Supplementary Materials

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Materials Supplementary Materials Table S1. Metals with stdev W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 As <LOD <LOD 19.84±0.03 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD Ba 32.6±0.3 33.8±0.4 26.1±0.2 123.3±0.9 79.8±0.8 79.1±0.7 83.3±0.6 239.7±0.8 58.1±0.4 77.7±0.3 32.1±0.3 31.7±0.5 122.1±0.8 Cd 0.365±0.004 1.553±0.002 0.939±0.002 1.254±0.003 0.386±0.005 1.367±0.008 0.733±0.004 0.050±0.002 0.976±0.002 1.644±0.006 <LOD 0.593±0.004 0.375±0.003 Co 3.64±0.04 2.09±0.02 0.98±0.03 4.40±0.06 2.77±0.02 1.83±0.02 2.42±0.02 2.68±0.03 7.34±0.09 7.78±0.07 2.12±0.04 1.61±0.02 2.60±0.03 Cr <LOD <LOD <LOD <LOD 4.322±0.005 3.030±0004 <LOD 6.417±0.006 15.41±0.02 14.82±0.05 11.12±0.04 9.15±0.02 3.111±0.004 Pb <LOD 56.0±0.8 <LOD 20.8±0.9 80±2 11.7±0.6 2.20±0.05 175±3 45.0±0.8 <LOD 0.830±0.007 0.538±0.006 14.9±0.3 Sb 32.8±0.5 8.59±0.09 19.1±0.2 18.±0.2 67.5±0.5 37.9±0.2 9.58±0.05 46.5±0.3 44.8±0.4 18.50±0.08 7.26±0.03 44.3±0.2 29.6±0.4 Se <LOD <LOD <LOD <LOD 1.45±0.09 0.30±0.05 0.23±0.08 25.7±0.4 2.87±0.2 2.06±0.04 2.91±0.8 2.38±0.07 2.99±0.06 Ni 4.17±0.05 46.0±0.2 0.569±0.005 30.9±0.3 15.3±0.2 5.77±0.02 35.2±0.3 13.86±0.04 50.6±0.7 17.9±0.2 9.99±0.03 0.197±0.007 5.00±0.02 Al 566±5 260.1±0.5 155.3±0.4 720±5 447±4 290.7±2 26.5±0.4 155.4±0.9 444±4 329±3 1027±10 567.7±8 236±3 Cu 97.5±0.8 469±3 36.3±0.9 10.07±0.05 <LOD <LOD <LOD <LOD 21.19±0.07 7.73±0.03 0.813±0.05 49.3±0.8 50.2±1.0 Mn 735±30 613±10 642±6 1016±6 762±3 743±5 839±8 1634±30 1732±20 1472±20 887±10 771±6 1299±10 V 4.18±0.02 1.894±0.007 0.574±0.002 <LOD 1.530±0.005 <LOD 1.948±0.006 3.179±0.004 3.235±0.007 2.304±0.003 0.810±0.002 0.729±0.002 <LOD Zn 468.4±0.7 1359±8 423.8±5 622.2±3 1356±10 607±7 298±3 969±8 1278±9 916±4 519±2 537±3 897±4 Caa 70.7±0.9 76.9±1.0 71.7±0.8 111.2±1.0 62.5±0.7 83.9±0.4 50.7±0.4 67.5±0.7 62.8±0.5 98.1±0.6 76.4±0.2 99.9±0.3 71.1±0.2 Fea 0.134±0.002 0.077±0.05 0.050±0.002 0.786±0.004 0.525±0.006 0.520±0.007 0.593±0.002 1.082±0.008 1.809±0.007 0.688±0.004 0.371±0.002 0.198±0.002 0.870±0.003 Ka 489±5 707±5 663±7 1152±10 609±3 719±4 965±8 1119±9 567±6 867±8 700±7 1174±10 1111±9 Mga 55.3±0.8 52.9±0.4 52.4±0.5 77.4±0.2 70.3±0.8 71.0±0.4 82.1±0.5 102.0±0.8 64.0±0.3 68.4±0.4 69.11±0.09 60.4±0.2 94.3±0.3 Naa 7.75±0.02 14.13±0.06 9.32±0.04 38.24±0.02 29.61±0.08 27.41±0.05 11.69±0.02 16.88±0.04 21.60±0.02 26.49±0.06 9.36±0.04 17.62±0.02 22.08±0.04 Rba 2.69±0.04 2.96±0.05 3.084±0.006 3.83±0.05 3.90±0.08 3.85±0.04 5.07±0.02 7.38±0.07 4.33±0.08 3.96±0.08 4.08±0.04 3.59±0.02 5.63±0.07 1 Table S2. Correlation coefficients among elements in analyzed wine samples. 2 Table S3. Polyphenols, TPC, and RSA stdev. Non-anthocyanins (mg/L) W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 Hydroxybenzoic acids Gallic acid 1.99±0.30 1.09±0.16 − 41.73±6.26 38.20±5.73 24.22±3.63 74.36±11.15 81.35±12.20 4.40±0.66 2.53±0.38 2.82±0.42 3.24±0.49 74.62±11.19 Protocatechuic acid 0.53±0.05 0.57±0.06 0.57±0.06 2.63±0.27 1.33±0.13 1.78±0.18 7.27±0.73 5.41±0.55 1.70±0.17 1.41±0.14 1.57±0.16 1.30±0.13 8.23±0.83 Gentisic acid 1.45±0.15 3.24±0.33 3.36±0.34 1.52±0.15 2.90±0.29 1.47±0.15 1.01±0.10 0.87±0.09 1.47±0.15 0.49±0.05 0.71±0.07 1.26±0.13 − Ellagic acid 0.71±0.11 0.51±0.08 0.65±0.10 1.17±0.18 0.81±0.12 1.01±0.15 25.24±3.79 24.41±3.66 1.36±0.20 0.74±0.11 0.49±0.07 0.61±0.09 29.02±4.35 Hydroxicinnamic acids Sinapic acid − − − − − − − − − − − 23.67±2.62 − Caffeic acid 0.59±0.07 0.67±0.08 1.36±0.16 8.79±1.04 9.16±1.09 5.47±0.65 4.58±0.54 7.18±0.85 5.78±0.69 2.58±0.31 1.01±0.12 0.95±0.11 5.44±0.65 Chlorogenic acid 0.040±0.004 0.030±0.003 0.040±0.004 0.040±0.004 0.07±0.01 0.10±0.01 − 0.07±0.01 0.030±0.003 0.19±0.02 0.12±0.01 0.10±0.01 0.20±0.02 p-Coumaric acid 1.12±0.07 2.03±0.12 1.46±0.09 2.64±0.16 3.02±0.18 2.99±0.18 10.34±0.62 4.63±0.28 1.80±0.11 1.65±0.10 1.60±0.10 4.30±0.26 5.61±0.34 Flavanols Gallocatechin − − − 1.34±0.13 3.29±0.33 5.37±0.54 − − − − − − 0.93±0.10 Epigallocatechin gallate − − 0.86±0.09 − − − 1.02±0.11 1.63±0.17 − 0.91±0.09 − 1.48±0.15 1.31±0.14 Catechin − − − 4.23±0.23 5.95±0.33 10.40±0.58 25.93±1.44 16.98±0.94 3.63±0.20 − 1.49±0.08 1.69±0.09 26.67±1.48 Gallocatechin gallate − − − − 0.52±0.05 − 2.48±0.24 − − − 1.10±0.10 0.35±0.03 1.94±0.19 Flavonols Myricetin − − − − − − 0.39±0.02 0.41±0.02 0.020±0.001 − − − 0.28±0.01 Rutin − − − 0.020±0.001 − 0.010±0.001 − − − 0.030±0.001 − − 0.020±0.001 Astragalin − − − 0.010±0.001 − − − 0.010±0.001 − 0.010±0.001 − − − Hyperoside − − − − − 0.010±0.001 0.20±0.01 0.26±0.01 − − − 0.010±0.001 0.47±0.02 Galangin 1.21±0.18 0.88±0.13 0.60±0.09 0.46±0.07 0.36±0.05 0.20±0.03 0.24±0.04 0.19±0.03 0.18±0.03 − − − − Flavones Chrysin 0.60±0.06 − − − − − − − − − − − − Luteolin − − − − − − − 0.10±0.01 − − − − − Cynaroside − − − 0.67±0.01 − − 0.48±0.01 0.53±0.01 0.50±0.01 0.57±0.01 − − 0.35±0.01 Apigetrin − − − 0.010±0.001 − − 0.010±0.001 0.010±0.001 0.010±0.001 0.010±0.001 − − 0.010±0.001 3 Apigenin 0.060±0.005 − 0.030±0.002 − − − − − − − − − − Hydroxycoumarins Aesculin − − 0.050±0.002 − − − 0.65±0.03 0.69±0.03 − − − 0.44±0.02 0.87±0.04 Stilbenes Resveratrol − − − − − − 4.00±0.17 − − − − − − Hesperetin − − 0.090±0.005 0.050±0.003 − − 0.71±0.04 0.44±0.03 − 0.10±0.01 − − 0.41±0.02 Dihydrochalcones Phlorizin − − − 0.080±0.002 0.130±0.004 0.180±0.006 1.03±0.03 0.98±0.03 0.130±0.004 0.060±0.002 0.050±0.002 0.070±0.002 0.98±0.03 Anthocyanins (mg/L) Myrtillin − − − 0.020±0.001 − − 0.47±0.03 0.050±0.003 − − − − 0.57±0.03 Malvin − − − 0.010±0.001 − − 0.040±0.004 − − − − − 0.060±0.006 Cyanidin 3-O-(2"-xylosyl)glucoside − − − − − − 0.040±0.006 0.020±0.003 − − − − 0.040±0.006 Chrysanthemin − − − − − − 0.15±0.01 0.020±0.001 − − − − 0.28±0.02 Peonidin 3-O-glucoside − − − 0.09±0.01 − − 0.61±0.07 0.06±0.01 − − − − 0.69±0.08 Oenin − − − 0.55±0.05 − − 3.4±0.3 0.64±0.06 − − − − 3.9±0.4 RSA (mmol TE/L) 0.39±0.03 0.44±0.01 0.42±0.02 1.97±0.03 3.17±0.01 2.68±0.04 16.09±0.02 18.71±0.02 1.86±0.01 1.64±0.02 1.26±0.03 0.82±0.01 12.03± TPC (g GAE/L) 1.15±0.02 1.44±0.02 1.41±0.01 1.44±0.02 1.51±0.03 1.67±0.01 2.24±0.00 2.36±0.01 1.35±0.02 1.31±0.02 0.81±0.01 1.17±0.01 1.71± 4 Table S4.
Recommended publications
  • Graphical Abstract Circular Dichroism of Anthocyanidin 3-Glucoside Self
    Graphical abstract Circular dichroism of anthocyanidin 3-glucoside self-aggregates Raquel Gavara, Vesselin Petrov, Alexandre Quintas, Fernando Pina * The circular dichroism spectra of the six most common anthocyanidin 3-glucoside show the formation of left handed aggregates compatible with dimers. The absorption bands of the monomer split by increasing concentration according to the formation of H and J aggregates. The angle and distance between the transition moments of the two monomers in the dimer was calculated from the splitting of the 0–0 absorption band. While the angle is similar for the series the distance changes dramatically. The intensity of the CD signal is proportional to the inverse of the square of the distance. Highlights Q10 " The circular dichroism spectra of six common anthocyanins 3-glucosides was obtained. " Like 3,5-diglucoside analogous they exhibit left- handed CD signals. " J and H aggregates are formed by concentration increasing. " The distance of the transition moments correlate with the intensity of the CD signal. 1 1 2 Circular dichroism of anthocyanidin 3-glucoside self-aggregates a a b a,⇑ 3 Q1 Raquel Gavara , Vesselin Petrov , Alexandre Quintas , Fernando Pina 4 a REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829516 Monte de Caparica, Portugal 5 b Instituto Superior de Ciencias da Saude Egas Moniz, Centro de Investigação Interdisciplinar Egas Moniz, P-2829511 Monte de Caparica, Caparica, Portugal 6 7 article info a b s t r a c t 1 9 10 Self-association constants for the flavylium cations of the six most common anthocyanidin 3-glucosides 20 11 were determined by circular dichroism (CD) and UV–Vis spectroscopy.
    [Show full text]
  • A Combined Experimental and Computational Study of Chrysanthemin As a Pigment for Dye-Sensitized Solar Cells
    molecules Article A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells Atoumane Ndiaye 1,2 , Alle Dioum 1, Corneliu I. Oprea 2 , Anca Dumbrava 3,* , Jeanina Lungu 2, Adrian Georgescu 2, Florin Moscalu 2, Mihai A. Gîr¸tu 2,* , Aboubaker Chedikh Beye 1 and Issakha Youm 1,* 1 Department of Physics, Cheikh Anta Diop University of Dakar, 5005 Dakar-Fann, Senegal; [email protected] (A.N.); [email protected] (A.D.); [email protected] (A.C.B.) 2 Department of Physics, Ovidius University of Constanta, 900527 Constanta, Romania; [email protected] (C.I.O.); [email protected] (J.L.); [email protected] (A.G.); fl[email protected] (F.M.) 3 Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania * Correspondence: [email protected] (A.D.); [email protected] (M.A.G.); [email protected] (I.Y.) Abstract: The theoretical study of chrysanthemin (cyanidin 3-glucoside) as a pigment for TiO2-based dye-sensitized solar cells (DSSCs) was performed with the GAUSSSIAN 09 simulation. The electronic spectra of neutral and anionic chrysanthemin molecules were calculated by density functional theory with B3LYP functional and DGDZVP basis set. A better energy level alignment was found for partially deprotonated molecules of chrysanthemin, with the excited photoelectron having enough energy in order to be transferred to the conduction band of TiO2 semiconductor in DSSCs. In addition, we used the raw aqueous extracts of roselle (Hibiscus sabdariffa) calyces as the source of chrysanthemin Citation: Ndiaye, A.; Dioum, A.; and the extracts with various pH values were tested in DSSCs.
    [Show full text]
  • Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
    Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t
    [Show full text]
  • Compositions of Anthocyanin and Other Flavonoids in Cultured Cells of Rabbiteye Blueberry (Vaccinium Ashei Reade Cv
    Food Sci. Technol Res., 10 (3), 239-246, 2004 Compositions of Anthocyanin and Other Flavonoids in Cultured Cells of Rabbiteye Blueberry (Vaccinium ashei Reade cv. Tiiblue) Shioka HAMAMATSU,Kimiko YABE and Yoshihiko NAWA National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan Received August 18, 2003 ; Accepted April 2, 2004 Our blueberry cultured cells produce anthocyanins in high quantity (Nawa et al., Biosci. Biotech. Biochem., 57, 770-774, 1993). Using high performance liquid chromatography/mass spectrometry (LC-MS), 14 anthocyanins in the red cells derived from leaves of rabbiteye blueberry cv. Tifblue (Vaccinium ashei Reade) were identified as 3-galactoside (gal), 3-glucoside (glc) and 3-arabinoside (ara) of cyanidin (Cy), delphinidin (Dp), petunidin (Pe), peonidin (Pn) and malvidin (Mv), except for Mv 3-ara. The fruits additionally contained 15 anthocyanins and Mv 3-ara, as a main anthocyanin. The autumn red leaves contained Cy 3-gal, Cy 3-ara and Cy 3-glc. In the red cells and the leaves, derivatives of Cy were the most abundant at 85.7% (Cy 3-gal 49.1%, Cy 3-glc 5.8%, Cy 3-ara 30.9%) and 100% (Cy 3-gal 51.0%, Cy 3-glc 6.5%, Cy 3-ara 42.5%) of the total anthocyanins, respectively. In contrast, the fruits contained Mv derivatives as main components that amounted to 50.9% of the total anthocyanins; Mv 3-gal, Mv 3-ara and Mv 3-glc constituted 21.2, 15.3 and 14.4%, respectively. Cy derivatives in fruit anthocyanins amounted to 18.0% . The red cells produced 107 mg of anthocyaninlIOO g fr wt, which was slightly lower than that of the fruits (129 mg).
    [Show full text]
  • A Biochemical Survey of Some Mendelian Factors for Flower Colour
    A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators.
    [Show full text]
  • Cyanidin-3-O-Glucoside: Physical-Chemistry, Foodomics and Health Effects
    molecules Review Cyanidin-3-O-glucoside: Physical-Chemistry, Foodomics and Health Effects Francisco J. Olivas-Aguirre 1, Joaquín Rodrigo-García 1, Nina del R. Martínez-Ruiz 1, Arely I. Cárdenas-Robles 2, Sandra O. Mendoza-Díaz 2, Emilio Álvarez-Parrilla 1, Gustavo A. González-Aguilar 3, Laura A. de la Rosa 1, Arnulfo Ramos-Jiménez 1 and Abraham Wall-Medrano 1,* 1 Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez 32310, Chihuahua, Mexico; [email protected] (F.J.O.-A.); [email protected] (J.R.-G.); [email protected] (N.d.R.M.-R.); [email protected] (E.Á.-P.); [email protected] (L.A.d.l.R.); [email protected] (A.R.-J.) 2 Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Querétaro 76010, Querétaro, Mexico; [email protected] (A.I.C.-R.); [email protected] (S.O.M.-D.) 3 Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, AC. Carretera a la Victoria km. 0.6, AP 1735, Hermosillo 83000, Sonora, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-(656)-688-1821; Fax: +52-(656)-688-1800 Academic Editors: Celestino Santos-Buelga and Arturo San Feliciano Received: 15 August 2016; Accepted: 13 September 2016; Published: 21 September 2016 Abstract: Anthocyanins (ACNs) are plant secondary metabolites from the flavonoid family. Red to blue fruits are major dietary sources of ACNs (up to 1 g/100 g FW), being cyanidin-3-O-glucoside (Cy3G) one of the most widely distributed.
    [Show full text]
  • Color and Pigment Analyses in Fruit Products
    Station Bulletin 624 Reprinted May 1993 Color and Pigment Analyses in Fruit Products Agriculiural Experiment Station Oregon State University For additional copies of this publication, write: Publications Orders Agricultural Communications Oregon State University Administrative Services A422 Corvallis, OR 97331-2119 Agricultural Experiment Station Oregon State University Station Bulletin 624 Reprinted May 1993 Color and Pigment Analyses in Fruit Products Ronald E. Wroistad Professor of Food Science and Technology Oregon State University In July 1992 the warehouse storing Oregon Agricultural Experiment Station publications was destroyed by fire. SB 624, originally published in October, 1976, is hereby reprinted in its entirety. COLOR AND PIGMENT ANALYSES IN FRUIT PRODUCTS Ronald E. Wroistad ABSTRACT Methods are described for making the following deter- minations in fruits and processed fruit products: anthocyanin pigment content, color density, polymeric color, browning, turbidity, and anthocyanin degrada- tion index. Tables list the anthocyanins of common fruits, their molecular weights, molar absorbances, and wavelengths of maximum absorption. Thirty-one references are given. KEY WORDS: color analyses, anthocyanin pigment, browning, fruits Introduction Measurement of pigment content, browning, color density, and haze are analytical problems confronting the food technologist working with fruit concentrates, juices, wines, jams and other processedpro- ducts. This publication includes some of the methods we have found practical in determining these parameters. We also have included tables which list anthocyanin pigments of fruits likelyto be processed in the Northwest and the molar absorption of the common occurring anthocyanin pigments. We have not included procedures of pigment extraction, isolation, and identification or methods for tristimulus colorimetry.Tristimulus colorimeters, such as the Hunter color-difference meter and the Lovi- bond tintometer, give the best measurements for visualappearance of a product.
    [Show full text]
  • Effect of Different Anthocyanidin Glucosides on Lutein Uptake By
    molecules Article Effect of Different Anthocyanidin Glucosides on Lutein Uptake by Caco-2 Cells, and Their Combined Activities on Anti-Oxidation and Anti-Inflammation In Vitro and Ex Vivo Minh Anh Thu Phan 1,*, Martin Bucknall 2 and Jayashree Arcot 1,* ID 1 Food and Health Cluster, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia 2 Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia; [email protected] * Correspondence: [email protected] (M.A.T.P.); [email protected] (J.A.); Tel.: +61-2-9385-5360 (J.A.) Academic Editors: Natália Martins and Derek J. McPhee Received: 23 July 2018; Accepted: 11 August 2018; Published: 14 August 2018 Abstract: The interactive effects on anti-oxidation and anti-inflammation of lutein combined with each of the six common anthocyanidin glucosides were studied in both chemical and cellular systems. The combined phytochemicals showed an antagonism in the inhibition of lipid oxidation in a liposomal membrane, but showed an additive effect on cellular antioxidant activity in Caco-2 cells. Lutein was an active lipoxygenase inhibitor at 2–12 µM while anthocyanins were inactive. The concentration of lutein when it was used in combination with anthocyanins was 25–54% higher than when lutein was used alone (i.e., IC50 = 1.2 µM) to induce 50% of lipoxygenase inhibition. Only the combination of lutein with malvidin-3-glucoside showed anti-inflammatory synergy in the suppression of interleukin-8, and the synergy was seen at all three ratios tested. Some mixtures, however, showed anti-inflammatory antagonism. The presence of anthocyanins (5–7.5 µM) did not affect lutein uptake (2.5–5 µM) by Caco-2 cells.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Introduction (Pdf)
    Dictionary of Natural Products on CD-ROM This introduction screen gives access to (a) a general introduction to the scope and content of DNP on CD-ROM, followed by (b) an extensive review of the different types of natural product and the way in which they are organised and categorised in DNP. You may access the section of your choice by clicking on the appropriate line below, or you may scroll through the text forwards or backwards from any point. Introduction to the DNP database page 3 Data presentation and organisation 3 Derivatives and variants 3 Chemical names and synonyms 4 CAS Registry Numbers 6 Diagrams 7 Stereochemical conventions 7 Molecular formula and molecular weight 8 Source 9 Importance/use 9 Type of Compound 9 Physical Data 9 Hazard and toxicity information 10 Bibliographic References 11 Journal abbreviations 12 Entry under review 12 Description of Natural Product Structures 13 Aliphatic natural products 15 Semiochemicals 15 Lipids 22 Polyketides 29 Carbohydrates 35 Oxygen heterocycles 44 Simple aromatic natural products 45 Benzofuranoids 48 Benzopyranoids 49 1 Flavonoids page 51 Tannins 60 Lignans 64 Polycyclic aromatic natural products 68 Terpenoids 72 Monoterpenoids 73 Sesquiterpenoids 77 Diterpenoids 101 Sesterterpenoids 118 Triterpenoids 121 Tetraterpenoids 131 Miscellaneous terpenoids 133 Meroterpenoids 133 Steroids 135 The sterols 140 Aminoacids and peptides 148 Aminoacids 148 Peptides 150 β-Lactams 151 Glycopeptides 153 Alkaloids 154 Alkaloids derived from ornithine 154 Alkaloids derived from lysine 156 Alkaloids
    [Show full text]
  • In Primary Human Hepatocytes
    Food & Function Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/foodfunction Page 1 of 23 Food & Function Effects of anthocyans on the expression of organic anion transporting polypeptides ( SLCOs /OATPs) in primary human hepatocytes Juliane Riha,a Stefan Brenner,a Alzbeta Srovnalova, b Lukas Klameth,c Zdenek Dvorak, b Walter Jäger a and Theresia Thalhammer*d Affiliations: a Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria b Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Manuscript Republic c Ludwig Boltzmann Society, Cluster for Translational Oncology, Vienna, Austria d Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Medical University of Vienna, Vienna, Austria, Running Title: Accepted Effects of anthocyans on expression of OATPs in primary human hepatocytes Corresponding Author: Dr.
    [Show full text]
  • Note Formation of an Inclusion Complex of Anthocyanin With
    Agric. Biol. Chem., 44 (6), 1411•`1413 , 1980 1411 Note extracted from the seeds of black soy bean (KUROMAME) (Glycine max Merill). Nasunin was ex tracted from the fruits of egg plant (Solanum melongena L .). Formation of an Inclusion Complex These three anthocyanins extracted were proved to be pure of Anthocyanin with Cyclodextrin by paper chromatography after some preparation procedure.6) ƒ¿-CD and ƒÀ-CD used were commercially available Tetsuya YAMADA,Takashi KOMIYA (Hayashibara Biochemical Research), and amylose was and Morio AKAKI prepared from a high amylose corn starch. Amylose was dissolved in dimethylsulfoxide (DMSO) and the solution Facultyof Agriculture,Mie University, was diluted with water, final concentration of DMSO being Tsu 514,Japan 33%. ReceivedJuly 24, 1979 Each anthocyanin was dissolved in water, further diluted properly with water and adjusted to pH 2.0 with HCl. To each of these anthocyanin solutions was added cyclodextrin solution or amylose solution at various concentrations. Recently, many studies concerning the inclusion complex Addition of ƒÀ-CD resulted in the fading of two an forming activity of cyclodextrin were reported .1•`3) We thocyanin solutions (callistephin and chrysanthemin), and were also interested in this activity because cyclodextrin is this fading effect was greater with higher concentrations of analogous to amylose and amylopectin. Since many natural -CD added (Table I) . On the other hand, addition of ƒ¿-CD ƒÀ pigments in food coexist with saccharides, it was wondered had almost no fading effect in chrysanthemin solution, if the stability of these pigments was affected with the although it showed a less but significant fading effect in presence of such saccharides.
    [Show full text]