Anthocyanins Potentially Contribute to Defense Against Alzheimer's Disease

Total Page:16

File Type:pdf, Size:1020Kb

Anthocyanins Potentially Contribute to Defense Against Alzheimer's Disease molecules Review Anthocyanins Potentially Contribute to Defense against Alzheimer’s Disease Mohammad Afzal *, Amina Redha and Redha AlHasan Biological Sciences Department, Faculty of Science, Kuwait University, Safat-13060, Kuwait; [email protected] (A.R.); [email protected] (R.A.) * Correspondence: [email protected]; Tel.: +1-352-681-7347 Academic Editors: Takanori Tsuda and Wilhelmina Kalt Received: 25 September 2019; Accepted: 5 November 2019; Published: 22 November 2019 Abstract: Anthocyanins (ANTs) are plant pigments that belong to a flavanol class of polyphenols and have diverse pharmacological properties. These compounds are primarily found in fruits and 1 vegetables, with an average daily intake of 180 mgd− of these compounds in the developed world. ANTs are potent antioxidants that might regulate the free radical-mediated generation of amyloid peptides (Abeta-amyloids) in the brain, which causes Alzheimer’s disease (AD). This study presents a literature review of ANTs from different berries and their potential therapeutic value, with particular emphasis on neurodegenerative AD, which owing to oxidative stress. This review also highlights reactive oxygen species (ROS) generation through energy metabolism, nitrogen reactive species, the role of transition metals in generating ROS, and the radical-quenching mechanisms of natural antioxidants, including ANTs. The current status of the bioavailability, solubility, and structure activity relationship of ANTs is discussed herein. Keywords: anthocyanins; antioxidants; transition metals; reactive oxygen species 1. Introduction By definition, berries are small fleshy fruits produced from a single ovary. Berries from eight plant species are considered the healthiest fruit for consumption, namely strawberries, acai berries, grapes, blueberries, goji berries, bilberries, raspberries, and cranberries. Most berries are rich in non-nutritive/nutritive, water-soluble, bioactive flavonoid polyphenols. These include anthocyanidin (sugar-free anthocyanin (ANT)), ANT-3-glycosides, 5-glycosides, diglucosides, acylated ANTs, and enzymatically formed flavanol-ANTs adducts (vitisins). Pyrano-anthocyanins are formed by adding pyruvic acid and acetaldehyde to anthocyanin molecules. In ANTs, glycosylation might occur at positions 30, 40 and 50, as shown in Figure1[ 1]. These molecules have a common flavylium cation structure that generates color. ANTs are present in plant cell vacuoles, and their color is cell-sap pH-dependent [2,3]. Conocarpus lancifolius is a wild plant resistant to biotic and abiotic stress in the desert of Kuwait, and its berries are very rich in various anthocyanins (unpublished work of the authors). There are approximately 17 naturally occurring ANTs, six of which are very common. These include ANT glycosides/diglucosides of cyanidin, delphinidin, malvidin, pelargonidin, peonidin, and petunidin (Figure1). These ANTs also contain the six most common sugar residues, namely glucose, rhamnose, galactose, arabinose, xylose, and rutinose [2] (Figure1). To-date, more than 6000 flavonoid polyphenols have been reported [4]. Epidemiological and preclinical studies have shown that the polyphenols of red wine contribute in modulating neurodegenerative diseases, such as Alzheimer’s disease (AD) [5]. One such polyphenol is quercetin-3-O-glucoside (QG), which is a component of many vegetables and fruits, including apples, grapes, black tea, green tea, broccoli, and red onions. It is a potent brain-targeting bioflavonoid that is beneficial in limiting AD. A QG Molecules 2019, 24, 4255; doi:10.3390/molecules24234255 www.mdpi.com/journal/molecules Molecules 2019, 24, 4255 2 of 15 Molecules 2019, 24, x FOR PEER REVIEW 2 of 15 metabolite, quercetin-3-O-glucuronide, accumulates in the brain, significantly reducing Abeta 1–40 andaccumulates Abeta 1–42 in toxicity. the brain, At present,significantly many reducing health supplements Abeta 1–40 and containing Abeta 1–42 quercetin toxicity. are At available present, over themany counter. health Beta-secretase supplements iscontaining a rate limiting quercetin enzyme are available that forms over a the number counter. of Beta-secretase Abeta peptides is a from rate the amyloidlimiting precursor enzyme that protein forms to a yieldnumber Abeta of Abeta 40,Abeta41, peptides from and Abetathe amyloid 25–35. precursor These Abeta protein peptides to yield are involvedAbeta 40, in amyloid-mediatedAbeta41, and Abeta neurodysfunction 25–35. These Abeta [6]. peptides are involved in amyloid-mediated neurodysfunction [6]. 5 R3’ R4’ R5’ R3 R R6 R7 Cyanidin - OH - OH - H - OH - OH - H - OH Delphinidin - OH - OH - OH - OH - OH - H - OH Pelargonidin - H - OH - H - OH - OH - H - OH Malvidin -OCH 3 - OH - OCH3 - OH - OH - H - OH Peonidin -OCH3 - OH - H - OH - OH - H - OH Petunidin -OH - OH - H - OH - OH - H - OCH3 Chrysanthemin -OH - OH - H -O-Glucose - OH - H - OCH3 Cynidin-3-galactoside-OH - OH - H -O-galactose - OH - H - OCH3 Cyanidin-3-arabinoside -OH -O-arabinose - OCH - OH - H - OH - H 3 Figure 1. Naturally occurring substituted cyanidins and anthocyanidins. Figure 1. Naturally occurring substituted cyanidins and anthocyanidins. ToTo date, date, more more than than 650 650 ANTsANTs havehave beenbeen identifiedidentified from fruits fruits and and vegetables vegetables [7]. [7 ].ANT ANT micronutrientsmicronutrients have have many beneficialmany beneficial health eff ects,health including effects, cancer-preventive, including cancer-preventive, immuno-protective, andimmuno-protective, neuroprotective eandffects; neuroprotective moreover, they effects; prevent moreover, cognitive they function prevent impairment,cognitive function alleviate inflamedimpairment, and arduousalleviate joints,inflamed and and attenuate arduous rotundity, joints, and alopecia, attenuate dementia, rotundity, cardiovascular alopecia, dementia, diseases, andcardiovascular obesity [8– diseases,13]. Blackberries and obesity [8–13]. (Rubus Blackberries sp.), mulberries (Rubus sp (Morus.), mulberries alba L.), (Morus and alba elderberries L.), and haveelderberries antimutagenic, have antimicrobial,antimutagenic, anti-inflammatory, antimicrobial, anti-inflammatory, antidiabetic, and anti-neurodegenerativeantidiabetic, and activitiesanti-neurodegenerative [14,15]. These activities activities are [14,15]. associated These with activities their potentare associated antioxidant with actions,their potent which antioxidant help control oxidativeactions, stresswhich (OS) help due tocontrol aging. Theseoxidative ANTs stress inhibit (OS) metallo-proteinases due to aging. 2 andThese 9, which ANTs are associatedinhibit withmetallo-proteinases the metastasis of cancerous2 and 9, cells,which and are cisplatin-induced associated with renalthe metastasis pathophysiology of cancerous [16–19 ].cells, The inand vitro effectcisplatin-induced of ANTs on metabolic renal pathophysiology syndrome-related [16–19]. enzymes The and in anxietyvitro effect has alsoof beenANTs reported on metabolic [20,21 ]. syndrome-relatedBerries are also enzymes rich in and bioflavonoids anxiety has also and been ellagitannins, reported [20,21]. which are naturally found in fruits and vegetables,Berries are particularly also rich in bioflavonoids in the white and core ellagitannins, of citrus fruits. which Bioflavonoids are naturally found and their in fruits glycosides and vegetables, particularly in the white core of citrus fruits. Bioflavonoids and their glycosides are are structurally related to anthocyanidins and ANTs, affecting a wide range of biological systems. structurally related to anthocyanidins and ANTs, affecting a wide range of biological systems. These These molecules are the main antioxidants in plants used to treat allergies, viral infections, arthritis, molecules are the main antioxidants in plants used to treat allergies, viral infections, arthritis, and and anti-inflammatory conditions, including hemorrhoids. anti-inflammatory conditions, including hemorrhoids. Molecules 2019, 24, 4255 3 of 15 MoleculesQuercetin 2019, 24 (Figure, x FOR 2PEER) is a REVIEW polyphenolic bioflavonoid that is highly concentrated in red wine,3 grapes,of 15 broccoli, citrus, and red and yellow onions. In human breast cancer cell lines, quercetin is an agonist Quercetin (Figure 2) is a polyphenolic bioflavonoid that is highly concentrated in red wine, of the G protein-coupled α,β-estrogen receptors, which is activated by 17β-estradiol, in addition grapes, broccoli, citrus, and red and yellow onions. In human breast cancer cell lines, quercetin is an to regulating different genes and modulating learning and memory [22,23]. In rats, quercetin does agonist of the G protein-coupled α,β-estrogen receptors, which is activated by 17β-estradiol, in not undergo phase I metabolism; however, in phase II metabolism, it produces many conjugated addition to regulating different genes and modulating learning and memory[22,23]. In rats, metabolites, with five of its hydroxyl groups glucuronidated by UDP-glucuronosyl transferase. quercetin does not undergo phase I metabolism; however, in phase II metabolism, it produces many Quercetin-3-conjugatedO -glucosidesmetabolites, (Q-3-G)with five exhibit of its estrogenic-likehydroxyl groups behavior glucuronidated with non-specific by UDP-glucuronosyl proteins kinase inhibitortransferase. activities, Quercetin-3- and theyO-glucosides promote estrogenic (Q-3-G) exhibit receptors estrogenic-like [22,24]. Quercetin, behavior its with 3-O -glucosidenon-specific and its metaboliteproteins kinase quercetin-3- inhibitorO activities,-glucuronide
Recommended publications
  • A Combined Experimental and Computational Study of Chrysanthemin As a Pigment for Dye-Sensitized Solar Cells
    molecules Article A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells Atoumane Ndiaye 1,2 , Alle Dioum 1, Corneliu I. Oprea 2 , Anca Dumbrava 3,* , Jeanina Lungu 2, Adrian Georgescu 2, Florin Moscalu 2, Mihai A. Gîr¸tu 2,* , Aboubaker Chedikh Beye 1 and Issakha Youm 1,* 1 Department of Physics, Cheikh Anta Diop University of Dakar, 5005 Dakar-Fann, Senegal; [email protected] (A.N.); [email protected] (A.D.); [email protected] (A.C.B.) 2 Department of Physics, Ovidius University of Constanta, 900527 Constanta, Romania; [email protected] (C.I.O.); [email protected] (J.L.); [email protected] (A.G.); fl[email protected] (F.M.) 3 Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania * Correspondence: [email protected] (A.D.); [email protected] (M.A.G.); [email protected] (I.Y.) Abstract: The theoretical study of chrysanthemin (cyanidin 3-glucoside) as a pigment for TiO2-based dye-sensitized solar cells (DSSCs) was performed with the GAUSSSIAN 09 simulation. The electronic spectra of neutral and anionic chrysanthemin molecules were calculated by density functional theory with B3LYP functional and DGDZVP basis set. A better energy level alignment was found for partially deprotonated molecules of chrysanthemin, with the excited photoelectron having enough energy in order to be transferred to the conduction band of TiO2 semiconductor in DSSCs. In addition, we used the raw aqueous extracts of roselle (Hibiscus sabdariffa) calyces as the source of chrysanthemin Citation: Ndiaye, A.; Dioum, A.; and the extracts with various pH values were tested in DSSCs.
    [Show full text]
  • Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
    Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t
    [Show full text]
  • Compositions of Anthocyanin and Other Flavonoids in Cultured Cells of Rabbiteye Blueberry (Vaccinium Ashei Reade Cv
    Food Sci. Technol Res., 10 (3), 239-246, 2004 Compositions of Anthocyanin and Other Flavonoids in Cultured Cells of Rabbiteye Blueberry (Vaccinium ashei Reade cv. Tiiblue) Shioka HAMAMATSU,Kimiko YABE and Yoshihiko NAWA National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan Received August 18, 2003 ; Accepted April 2, 2004 Our blueberry cultured cells produce anthocyanins in high quantity (Nawa et al., Biosci. Biotech. Biochem., 57, 770-774, 1993). Using high performance liquid chromatography/mass spectrometry (LC-MS), 14 anthocyanins in the red cells derived from leaves of rabbiteye blueberry cv. Tifblue (Vaccinium ashei Reade) were identified as 3-galactoside (gal), 3-glucoside (glc) and 3-arabinoside (ara) of cyanidin (Cy), delphinidin (Dp), petunidin (Pe), peonidin (Pn) and malvidin (Mv), except for Mv 3-ara. The fruits additionally contained 15 anthocyanins and Mv 3-ara, as a main anthocyanin. The autumn red leaves contained Cy 3-gal, Cy 3-ara and Cy 3-glc. In the red cells and the leaves, derivatives of Cy were the most abundant at 85.7% (Cy 3-gal 49.1%, Cy 3-glc 5.8%, Cy 3-ara 30.9%) and 100% (Cy 3-gal 51.0%, Cy 3-glc 6.5%, Cy 3-ara 42.5%) of the total anthocyanins, respectively. In contrast, the fruits contained Mv derivatives as main components that amounted to 50.9% of the total anthocyanins; Mv 3-gal, Mv 3-ara and Mv 3-glc constituted 21.2, 15.3 and 14.4%, respectively. Cy derivatives in fruit anthocyanins amounted to 18.0% . The red cells produced 107 mg of anthocyaninlIOO g fr wt, which was slightly lower than that of the fruits (129 mg).
    [Show full text]
  • A Biochemical Survey of Some Mendelian Factors for Flower Colour
    A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators.
    [Show full text]
  • Cyanidin-3-O-Glucoside: Physical-Chemistry, Foodomics and Health Effects
    molecules Review Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects Francisco J. Olivas-Aguirre 1, Joaquín Rodrigo-García 1, Nina del R. Martínez-Ruiz 1, Arely I. Cárdenas-Robles 2, Sandra O. Mendoza-Díaz 2, Emilio Álvarez-Parrilla 1, Gustavo A. González-Aguilar 3, Laura A. de la Rosa 1, Arnulfo Ramos-Jiménez 1 and Abraham Wall-Medrano 1,* 1 Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; [email protected] (F.J.O.-A.); [email protected] (J.R.-G.); [email protected] (N.d.R.M.-R.); [email protected] (E.Á.-P.); [email protected] (L.A.d.l.R.); [email protected] (A.R.-J.) 2 Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Querétaro, Mexico; [email protected] (A.I.C.-R.); [email protected] (S.O.M.-D.) 3 Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a la Victoria km. 0.6, AP 1735, Hermosillo 83000, Sonora, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-(656)-688-1821; Fax: +52-(656)-688-1800 Academic Editors: Celestino Santos-Buelga and Arturo San Feliciano Received: 15 August 2016; Accepted: 13 September 2016; Published: 21 September 2016 Abstract: Anthocyanins (ACNs) are plant secondary metabolites from the flavonoid family. Red to blue fruits are major dietary sources of ACNs (up to 1 g/100 g FW), being cyanidin-3-O-glucoside (Cy3G) one of the most widely distributed.
    [Show full text]
  • Color and Pigment Analyses in Fruit Products
    Station Bulletin 624 Reprinted May 1993 Color and Pigment Analyses in Fruit Products Agriculiural Experiment Station Oregon State University For additional copies of this publication, write: Publications Orders Agricultural Communications Oregon State University Administrative Services A422 Corvallis, OR 97331-2119 Agricultural Experiment Station Oregon State University Station Bulletin 624 Reprinted May 1993 Color and Pigment Analyses in Fruit Products Ronald E. Wroistad Professor of Food Science and Technology Oregon State University In July 1992 the warehouse storing Oregon Agricultural Experiment Station publications was destroyed by fire. SB 624, originally published in October, 1976, is hereby reprinted in its entirety. COLOR AND PIGMENT ANALYSES IN FRUIT PRODUCTS Ronald E. Wroistad ABSTRACT Methods are described for making the following deter- minations in fruits and processed fruit products: anthocyanin pigment content, color density, polymeric color, browning, turbidity, and anthocyanin degrada- tion index. Tables list the anthocyanins of common fruits, their molecular weights, molar absorbances, and wavelengths of maximum absorption. Thirty-one references are given. KEY WORDS: color analyses, anthocyanin pigment, browning, fruits Introduction Measurement of pigment content, browning, color density, and haze are analytical problems confronting the food technologist working with fruit concentrates, juices, wines, jams and other processedpro- ducts. This publication includes some of the methods we have found practical in determining these parameters. We also have included tables which list anthocyanin pigments of fruits likelyto be processed in the Northwest and the molar absorption of the common occurring anthocyanin pigments. We have not included procedures of pigment extraction, isolation, and identification or methods for tristimulus colorimetry.Tristimulus colorimeters, such as the Hunter color-difference meter and the Lovi- bond tintometer, give the best measurements for visualappearance of a product.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Table S1. Metals with stdev W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 As <LOD <LOD 19.84±0.03 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD Ba 32.6±0.3 33.8±0.4 26.1±0.2 123.3±0.9 79.8±0.8 79.1±0.7 83.3±0.6 239.7±0.8 58.1±0.4 77.7±0.3 32.1±0.3 31.7±0.5 122.1±0.8 Cd 0.365±0.004 1.553±0.002 0.939±0.002 1.254±0.003 0.386±0.005 1.367±0.008 0.733±0.004 0.050±0.002 0.976±0.002 1.644±0.006 <LOD 0.593±0.004 0.375±0.003 Co 3.64±0.04 2.09±0.02 0.98±0.03 4.40±0.06 2.77±0.02 1.83±0.02 2.42±0.02 2.68±0.03 7.34±0.09 7.78±0.07 2.12±0.04 1.61±0.02 2.60±0.03 Cr <LOD <LOD <LOD <LOD 4.322±0.005 3.030±0004 <LOD 6.417±0.006 15.41±0.02 14.82±0.05 11.12±0.04 9.15±0.02 3.111±0.004 Pb <LOD 56.0±0.8 <LOD 20.8±0.9 80±2 11.7±0.6 2.20±0.05 175±3 45.0±0.8 <LOD 0.830±0.007 0.538±0.006 14.9±0.3 Sb 32.8±0.5 8.59±0.09 19.1±0.2 18.±0.2 67.5±0.5 37.9±0.2 9.58±0.05 46.5±0.3 44.8±0.4 18.50±0.08 7.26±0.03 44.3±0.2 29.6±0.4 Se <LOD <LOD <LOD <LOD 1.45±0.09 0.30±0.05 0.23±0.08 25.7±0.4 2.87±0.2 2.06±0.04 2.91±0.8 2.38±0.07 2.99±0.06 Ni 4.17±0.05 46.0±0.2 0.569±0.005 30.9±0.3 15.3±0.2 5.77±0.02 35.2±0.3 13.86±0.04 50.6±0.7 17.9±0.2 9.99±0.03 0.197±0.007 5.00±0.02 Al 566±5 260.1±0.5 155.3±0.4 720±5 447±4 290.7±2 26.5±0.4 155.4±0.9 444±4 329±3 1027±10 567.7±8 236±3 Cu 97.5±0.8 469±3 36.3±0.9 10.07±0.05 <LOD <LOD <LOD <LOD 21.19±0.07 7.73±0.03 0.813±0.05 49.3±0.8 50.2±1.0 Mn 735±30 613±10 642±6 1016±6 762±3 743±5 839±8 1634±30 1732±20 1472±20 887±10 771±6 1299±10 V 4.18±0.02 1.894±0.007 0.574±0.002 <LOD 1.530±0.005 <LOD 1.948±0.006 3.179±0.004 3.235±0.007
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • Note Formation of an Inclusion Complex of Anthocyanin With
    Agric. Biol. Chem., 44 (6), 1411•`1413 , 1980 1411 Note extracted from the seeds of black soy bean (KUROMAME) (Glycine max Merill). Nasunin was ex tracted from the fruits of egg plant (Solanum melongena L .). Formation of an Inclusion Complex These three anthocyanins extracted were proved to be pure of Anthocyanin with Cyclodextrin by paper chromatography after some preparation procedure.6) ƒ¿-CD and ƒÀ-CD used were commercially available Tetsuya YAMADA,Takashi KOMIYA (Hayashibara Biochemical Research), and amylose was and Morio AKAKI prepared from a high amylose corn starch. Amylose was dissolved in dimethylsulfoxide (DMSO) and the solution Facultyof Agriculture,Mie University, was diluted with water, final concentration of DMSO being Tsu 514,Japan 33%. ReceivedJuly 24, 1979 Each anthocyanin was dissolved in water, further diluted properly with water and adjusted to pH 2.0 with HCl. To each of these anthocyanin solutions was added cyclodextrin solution or amylose solution at various concentrations. Recently, many studies concerning the inclusion complex Addition of ƒÀ-CD resulted in the fading of two an forming activity of cyclodextrin were reported .1•`3) We thocyanin solutions (callistephin and chrysanthemin), and were also interested in this activity because cyclodextrin is this fading effect was greater with higher concentrations of analogous to amylose and amylopectin. Since many natural -CD added (Table I) . On the other hand, addition of ƒ¿-CD ƒÀ pigments in food coexist with saccharides, it was wondered had almost no fading effect in chrysanthemin solution, if the stability of these pigments was affected with the although it showed a less but significant fading effect in presence of such saccharides.
    [Show full text]
  • Bbm:978-3-540-73733-9/1.Pdf
    Sachverzeichnis Abelmoschus esculenta 481 Aflatoxine 449 Abelmoschus esculentus 491 Afzelechin 469 Abietinsäure 26 Agar-Agar 362, 402, 412 Acacetin 478 Agarose 412, 413 Acacia 402 Agave sisalana 69, 70 Acanthoscelides obtectus 648, 649 Aglycon 353 Acarbose 372, 399, 400, 401 Agmatin 151 ACE 292 Agnosterin 34 Acetoacetyl-ACP 575 AIDS 410 Acetobacter suboxidans 375 Ajmalicin 200 α-Acetobromglucose 355 Ajmalin 196 Acetoide 5, 43 Ajuga ripponesis 391 Acetylcholin 143ff, 148, 158, 185, 323 Ajugose 391 Acetylcholinesterase 323 Akazie 478, 481 Acetylcoenzym A 44, 376, 378, 442 aktivierte Isopren 44 N-Acetyl-Cystein 265 Alanin 254, 270, 273f, 276, 288, 315 N-Acetyl-D-glucosamin 363 β-Alanin 259 β-Acetyldigoxin 112 Albumin 308 N-Acetylmuraminsäure 363, 365 Albumine 312 O-Acetylsamandarin 234 Alcaligenes faecalis 402 Achras zapota 60 Aldonsäuren 342 Aciclovir 439 Aldosen 335 Aconitum 1 Aldosteron 76, 85, 87 ACP 575 Algin 402 Acrinomycin 260 Alginate 402, 413 Actinomadura 168 Alitam 307 Actinomycin D 306 Alkaloide 143 Actinoplanes 399 Allelopathica 180 Acyl-Carrierprotein 575 Alliin 261 Adamantoylchlorid 352 Allithiamin 426 ADD 95 Allomethylose 341 Adenin 425, 426, 430, 436, 452 Aloin 386 Adenocalymna alliaceum 478 Amanita muscaria 148 Adenosin 432 Amanita phalloides 329 Adenosintriphosphat 442 Amanita strobiliformis 261 Adhatoda vasica 192 Amanitin 329 Adonis vernalis 100, 343 Amantia mappa 148 Adonitol 343 Amaranthenol 41 Adrenalin 145, 146, 147 Amaranthöl 34, 41 Adriamycin 293, 604 AMD 40 676 Sachverzeichnis Amentoflavon 479 anomeren Effekt 339
    [Show full text]
  • Table S1. Phytochemicals Identified from Different Pomegranate Tissues
    1 Table S1. Phytochemicals identified from different pomegranate tissues. The chemical structures, 2 molecular formulas, and molecular weights of the phytochemicals are shown. The analytical methods, 3 tissues of identification, and representative references are also indicated. CAS, chemical abstracts 4 service; DAD, diode array detection; ESR, electron spin resonance; FD, fluorescence detection; FID, 5 flame ionization detection; ID, identification method; IR, infrared spectroscopy; MP, melting point; 6 MS, mass spectrometry; MW, molecular weight; NMR, nuclear magnetic resonance; TLC, thin layer 7 chromatography. 8 Molecules 2017, 22, x; doi: FOR PEER REVIEW www.mdpi.com/journal/molecules Molecules 2017, 22, x FOR PEER REVIEW 2 of 20 Name Structure Formula MW ID Tissue References Ellagitannins, gallotannins and derivatives Brevifolin C12H8O6 248.1900 NMR Leaf [1] Brevifolin carboxylic acid C13H8O8 292.1990 NMR Leaf, flower, [1-3] heartwood Brevifolin carboxylic acid 10- C13H7KO11S 410.3463 NMR Leaf [4] monopotassium sulphate Castalagin C41H26O26 934.6330 NMR Stem bark [5] Casuariin C34H24O22 784.5440 NMR Stem bark [5] Casuarinin C41H28O26 936.6490 NMR Peel, stem bark [5, 6] R1 = Galloyl (β-configuration), R2 = R3 = H Corilagin C27H22O18 634.4550 NMR Peel, leaf [6, 7] R1 = Galloyl (α-configuration), R2 = R3 = H Isocorilagin C27H22O18 634.4550 NMR Flower [8] R2 = Galloyl, R1 = R3 = H Hippomanin A C27H22O18 634.4550 IR Flower [2] R1 = R2 = H, R3 = Galloyl Gemin D C27H22O18 634.4550 IR Flower [2] Diellagic acid rhamnosyl(1→4) C40H30O24 894.6560
    [Show full text]