
<p><strong>Zhores Alferov </strong></p><p><strong>The History of Semiconductor </strong><br><strong>Heterostructures Reserch: from Early Double Heterostructure </strong><br><strong>Concept to Modern Quantum Dot </strong><br><strong>Structures </strong></p><p><strong>St Petersburg Academic University — </strong><br><strong>Nanotechnology Research and Education Centre RAS </strong></p><p>• <strong>Introduction </strong>• <strong>Transistor discovery </strong>• <strong>Discovery of laser-maser principle and birth of optoelectronics </strong></p><p>• <strong>Heterostructure early proposals </strong>• <strong>Double heterostructure concept: classical, quantum well and superlattice heterostructure. “God-made” and “Man-made” crystals </strong></p><p>• <strong>Heterostructure electronics </strong>• <strong>Quantum dot heterostructures and development of quantum dot lasers </strong></p><p>• <strong>Future trends in heterostructure technology </strong>• <strong>Summary </strong></p><p>2</p><p><strong>The Nobel Prize in Physics 1956 </strong></p><p>"for their researches on semiconductors and their discovery of the transistor effect" </p><p></p><ul style="display: flex;"><li style="flex:1">William Bradford </li><li style="flex:1">Walter Houser </li><li style="flex:1">John </li></ul><p></p><p><strong>Shockley </strong></p><p>1910–1989 </p><p><strong>Brattain </strong></p><p>1902–1987 </p><p><strong>Bardeen </strong></p><p>1908–1991 </p><p></p><ul style="display: flex;"><li style="flex:1">3</li><li style="flex:1">4</li><li style="flex:1">5</li><li style="flex:1">6</li></ul><p></p><p>W. Shockley and A. Ioffe. Prague. 1960. </p><p>7</p><p><strong>The Nobel Prize in Physics 1964 </strong></p><p>"for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser-laser principle" </p><p></p><ul style="display: flex;"><li style="flex:1">Charles Hard </li><li style="flex:1">Aleksandr </li><li style="flex:1">Nicolay </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1"><strong>Townes </strong></li><li style="flex:1"><strong>Prokhorov </strong></li><li style="flex:1"><strong>Basov </strong></li></ul><p></p><p>1922–2001 </p><ul style="display: flex;"><li style="flex:1">b. 1915 </li><li style="flex:1">1916–2002 </li></ul><p></p><p></p><ul style="display: flex;"><li style="flex:1">8</li><li style="flex:1">9</li></ul><p></p><p><strong>Proposals of semiconductor injection lasers </strong></p><p>• <strong>N. Basov, O. Krochin and Yu. Popov </strong></p><p>(Lebedev Institute, USSR Academy of Sciences, Moscow) JETP, 40, 1879 (1961) </p><p>• <strong>M.G.A. Bernard and G. Duraffourg </strong></p><p>(Centre National d’Etudes des Telecommunications, Issy-les-Moulineaux, Seine) Physica Status Solidi, 1, 699 (1961) </p><p>10 </p><p><strong>Lasers and LEDs on p–n junctions </strong></p><p>• <strong>January 1962: </strong>observations of superlumenscences in GaAs p-n junctions <br>(Ioffe Institute, USSR). </p><p>• <strong>Sept.-Dec. 1962: </strong>laser action in GaAs and GaAsP p-n junctions <br>(General Electric , IBM (USA); Lebedev Institute (USSR). </p><p>Wavelength </p><p><strong>“+” </strong></p><p><em>E</em><sub style="top: 0.1918em;">F</sub><sup style="top: -0.777em;">n </sup><br><em>L</em><sub style="top: 0.1918em;">D</sub><sup style="top: -0.777em;">n </sup><br><em>L</em><sub style="top: 0.1918em;">D</sub><sup style="top: -0.777em;">p </sup></p><p><strong>p</strong></p><p></p><ul style="display: flex;"><li style="flex:1"><em>E</em><sub style="top: 0.1096em;">g </sub></li><li style="flex:1"><em>h</em>ν </li></ul><p></p><p>GaAs </p><p><strong>n</strong></p><p><em>E</em><sub style="top: 0.1918em;">F</sub><sup style="top: -0.777em;">p </sup></p><p>Cleaved mirror </p><p><strong>“–” </strong></p><p><em>E</em><sup style="top: -0.45em;">n </sup>– <em>E</em><sup style="top: -0.45em;">p </sup>> <em>E</em><sub style="top: 0.37em;">g </sub></p><p>Condition of optical gain: </p><p></p><ul style="display: flex;"><li style="flex:1">F</li><li style="flex:1">F</li></ul><p></p><p>11 </p><p><strong>The Nobel Prize in Physics 2000 </strong></p><p>"for basic work on information and communication technology" </p><p>“for developing semiconductor heterostructures used in high-speed- and opto-electronics” <br>“for his part in the invention of the integrated circuit” </p><p>Zhores I. <br>Herbert <br>Jack S. </p><p><strong>Alferov </strong><br><strong>Kilby </strong></p><p>1923–2005 </p><p><strong>Kroemer </strong></p><p>b. 1930 b. 1928 </p><p></p><ul style="display: flex;"><li style="flex:1">12 </li><li style="flex:1">13 </li></ul><p></p><p>circuit </p><p></p><ul style="display: flex;"><li style="flex:1">14 </li><li style="flex:1">15 </li><li style="flex:1">16 </li></ul><p></p><p><strong>Fundamental physical phenomena in classical heterostructures </strong></p><p>Electrons </p><p><em>E</em></p><p>(a) (b) (c) </p><p>c</p><p><strong>One-side Injection </strong></p><p>Propozal — 1948 (W. Shokley) Experiment — 1965 (Zh. Alferov <em>et al</em>.) </p><p>∆<em>E </em></p><p>c</p><p><em>F</em></p><p>n</p><p><em>F</em></p><p>p</p><p>Holes </p><p>∆<em>E </em></p><p>v</p><p><strong>Superinjection </strong></p><p>Theory — 1966 (Zh. Alferov <em>et al</em>.) </p><p>Experiment — 1968 (Zh. Alferov <em>et al</em>.) </p><p>Electrons </p><p><em>F</em><br><em>E</em></p><p>nc</p><p><em>F</em></p><p>p</p><p><em>E</em></p><p>v</p><p>Holes </p><p><strong>Diffusion in built-in quasielectric field </strong></p><p><strong>Electrons </strong></p><p>Theory — 1956 (H. Kroemer) Experiment — 1967 (Zh. Alferov <em>et al</em>.) </p><p>17 </p><p><strong>Fundamental physical phenomena in classical heterostructures </strong></p><p>(d) </p><p><strong>Electron and optical confinement </strong></p><p>Propozal — 1963 (Zh. Alferov, R. Kazarinov) <br>(H. Kroemer) </p><p><em>E</em></p><p>c</p><p><em>F</em></p><p>n</p><p><em>F E</em></p><p>Experiment — 1968 (Zh. Alferov <em>et al</em>.) </p><p>pv</p><p>(e) </p><p><strong>Superlattices </strong></p><p>Theory — 1962 (L.V. Keldysh) Experiment —1970 (L. Esaki <em>et al</em>.) </p><p><em>E E</em></p><p>c</p><p><strong>Stimulated emission: </strong></p><p>v</p><p>Theory — 1971 (R. Kazarinov and R. Suris) </p><p>Experiment —1994 (F. Capasso <em>et al.</em>) </p><p>18 </p><p><strong>Heterojunctions—a new kind of semiconductor materials: </strong></p><p><strong>Long journey from infinite interface recombination to ideal heterojunction </strong></p><p><strong>Lattice matched heterojunctions </strong></p><p>2.8 <br>AlP </p><p>• Ge–GaAs–1959 </p><p>(R. L. Anderson) </p><p>GaP <br>2.0 </p><p>1.2 0.4 <br>AlSb </p><p>• AlGaAs–1967 </p><p>(Zh. Alferov <em>et al</em>., J. M. Woodall & H. S. Rupprecht) </p><p>InP <br>GaAs </p><p>GaSb </p><p>InAs <br>Ge </p><p>• Quaternary HS <br>(InGaAsP & AlGaAsSb) </p><p>Proposal–1970 </p><p>5.40 5.56 5.72 5.88 6.04 6.20 <br>Lattice constant ( ) [300 K] </p><p>(Zh. Alferov <em>et al</em>.) </p><p>Å</p><p>First experiment–1972 </p><p>(Antipas <em>et al</em>.) </p><p>19 </p><p><strong>Radiation spectrum for the first low threshold </strong><br><strong>Al</strong><sub style="top: 0.5693em;"><em>x</em></sub><strong>Ga</strong><sub style="top: 0.5693em;"><strong>1–x</strong></sub><strong>As DHS laser at room temperature </strong></p><p>(a) </p><p>(3) <br>1.59 eV </p><p>1.39 eV </p><p>300 K <em>J</em><sub style="top: 0.3173em;">th </sub>= 4300 A/cm<sup style="top: -0.8057em;">2 </sup></p><p>×100 </p><p>(b) </p><p>1.59 eV <br>1.61 eV <br>(2) <br>(2) <br>1.61 eV </p><p>(1) <br>(1) </p><p>7760 <br>Wavelength ( </p><ul style="display: flex;"><li style="flex:1">7820 </li><li style="flex:1">7100 7700 8300 8900 </li></ul><p></p><ul style="display: flex;"><li style="flex:1">Wavelength ( </li><li style="flex:1">Å) </li><li style="flex:1">Å) </li></ul><p></p><p>20 </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages42 Page
-
File Size-