities' can cause orders of magnitude increase in conductivity. The impurity has to be of the right kind. For Si, n-type impurities are P, As, and Sb while p-type impurities are B, Al, Ga, and In. These form energy states close to the conduction and valence band and the ionization energies are a few tens of meV . Ge lies the same group IV as Si so that these elements are also used as impurities for Ge. The ionization energy data n-type impurities for Si and Ge are summarized in table 1. The ionization energy data for p-type impurities for Si and Ge is summarized in table 2. The dopant ionization energies for Ge are lower than Si. Ge has a lower band gap (0.67 eV ) compared to Si (1.10 eV ). Also, the Table 1: Ionization energies in meV for n-type impurities for Si and Ge. Typical values are close to room temperature thermal energy. Material P As Sb Si 45 54 39 Ge 12 12.7 9.6 1 MM5017: Electronic materials, devices, and fabrication Table 2: Ionization energies in meV for p-type impurities. Typical values are comparable to room temperature thermal energy.
    [Show full text]
  • Ferroelectric-Semiconductor Systems for New Generation of Solar Cells
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-19-2017 Ferroelectric-Semiconductor Systems for New Generation of Solar Cells Rahmatollah Eskandari University of New Orleans, New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Semiconductor and Optical Materials Commons Recommended Citation Eskandari, Rahmatollah, "Ferroelectric-Semiconductor Systems for New Generation of Solar Cells" (2017). University of New Orleans Theses and Dissertations. 2318. https://scholarworks.uno.edu/td/2318 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Ferroelectric-Semiconductor Systems for New Generation of Solar Cells A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Engineering and Applied Science (Physics) by Rahmatollah Eskandari M.Sc. University of Tabriz, Iran, 2006 B.Sc. Amirkabir University of Technology, Iran, 2002 May, 2017 Copyright 2017 Rahmatollah Eskandari ii To: My Family iii Acknowledgement I would like to express my heartfelt gratitude and appreciation to my advisor Prof.
    [Show full text]
  • Electrons and Holes in Semiconductors
    Hu_ch01v4.fm Page 1 Thursday, February 12, 2009 10:14 AM 1 Electrons and Holes in Semiconductors CHAPTER OBJECTIVES This chapter provides the basic concepts and terminology for understanding semiconductors. Of particular importance are the concepts of energy band, the two kinds of electrical charge carriers called electrons and holes, and how the carrier concentrations can be controlled with the addition of dopants. Another group of valuable facts and tools is the Fermi distribution function and the concept of the Fermi level. The electron and hole concentrations are closely linked to the Fermi level. The materials introduced in this chapter will be used repeatedly as each new device topic is introduced in the subsequent chapters. When studying this chapter, please pay attention to (1) concepts, (2) terminology, (3) typical values for Si, and (4) all boxed equations such as Eq. (1.7.1). he title and many of the ideas of this chapter come from a pioneering book, Electrons and Holes in Semiconductors by William Shockley [1], published Tin 1950, two years after the invention of the transistor. In 1956, Shockley shared the Nobel Prize in physics for the invention of the transistor with Brattain and Bardeen (Fig. 1–1). The materials to be presented in this and the next chapter have been found over the years to be useful and necessary for gaining a deep understanding of a large variety of semiconductor devices. Mastery of the terms, concepts, and models presented here will prepare you for understanding not only the many semiconductor devices that are in existence today but also many more that will be invented in the future.
    [Show full text]