Introduction (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Roger Lee Papke Box 100267 JHM Health Science Center Gainesville, Florida 32610
CURRICULUM VITAE Roger Lee Papke DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS UNIVERSITY OF FLORIDA SCHOOL OF MEDICINE Box 100267 J.H.M. Health Science Center Gainesville, Florida 32610 (352) 392-4712, FAX (352) 392-9696 [email protected] BIOGRAPHICAL DATA: Born: October 12, 1953, Kenmore, New York Married: December 24, 1980 to Clare Stokes Citizenship: U. S. A. EDUCATION: Starpoint Central School Pendleton, N. Y. Primary and Secondary N.Y.S. Regents Diploma 1971 New York University Washington Square College of Arts and Sciences 1971 - 1975 Majors in Biology and Classical Civilization Bachelor of Arts awarded May 1975 New York University Graduate school of Arts and Sciences 1975 - 1976 Thesis advisor: Dr. Fleur L. Strand Thesis title: An Alpha Adrenergic Response of Cardiac Muscle at an Alkaline pH Master of Science awarded May 1976 Cornell University Graduate School of Arts and Science 1976-1979: Section of Physiology Graduate Research Assistant in Reproductive Physiology Advisor: Dr. William Hansel Research topic: The endocrine control of delayed implantation in mink Cornell University Graduate School of Arts and Science 1979-1986: Section of Neurobiology and Behavior Thesis Advisor: Dr. Robert Oswald Primary research topic: Pharmacology of nicotinic acetylcholine receptors Thesis Title: The Gating of Single Channel Currents Through the Nicotinic Acetylcholine Receptors of BC3H-1 Cells: Effects of Agonists and Allosteric Ligands Ph.D. conferred January 1987 ACADEMIC APPOINTMENTS: 1987 Postdoctoral Research Associate: Department of Pharmacology, -
Differential Effects of Alkaloids on Memory in Rodents
www.nature.com/scientificreports OPEN Diferential efects of alkaloids on memory in rodents Patrick M. Callahan1,2, Alvin V. Terry Jr.1,2, Manuel C. Peitsch3, Julia Hoeng3* & Kyoko Koshibu3* Nicotinic acetylcholine receptors (nAChRs) play a critical role in the neuropharmacology of learning and memory. As such, naturally occurring alkaloids that regulate nAChR activity have gained interest for understanding and potentially improving memory function. In this study, we tested the acute efects of three known nicotinic alkaloids, nicotine, cotinine, and anatabine, in suppressing scopolamine-induced memory defcit in rodents by using two classic memory paradigms, Y-maze and novel object recognition (NOR) in mice and rats, respectively. We found that all compounds were able to suppress scopolamine-induced spatial memory defcit in the Y-maze spontaneous alternation paradigm. However, only nicotine was able to suppress the short-term object memory defcit in NOR, despite the higher doses of cotinine and anatabine used to account for their potential diferences in nAChR activity. These results indicate that cotinine and anatabine can uniquely regulate short-term spatial memory, while nicotine seems to have more robust and general role in memory regulation in rodents. Thus, nAChR-activating alkaloids may possess distinct procognitive properties in rodents, depending on the memory types examined. Te cholinergic system of the brain is a critical regulator of attention, memory, and higher-order cognitive processing, and its defcits are central to the etiology of dementia1. As such, nicotinic acetylcholine receptors (nAChRs) have gained much interest as a target of drug development 2. Neuronal nAChRs are pentameric pro- teins composed of various combinations of α (α2–α9) and β (β2–β4) nAChR subunits, diferentially expressed throughout the nervous system. -
INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity. -
Opportunities and Pharmacotherapeutic Perspectives
biomolecules Review Anticoronavirus and Immunomodulatory Phenolic Compounds: Opportunities and Pharmacotherapeutic Perspectives Naiara Naiana Dejani 1 , Hatem A. Elshabrawy 2 , Carlos da Silva Maia Bezerra Filho 3,4 and Damião Pergentino de Sousa 3,4,* 1 Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa 58051-900, Brazil; [email protected] 2 Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; [email protected] 3 Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; [email protected] 4 Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil * Correspondence: [email protected]; Tel.: +55-83-3216-7347 Abstract: In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has been associated with high mortality rate, especially in patients with comorbidities such as diabetes, cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for Citation: Dejani, N.N.; Elshabrawy, COVID-19. Studies have shown that natural phenolic compounds have several pharmacological H.A.; Bezerra Filho, C.d.S.M.; properties, including anticoronavirus and immunomodulatory activities. Therefore, this review de Sousa, D.P. Anticoronavirus and discusses the dual action of these natural products from the perspective of applicability at COVID-19. -
Naturally Occurring Aurones and Chromones- a Potential Organic Therapeutic Agents Improvisingnutritional Security +Rajesh Kumar Dubey1,Priyanka Dixit2, Sunita Arya3
ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 1, January 2014 Naturally Occurring Aurones and Chromones- a Potential Organic Therapeutic Agents ImprovisingNutritional Security +Rajesh Kumar Dubey1,Priyanka Dixit2, Sunita Arya3 Director General, PERI, M-2/196, Sector-H, Aashiana, Lucknow-226012,UP, India1 Department of Biotechnology, SVU Gajraula, Amroha UP, India1 Assistant Professor, MGIP, Lucknow, UP, India2 Assistant Professor, DGPG College, Kanpur,UP, India3 Abstract: Until recently, pharmaceuticals used for the treatment of diseases have been based largely on the production of relatively small organic molecules synthesized by microbes or by organic chemistry. These include most antibiotics, analgesics, hormones, and other pharmaceuticals. Increasingly, attention has focused on larger and more complex protein molecules as therapeutic agents. This publication describes the types of biologics produced in plants and the plant based organic therapeutic agent's production systems in use. KeyWords: Antecedent, Antibiotics; Anticancer;Antiparasitic; Antileishmanial;Antifungal Analgesics; Flavonoids; Hormones; Pharmaceuticals. I. INTRODUCTION Naturally occurring pharmaceutical and chemical significance of these compounds offer interesting possibilities in exploring their more pharmacological and biocidal potentials. One of the main objectives of organic and medicinal chemistry is the design, synthesis and production of molecules having value as human therapeutic agents [1]. Flavonoids comprise a widespread group of more than 400 higher plant secondary metabolites. Flavonoids are structurally derived from parent substance flavone. Many flavonoids are easily recognized as water soluble flower pigments in most flowering plants. According to their color, Flavonoids pigments have been classified into two groups:(a) The red-blue anthocyanin's and the yellow anthoxanthins,(b)Aurones are a class of flavonoids called anthochlor pigments[2]. -
Adaptive Radiations: from Field to Genomic Studies
Adaptive radiations: From field to genomic studies Scott A. Hodges and Nathan J. Derieg1 Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 Adaptive radiations were central to Darwin’s formation of his phenotype–environment correlation, (iii) trait utility, and (iv) theory of natural selection, and today they are still the centerpiece rapid speciation. Monophyly and rapid speciation for many of for many studies of adaptation and speciation. Here, we review the the classic examples of adaptive radiation have been established advantages of adaptive radiations, especially recent ones, for by using molecular techniques [e.g., cichlids (4), Galapagos detecting evolutionary trends and the genetic dissection of adap- finches (5, 6), and Hawaiian silverswords (7)]. Ecological and tive traits. We focus on Aquilegia as a primary example of these manipulative experiments are used to identify and test pheno- advantages and highlight progress in understanding the genetic type–environmental correlations and trait utility. Ultimately, basis of flower color. Phylogenetic analysis of Aquilegia indicates such studies have pointed to the link between divergent natural that flower color transitions proceed by changes in the types of selection and reproductive isolation and, thus, speciation (3). anthocyanin pigments produced or their complete loss. Biochem- Studies of adaptive radiations have exploded during the last 20 ical, crossing, and gene expression studies have provided a wealth years. In a search of the ISI Web of Science with ‘‘adaptive of information about the genetic basis of these transitions in radiation’’ (limited to the subject area of evolutionary biology) Aquilegia. To obtain both enzymatic and regulatory candidate we found 80 articles published in 2008 compared with only 1 in genes for the entire flavonoid pathway, which produces antho- 1990. -
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information Poly(ionic liquid)s as a Distinct Receptor Material to Create Highly- Integrated Sensing Platform for Efficiently Identifying a Myriad of Saccharides Wanlin Zhang, Yao Li, Yun Liang, Ning Gao, Chengcheng Liu, Shiqiang Wang, Xianpeng Yin, and Guangtao Li* *Corresponding authors: Guangtao Li ([email protected]) S1 Contents 1. Experimental Section (Page S4-S6) Materials and Characterization (Page S4) Experimental Details (Page S4-S6) 2. Figures and Tables (Page S7-S40) Fig. S1 SEM image of silica colloidal crystal spheres and PIL inverse opal spheres. (Page S7) Fig. S2 Adsorption isotherm of PIL inverse opal. (Page S7) Fig. S3 Dynamic mechanical analysis and thermal gravimetric analysis of PIL materials. (Page S7) Fig. S4 Chemical structures of 23 saccharides. (Page S8) Fig. S5 The counteranion exchange of PIL photonic spheres from Br- to DCA. (Page S9) Fig. S6 Reflection and emission spectra of spheres for saccharides. (Page S9) Table S1 The jack-knifed classification on single-sphere array for 23 saccharides. (Page S10) Fig. S7 Lower detection concentration at 10 mM of the single-sphere array. (Page S11) Fig. S8 Lower detection concentration at 1 mM of the single-sphere array. (Page S12) Fig. S9 PIL sphere exhibiting great pH robustness within the biological pH range. (Page S12) Fig. S10 Exploring the tolerance of PIL spheres to different conditions. (Page S13) Fig. S11 Exploring the reusability of PIL spheres. (Page S14) Fig. S12 Responses of spheres to sugar alcohols. (Page S15) Fig. -
M.Sc. CHEMISTRY
M.Sc. CHEMISTRY ANALYTICAL CHEMISTRY SPECIALISATION SYLLABUS OF III & IV SEMESTERS REVISED AS PER NEW (CB) SYLLABUS FOR STUDENTS ADMITTED FROM THE YEAR 2016 ONWARDS M.Sc. CHEMISTRY (ANALYTICAL CHEMISTRY SPECIALISATION) Syllabus for III and IV Semesters (for the batches admitted in academic year 2016 & later under CBCS pattern) [Under Restructured CBCS Scheme] Grand total marks and credits (all 4 semesters) 2400 marks – 96 credits (Approved in the P.G. BOS meeting held on 01-07-2017) Semester - III (ANALYTICAL CHEMISTRY) [Under CBCS Scheme] (for the batches admitted in academic year 2016 & later under CBCS pattern) Hrs/week Internal assessment Semester exam Total Credits CH(AC)301T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)302T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)303T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)304T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)351P (LAB-I) 9 100 marks 4 CH(AC)352P (LAB-II) 9 100 marks 4 Total 600 marks 24 Semester - IV (ANALYTICAL CHEMISTRY) Hrs/week Internal assessment Semester exam Total Credits CH(AC)401T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)402T (core) 4 20 marks 80 marks 100 marks 4 CH(AC)403T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)404T (Elective) 4 20 marks 80 marks 100 marks 4 CH(AC)451P (LAB-I) 9 100 marks 4 CH(AC)452P (LAB-II) 9 100 marks 4 Total 600 marks 24 Grand total marks and credits (all 4 semesters) 2400 marks - 96 credits M.Sc.ANALYTICAL CHEMISTRY Semester III Paper I :CH (AC) 301T: CORE : Sampling, Data handling, Classical and Atomic spectral methods -
Estroquench™ Hormone Specific Formulation™
PRODUCT DATA DOUGLAS LABORATORIES® 08/2014 1 EstroQuench™ Hormone Specific Formulation™ DESCRIPTION EstroQuench™ is a Hormone Specific Formulation™ of ingredients that have documented anti-aromatase activity as well as androgenic adaptogens which support the function of endogenous aromatase inhibitors. Collectively these herbs promote minimal production and function of estrogens, while promoting testosterone function, including optimal sexual function in both genders. This formulation is designed to quench excessive production of estrogens and aberrant functions of them while supporting optimal function of androgens by maintaining the health of androgen producing glands.† Hormone Specific Formulation™ provided by Douglas Laboratories® and formulated by Dr. Joseph J Collins is created to support the optimal function of specific hormones through the use of hormone specific adaptogens, hormone specific agonists and hormone specific functional mimetics. This formulation may be used as part of a hormone health program with dietary and nutrient support. In addition, this formulation may be used by clinicians as an adjuvant to support optimal hormone health in patients who have been prescribed bioidentical hormone therapies. FUNCTIONS Aromatase (a cytochrome P450 enzyme {CYP19}) is the enzyme that controls the conversion of androgens to estrogens. More specifically, aromatase is the enzyme responsible for catalyzing the biosynthesis of androstenedione into estrone, and the biosynthesis of testosterone to estradiol. Estrogens include the broad range of aromatized hormones created form androgens. The specific attribute of estrogens that separate them from progestogens, androgens and corticoids is that estrogens are the only aromatized steroid hormones. Estradiol, the most potent endogenous estrogen, is biosynthesized by aromatization from androgens by aromatase (which is also called estrogen synthase). -
Test Report Comprehensive Hormone Insights™
698814 COMPREHENSIVE HORMONE INSIGHTS™ TEST REPORT Dr. Maximus, N.D. E: [email protected] Date of Collection: P: 403-241-4500 Time of Collection: F: 403-241-4501 Date of Receipt: www.rmalab.com Reported On: CHI Accession: 698814 Healthcare Professional Patient Age: Dr. Maximus, N.D. Date of Birth: Gender: Male F: Relevant Medications Biometrics Curcumin Height (in) : 73 Weight (lb) : 180 BMI : 24 Waist (in) : 35 Hip (in) : 41 CHI Accession: 698814 SUMMARY HMUS01 How to read the graphs LEGEND: 50 66 Sex Steroid Hormones 50 66 Middle third of 33 33 84 reference population Hormone Start of 83 100 80 100 highest 16 Percentile Precursors 16 Percentile third of Sum of Androgens Sum of Estrogens 50 66 reference 0 0 population (T, DHT, α+β androstanediol) Listed in Interp Guide 33 84 End of 100 16 lowest Percentile00 50 66 50 66 third of 33 33 84 reference 0 population Patient’s percentile rank 81 100 95 100 compared to reference 16 Percentile 16 Percentile population (see summary) DHEA + Metabolites Sum of Progesterone Metabolites 0 (DHEA + A + E) 0 α+β Pregnanediol Cortisol Melatonin Oxidative Stress Free Cortisol Profile (ng/mg) 100 50 66 50 66 33 84 33 84 80 64 100 0 100 16 Percentile 16 Percentile 60 6-sulfatoxy 8-Hydroxy-2- 0 Melatonin 0 deoxyguanosine 40 (Overnight) (Overnight) 20 6-sulfatoxymelatonin provides 8-hydroxy-2-deoxyguanosine is Cortisol/Creatinine (ng/mg) insight into melatonin levels. a marker of oxidative stress 0 Morning Dinner Bedtime A B C 50 66 Free cortisol Cortisol Metabolites 33 84 profile is used to provides a general Testosterone Cortisol assess diurnal assessment of 16 100 cortisol rhythm adrenal cortisol 16 Percentile Cortisol production Cortisol Metabolites 0 (α+β THF + THE) Testosterone Cortisol/Testosterone provides insight into relative catabolic (cortisol) and anabolic (testosterone) states. -
European Journal of Biomedical and Pharmaceutical Sciences
ejbps, 2016, Volume 3, Issue 1, 62-83. Review Article SJIF Impact Factor 2.062 Kumar et al. European Journal European ofJournal Biomedical of Biomedical and Pharmaceutical ISSNSciences 2349 -8870 Volume: 3 AND Pharmaceutical sciences Issue: 1 62-83 http://www.ejbps.com Year: 2016 A REVIEW ON THE PHYTOCONSTITUENTS AND PHARMACOLOGICAL ACTIONS IN THE MEDICINAL PLANTS OF BEDABUNA FOREST, JIMMA ZONE, SOUTH WEST ETHIOPIA REPORTED EFFECT ON EXPERIMENTAL MODELS Kumar Ganesan1*, Suresh Kumar P. Nair1, Melese Sinaga1, Sharmila Banu Gani2* 1Department of Biomedical Sciences, School of Public Health and Medical Sciences, Jimma University, Jimma 378, Ethiopia 2Department of Zoology, NKR Government Arts College for Women, Namakkal-637001, Tamilnadu, India *Author for Correspondence: Dr. Kumar Ganesan Department of Biomedical Sciences, School of Public Health and Medical Sciences, Jimma University, Jimma 378, Ethiopia Article Received on 03/11/2015 Article Revised on 24/11/2015 Article Accepted on 15/12/2015 ABSTRACT Ethiopia is sixth largest biodiversity centre in the world having numerous ethinic cultures, climate and topographies. The present paper reviews on medicinal properties along with atypical Phytoconstituents and pharmacological actions of various plants in bedabuna forest, Zimma zone, Southwest Ethiopia, which has been reported effect on experimental models. This study is very authentic and helpful to find richest bioresources like identification of medicinal plants, documentation, protection and sustainable usages. This study will helpful to not only a native people of Jimma, southwest Ethiopia but also the other part of the Ethiopia to explore the indigenous medicinal plants used in the treatment of various ailments for human and livestock. In the present study totally 49 species of traditional medicinal plants belonging to 31 families were come across by regular ground visits and arbitrarily interviewed with native participants. -
Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids From
molecules Article Assessment of Insecticidal Activity of Benzylisoquinoline Alkaloids from Chilean Rhamnaceae Plants against Fruit-Fly Drosophila melanogaster and the Lepidopteran Crop Pest Cydia pomonella Soledad Quiroz-Carreño 1, Edgar Pastene-Navarrete 1 , Cesar Espinoza-Pinochet 2, Evelyn Muñoz-Núñez 1, Luis Devotto-Moreno 3, Carlos L. Céspedes-Acuña 1 and Julio Alarcón-Enos 1,* 1 Laboratorio de Síntesis y Biotransformación de Productos Naturales, Dpto. Ciencias Básicas, Universidad del Bio-Bio, PC3780000 Chillán, Chile; [email protected] (S.Q.-C.); [email protected] (E.P.-N.); [email protected] (E.M.-N.); [email protected] (C.L.C.-A.) 2 Dpto. Agroindustria, Facultad de Ingeniería Agrícola, Universidad de Concepción, 3780000 Chillán, Chile; [email protected] 3 Instituto de Investigaciones Agropecuarias, INIA Quilamapu, 3780000 Chillán, Chile; [email protected] * Correspondence: [email protected] Academic Editors: Daniel Granato and Petri Kilpeläinen Received: 29 September 2020; Accepted: 27 October 2020; Published: 3 November 2020 Abstract: The Chilean plants Discaria chacaye, Talguenea quinquenervia (Rhamnaceae), Peumus boldus (Monimiaceae), and Cryptocarya alba (Lauraceae) were evaluated against Codling moth: Cydia pomonella L. (Lepidoptera: Tortricidae) and fruit fly Drosophila melanogaster (Diptera: Drosophilidae), which is one of the most widespread and destructive primary pests of Prunus (plums, cherries, peaches, nectarines, apricots, almonds), pear, walnuts, and chestnuts, among other. Four benzylisoquinoline alkaloids (coclaurine, laurolitsine, boldine, and pukateine) were isolated from the above mentioned plant species and evaluated regarding their insecticidal activity against the codling moth and fruit fly. The results showed that these alkaloids possess acute and chronic insecticidal effects. The most relevant effect was observed at 10 µg/mL against D.