Electronic Supplementary Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reactions of Saccharides Catalyzed by Molybdate Ions. XXII.* Oxidative Degradation of D-Galactose Phenylhydrazones
Reactions of saccharides catalyzed by molybdate ions. XXII.* Oxidative degradation of D-galactose phenylhydrazones L. PETRUŠ, V. BILIK, K. LINEK, and M. MISIKOVA Institute of Chemistry, Slovak Academy of Sciences, 809 33 Bratislava Received 4 March 1977 D-Galactose phenylhydrazone was degraded with hydrogen peroxide in the presence of molybdate ions to D-lyxose in 50% yield. The oxidative degrada tion of D-galactose 2,5-dichlorophenylhydrazone and D-galactose 2,4-dinitro- phenylhydrazone gave D-lyxose and D-galactose in the ratio 4:1 and 1:9, respectively. 2,6-Anhydro-l-deoxy-l-nitro-D-galactitol was prepared from D-lyxose. Фенилгидразон D-галактозы разрушается перекисью водорода в при сутствии молибдатных ионов с 50%-ным превращением в D-ликсозу. В случае окислительной деградации 2,5-дихлорфенилгидразона D-галак тозы образуется D-ликсоза и D-галактоза в отношении 4:1, в случае же 2,4-динитрофенилгидразона D-галактозы в отношении 1:9. Из D-ликсозы был приготовлен 2,6-ангидро-1-дезокси-1-нитро-о-галактитол. Treatment of 1-deoxy-l-nitroalditols in alkaline medium with hydrogen peroxi de in the presence of molybdate ions leads to the formation of corresponding aldoses [1]. This reaction is, particularly with nitroalditols prepared from L-ribose [2] and D-glucose [3], accompanied by a parallel elimination reaction leading back to the starting aldoses. Schulz and Somogyi [4] treating L-rhamnose phenylhydra zone with oxygen in acetone or 2,3,4,5,6-penta-O-acetyl-D-galactose phenylhy drazone in benzene, obtained the corresponding 1-hydroperoxo derivatives which decomposed in alcohol solution of sodium methanolate to the corresponding pentoses. -
Download Author Version (PDF)
Environmental Science: Nano CdS Nanoparticles in Soil Induce Metabolic Reprogramming in Broad Bean (Vicia faba L.) Roots and Leaves Journal: Environmental Science: Nano Manuscript ID EN-ART-08-2019-000933.R1 Article Type: Paper Page 1 of 36 Environmental Science: Nano 1 2 3 4 The rapid development of nanotechnology has raised concern regarding the 5 6 7 environmental toxicity of nanoparticles (NPs). However, little is known about the 8 9 molecular mechanisms underlying NP toxicity in plants. Understanding toxic 10 11 12 mechanisms in organisms at molecular level, especially in crop plants, is important for 13 14 their sustainable use and development. In this study, although none of the phenotypic 15 16 17 parameters of broad bean plants (photosynthetic pigments contents, biomass, and lipid 18 19 20 peroxidation) were overtly impacted in response to CdS-NPs in soil during 28 d of 21 22 exposure, metabolomics revealed marked and statistically significant alterations in the 23 24 25 metabolite profiles of plant roots and leaves. The reprogramming of antioxidant 26 27 metabolite production presumably reflected the molecular defense response of the 28 29 30 plants to CdS-NPs stress. The sensitive responses of flavone, putrescine and 31 32 33 noradrenaline in the leaves suggests the use of these compounds in legumes as 34 35 biomarkers of oxidative stress induced by the presence of CdS-NPs in soil. 36 37 38 Metabolomics might thus be a suitable approach for the early detection of soil 39 40 contamination by Cd. In the plants, the reprogramming of carbon and nitrogen 41 42 43 metabolism (including sugars, organic acids, amino acids, and N-containing 44 45 46 compounds) alleviated the toxicity of CdS-NPs, which may have been caused by free 47 48 Cd2+ ions or perhaps by a particle-specific response. -
And Honeydew Sugars with Respect to Their Utilization by the Hymenopteran Parasitoid Cotesia Glomerata F.L
Journal of Insect Physiology 47 (2001) 1077–1084 www.elsevier.com/locate/jinsphys A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata F.L. Wa¨ckers * Institute of Plant Sciences, Applied Entomology, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland Received 10 October 2000; received in revised form 12 February 2001; accepted 19 February 2001 Abstract Fourteen naturally occurring sugars were individually tested with respect to their effect on Cotesia glomerata longevity. Parasitoids kept with solutions of either sucrose, glucose and fructose lived for Ͼ30 days. This constitutes a factor 15 increase in life span in comparison to control individuals kept with water only. Stachyose, mannose, melezitose, melibiose, maltose and erlose increased parasitoid longevity by a factor of 11.2–6.9. Solutions of galactose and trehalose had a marginal, but still significant effect. Lactose and raffinose did not raise parasitoid longevity, while rhamnose actually reduced parasitoid survival. In an additional experiment, the relationship between quantity of sugar consumption and longevity was established for all 14 sugars. To study the effect of an unsuitable sugar in sugar mixtures, a range of glucose:rhamnose mixtures was tested. Even at 20% of the sugar mixture rhamnose suppressed the nutritional benefit of the 80% glucose. The nutritional suitability of the sugars shows a positive correlation with the previously reported gustatory response towards the individual sugars. Patterns of sugar utilization are discussed with respect to hydrolytic enzymes and carbohydrate biochemical characteristics. Our findings for C. glomerata are compared to patterns of sugar utilization reported for other species. -
Sugars and Plant Innate Immunity
Journal of Experimental Botany Advance Access published May 2, 2012 Journal of Experimental Botany, Page 1 of 10 doi:10.1093/jxb/ers129 REVIEW PAPER Sugars and plant innate immunity Mohammad Reza Bolouri Moghaddam and Wim Van den Ende* KU Leuven, Laboratory of Molecular Plant Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium * To whom correspondence should be addressed. E-mail: [email protected] Received 27 January 2012; Revised 25 March 2012; Accepted 30 March 2012 Abstract Sugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to Downloaded from immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network. Although evidence in favour of sugar-mediated plant immunity is accumulating, more in-depth fundamental research is required to unravel the sugar signalling pathways involved. This might pave the way for the use of biodegradable http://jxb.oxfordjournals.org/ sugar-(like) compounds to counteract plant diseases as cheaper and safer alternatives for toxic agrochemicals. Key words: immunity, pathogen, priming, signal, sugar. Introduction by guest on March 24, 2016 Sugars such as glucose, fructose, and sucrose are recognized Chisholm et al., 2006). Sugars are well known to activate as signalling molecules in plants (Rolland et al., 2006; various pattern recognition genes (Herbers et al., 1996a,b; Bolouri-Moghaddam et al., 2010), in addition to their Johnson and Ryan, 1990). -
Sweetness and Sensory Properties of Commercial and Novel Oligosaccharides Of
1 Sweetness and sensory properties of commercial and novel oligosaccharides of 2 prebiotic potential 3 4 Laura Ruiz-Aceitunoa, Oswaldo Hernandez-Hernandeza, Sofia Kolidab, F. Javier 5 Morenoa,* and Lisa Methvenc 6 7 a Institute of Food Science Research, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 8 Madrid (Spain) 9 b OptiBiotix Health plc, Innovation Centre, Innovation Way, Heslington, York YO10 10 5DG (UK) 11 c Sensory Science Centre, Department of Food and Nutritional Sciences, The University 12 of Reading, PO Box 226, Whiteknights, Reading RG6 6AP (UK) 13 14 *Corresponding author: [email protected] Tel (+34) 91 0017948 1 15 Abstract 16 This study investigates the sweetness properties and other sensory attributes of ten 17 commercial and four novel prebiotics (4-galactosyl-kojibiose, lactulosucrose, lactosyl- 18 oligofructosides and raffinosyl-oligofructosides) of high degree of purity and assesses the 19 influence of their chemical structure features on sweetness. The impact of the type of 20 glycosidic linkage by testing four sucrose isomers, as well as the monomer composition 21 and degree of polymerization on sweetness properties were determined. Data from the 22 sensory panel combined with principal component analysis (PCA) concludes that chain 23 length was the most relevant factor in determining the sweetness potential of a 24 carbohydrate. Thus, disaccharides had higher sweetness values than trisaccharides which, 25 in turn, exhibited superior sweetness than mixtures of oligosaccharides having DP above 26 3. Furthermore, a weak non-significant trend indicated that the presence of a ketose sugar 27 moiety led to higher sweetness. The novel prebiotics tested in this study had between 18 28 and 25% of relative sweetness, in line with other commercial prebiotics, and samples 29 varied in their extent of off flavour. -
Author Correction: the Planctomycete Stieleria Maiorica Mal15t Employs Stieleriacines to Alter the Species Composition in Marine Biofilms
https://doi.org/10.1038/s42003-020-01271-y OPEN Author Correction: The planctomycete Stieleria maiorica Mal15T employs stieleriacines to alter the species composition in marine biofilms Nicolai Kallscheuer , Olga Jeske, Birthe Sandargo, Christian Boedeker, Sandra Wiegand , Pascal Bartling, 1234567890():,; Mareike Jogler, Manfred Rohde, Jörn Petersen, Marnix H. Medema , Frank Surup & Christian Jogler Correction to: Communications Biology https://doi.org/10.1038/s42003-020-0993-2, published online 12 June 2020. In the original version of the Article “The planctomycete Stieleria maiorica Mal15T employs stieleriacines to alter the species composition in marine biofilms”, the authors described the new genus Stieleria and its type species Stieleria maiorica. However, the descriptions were not presented in the paper in the format required by Rule 27 and Rule 30 of the International Code of Nomenclature of Prokaryotes. Therefore, we here present the descriptions in the correct format. Description of Stieleria gen. nov. Stieleria (Stie.le’ri.a. N.L. fem. n. Stieleria named in honor of Anja Heuer, née Stieler, an extraordinary skilled German technician at the Leibniz Institute DSMZ, who played a key role in the cultivation of literally hundreds of novel planctomycetal strains). The round-to- pear-shaped cells with a smooth cell surface form rosettes or short chains. Cells reproduce by polar budding. In liquid culture, they produce an extracellular matrix that interconnects cells in aggregates. Daughter cells are motile, while mother cells are non-motile. The lifestyle is heterotrophic, obligatory aerobic, and mesophilic. The genus belongs to the phylum Planctomycetes, class Planctomycetia, order Pirellulales, and family Pirellulaceae. The type species is Stieleria maiorica. -
Characterization of EPS-Producing Brewery-Associated Lactobacilli
TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Technische Mikrobiologie Characterization of EPS-producing brewery-associated lactobacilli Marion Elisabeth Fraunhofer Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Horst-Christian Langowski Prüfer der Dissertation: 1. Prof. Dr. Rudi F. Vogel 2. Hon.-Prof. Dr.-Ing. Friedrich Jacob Die Dissertation wurde am 13.12.2017 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 06.03.2018 angenommen. Vorwort Vorwort Die vorliegende Arbeit entstand im Rahmen eines durch Haushaltsmittel des BMWi über die AiF-Forschungsvereiningung Wissenschaftsförderung der Deutschen Brauwirtschaft e.V. geförderten Projekts (AiF18194 N). Mein besonderer Dank gilt meinem Doktorvater Herrn Prof. Dr. rer. nat. Rudi F. Vogel für das Vertrauen, die Unterstützung und die Loyalität auf die ich mich in den letzten Jahren stets verlassen konnte. Danke Rudi, dass ich meine Promotion an deinem Lehrstuhl durchführen durfte. Desweitern bedanke ich mich bei Dr. rer. nat. Frank Jakob, der mich durch seine umfassende Betreuung sicher durch meine Dissertation begleitet hat. Apl. Prof. Dr. Matthias Ehrmann und apl. Prof. Dr. Ludwig Niessen -
Determination of Carbohydrates in Honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA
Determination of carbohydrates in honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA ABSTRACT RESULTS SAMPLE ANALYSIS METHOD ACCURACY Table 7. Adulteration parameters for HS6 adulterated with 10% SS1 through SS5. Purpose: To develop an HPAE-PAD method for the determination of carbohydrates in honey Honey sugar analysis Sample Recovery HS6 (Wild Mountain Honey) samples to evaluate their quality and to assess the possibility of adulteration. Separation Adulteration Honey sugars were separated using a Dionex CarboPac PA210-Fast-4μm column (150 × 4 mm) in Method accuracy was evaluated by measuring recoveries of 10 sugar standards spiked into honey Parameters 100% + 10% + 10% + 10% + 10% + 10% For this study, we purchased 12 commercial honey samples (Table 1) and analyzed them using Honey SS1 SS2 SS3 SS4 SS5 Methods: Separation of individual honey sugars was achieved on the recently introduced Thermo series with a Dionex CarboPac PA210 guard column (50 × 4 mm). The column selectivity allow samples. For spiking experiments, four honey samples were used (HS7–HS10) and spiked with a 10- HPAE-PAD. Figure 3 shows the representative chromatograms of 3 honey samples. For all 12 Glucose(G), mg/L 121 115 116 117 119 107 Scientific™ Dionex™ CarboPac™ PA210-Fast-4μm column. Carbohydrate detection was by pulsed carbohydrates to be separated with only a hydroxide eluent generated using an eluent generator. A sugar standard mix at two concentration levels. Figure 4 shows the representative chromatograms investigated honey samples, fructose and glucose (Peak 2 and Peak 3), were found to be the major Fructose(F), mg/L 127 115 115 116 126 116 amperometric detection (PAD) with a gold working electrode and, therefore, no sample derivatization solution of honey sugar standards was prepared and an aliquot (10 μL) of the solution was injected of unspiked and spiked honey sample HS7. -
WO 2013/070444 Al 16 May 2013 (16.05.2013) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/070444 Al 16 May 2013 (16.05.2013) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A23G 4/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 12/062043 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 26 October 2012 (26.10.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW. 61/556,546 7 November 20 11 (07. 11.201 1) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): WVI. kind of regional protection available): ARIPO (BW, GH, WRIGLEY JR. COMPANY [US/US]; 1132 Blackhawk GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, Street, Chicago, IL 60642 (US). -
Monosaccharides: a Tof-SIMS Reference Accession #: 01592, 01593, 01594, 01595, 01596, 01597, 01598, Spectra Database
Monosaccharides: A ToF-SIMS reference Accession #: 01592, 01593, 01594, 01595, 01596, 01597, 01598, spectra database. II. Positive polarity 01599, 01600, 01601, 01602, a) 01603, 01604, 01605, 01606, Laetitia Bernard, Rowena Crockett, and Maciej Kawecki 01607, 01608, 01609, 01610 Laboratory of Nanoscale Materials Science, Empa, CH-8600 Dübendorf, Switzerland Technique: SIMS (Received 20 August 2019; accepted 30 October 2019; published 3 December 2019) Host Material: Silicon (100) wafer The number of time-of-flight secondary ion mass spectrometry studies on biological tissues and Instrument: IONTOF TOF-SIMS.5 cells has strongly increased since the development of primary ion sources that allow not only ele- Major Species in Spectra: C, H, O, (N) mental but also molecular analysis. Substantial fragmentation during ionic bombardment results in a Minor Species in Spectra: Na, K large number of peaks, rendering data analysis complex. Complete and trustable sets of reference spectra for the main biological building blocks, i.e., amino acids, monosaccharides, fatty acids, and Published Spectra: 19 nucleotides, are required. This work aims to provide an accurate and extensive library of reference Spectra in Electronic Record: 19 + spectra for monosaccharides, measured with the Bi3 primary ion. Here (Paper II), the positive polar- Published Figures: 20 ity spectra and lists of associated characteristic fragments are presented. Published by the AVS. Spectral Category: Reference https://doi.org/10.1116/1.5125103 Keywords: ToF-SIMS, carbohydrate, sugar, monosaccharide, mass spectrometry, fragmentation INTRODUCTION Fluka and all others from Sigma Aldrich. Each powder was dissolved in freshly de-ionized H2O (resistivity >18.2 MΩ cm) Monosaccharides are the building blocks of structural polymers at a concentration of 0.1M. -
Supporting Information Summary: 1
Supporting Information Summary: 1. SI Materials and Methods 2. Tables S1-S6 3. Figures S1-S10 4. Supporting Text 5. References SI Materials and Methods In silico modeling The most current version of the genome scale model for Escherichia coli K-12 MG1655, iJO1366(Orth et al., 2011), was utilized in this study as the base model before adding underground reactions related to the five substrates analyzed as previously reported(Notebaart et al., 2014). The underground reactions previously reported were added to iJO1366 using the constraint-based modeling package, COBRApy(Ebrahim et al., 2013). All growth simulations using parsimonious flux balance analysis were conducted using COBRApy. Growth simulations were performed by optimizing the default core biomass objective function (a representation of essential biomass compounds in stoichiometric amounts)(Feist and Palsson, 2010). To simulate aerobic growth on a given substrate, the exchange reaction lower bound for that -1 -1 substrate was adjusted to -10 mmol gDW h r . Sampling was conducted to determine the most likely high flux metabolic pathways for growth on D-2-deoxyribse (Dataset S3). The Artificial Centering Hit-and-Run algorithm, optGpSampler(Megchelenbrink et al., 2014), was utilized to sample the steady-state solution space. The lower bound of the biomass objective function was set to 90% of the optimum in order to better simulate realistic growth conditions. The number of sample points used was two times the number of reactions in the iJO1366 model (5186 sample points) and the step count was set to 25000 in order to ensure a nearly uniformly sampled solution space. Thus for each reaction, a distribution of likely flux states was acquired. -
Plausible Prebiotic Synthesis of Aldopentoses from Simple Substrates, Glycolaldehyde and Formaldehyde
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259637530 Plausible prebiotic synthesis of aldopentoses from simple substrates, glycolaldehyde and formaldehyde Article in Paleontological Journal · December 2013 DOI: 10.1134/S0031030113090062 CITATION READS 1 57 3 authors: Irina Delidovich Oxana Taran RWTH Aachen University Boreskov Institute of Catalysis 53 PUBLICATIONS 1,539 CITATIONS 136 PUBLICATIONS 1,152 CITATIONS SEE PROFILE SEE PROFILE Valentin N Parmon Boreskov Institute of Catalysis 755 PUBLICATIONS 10,960 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indo-Russia Joint project -Development of integrated (biotechnological and nanocatalytic) biorefinery for fuels and platform chemicals production from lignocellulosic biomass (crop/wood residues) View project In situ NMR of catalytic reactions View project All content following this page was uploaded by Oxana Taran on 20 July 2015. The user has requested enhancement of the downloaded file. ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 9, pp. 1093–1096. © Pleiades Publishing, Ltd., 2013. Plausible Prebiotic Synthesis of Aldopentoses from Simple Substrates, Glycolaldehyde and Formaldehyde I. V. Delidovicha, O. P. Taranb, and V. N. Parmonc aBoreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. akademika Lavrent’eva 5, Novosibirsk, 630090 Russia bNovosibirsk State Technical University, pr. K. Marksa, 20, Novosibirsk, 630073 Russia cNovosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia email: [email protected] Received February 15, 2012 Abstract—Possible ways of abiotic catalytic synthesis of biologically significant aldopentoses (ribose, xylose, arabinose, lyxose) from elementary substrates, i.e., formaldehyde (FA) and glycolaldehyde (GA) in aqueous solutions are discussed.