And Honeydew Sugars with Respect to Their Utilization by the Hymenopteran Parasitoid Cotesia Glomerata F.L

Total Page:16

File Type:pdf, Size:1020Kb

And Honeydew Sugars with Respect to Their Utilization by the Hymenopteran Parasitoid Cotesia Glomerata F.L Journal of Insect Physiology 47 (2001) 1077–1084 www.elsevier.com/locate/jinsphys A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata F.L. Wa¨ckers * Institute of Plant Sciences, Applied Entomology, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland Received 10 October 2000; received in revised form 12 February 2001; accepted 19 February 2001 Abstract Fourteen naturally occurring sugars were individually tested with respect to their effect on Cotesia glomerata longevity. Parasitoids kept with solutions of either sucrose, glucose and fructose lived for Ͼ30 days. This constitutes a factor 15 increase in life span in comparison to control individuals kept with water only. Stachyose, mannose, melezitose, melibiose, maltose and erlose increased parasitoid longevity by a factor of 11.2–6.9. Solutions of galactose and trehalose had a marginal, but still significant effect. Lactose and raffinose did not raise parasitoid longevity, while rhamnose actually reduced parasitoid survival. In an additional experiment, the relationship between quantity of sugar consumption and longevity was established for all 14 sugars. To study the effect of an unsuitable sugar in sugar mixtures, a range of glucose:rhamnose mixtures was tested. Even at 20% of the sugar mixture rhamnose suppressed the nutritional benefit of the 80% glucose. The nutritional suitability of the sugars shows a positive correlation with the previously reported gustatory response towards the individual sugars. Patterns of sugar utilization are discussed with respect to hydrolytic enzymes and carbohydrate biochemical characteristics. Our findings for C. glomerata are compared to patterns of sugar utilization reported for other species. The comparison between C. glomerata and its host Pieris brassicae reveals that the parasitoid is capable of utilizing a range of sugars that are unsuitable to its herbivorous host. This specificity opens up opportunities to select food supplements for biological control programs that selectively target the antagonist, without concurrently enhancing herbivore fitness. 2001 Elsevier Science Ltd. All rights reserved. Keywords: Carbohydrate; Hymenoptera; Feeding; Enzymes 1. Introduction et al., 1996) extrafloral nectar (e.g., Bugg et al., 1989) and honeydew (Zoebelein, 1955). The sugar composition The majority of adult parasitoids depend entirely or of nectar and honeydew shows a broad variation both primarily on carbohydrates as an energy source (Jervis regarding the type of sugars present and the overall sugar et al., 1993). Both the parasitoid’s longevity and fec- concentration. Sucrose and its hexose components glu- undity are usually subject to energetic constraints cose and fructose are the most prevalent sugars in nectars (Leatemia et al., 1995), while the parasitoid’s behavior and honeydews (Baker and Baker, 1983; Kloft et al., can be strongly affected by its nutritional state as well 1985; Koptur, 1992). However, various other sugars can (Takasu and Lewis, 1995; Wa¨ckers, 1994). There is occur as well, sometimes in significant concentrations strong theoretical as well as empirical evidence that the (Table 1). availability of suitable sugar sources can play a key role Insect species can vary considerably with respect to in parasitoid host dynamics (Krivan and Sirot, 1997; the spectrum of nectar- and honeydew-sugars they can Wa¨ckers, unpublished data). utilize. Longevity studies indicate that distinct differ- The principle carbohydrate sources available to para- ences exist between insects in their ability to utilize sitoids are floral nectar (Idris and Grafius, 1995; Wa¨ckers particular sugars (Ferreira et al., 1998). Even though nectar or sugar supplements are increasingly rec- ommended as a tool to enhance parasitoid performance * Current address: NIOO CTO, P.O. Box 40, 6666 ZG Heteren, the (Jacob and Evans, 1998), little is known with regard to Netherlands. Tel.: +0031-26-479-1306; fax: +0031-26-472-3227. the suitability of individual carbohydrates as parasitoid E-mail address: [email protected] (F.L. Wa¨ckers). food sources. While a number of studies have quantified 0022-1910/01/$ - see front matter 2001 Elsevier Science Ltd. All rights reserved. PII: S0022-1910(01)00088-9 1078 F.L. Wa¨ckers / Journal of Insect Physiology 47 (2001) 1077–1084 Table 1 compare their longevity to that of a control group pro- a Natural (exogenous) sources for the sugars used in these experiments vided with water only. However, this approach fails to Source establish actual food consumption as it does not differen- tiate between lack of nutritional suitability and lack of Monosaccharides feeding stimulation. To account for this potential prob- Glucose Main sugar in: lem, a second experiment was conducted in which the —various (extra)floral nectars sugar consumption during a single feeding bout and sub- —honeydew Fructose Main sugar in: sequent survival of individual parasitoids was estab- —various (extra)floral nectars lished. —honeydew Galactose —(extra)floral nectar —honeydew 2. Materials and methods Mannose —traces in floral nectar and fruits Rhamnose —extra floral nectar Disaccharides 2.1. Insects Sucrose Main sugar in: —various (extra)floral nectars Cotesia glomerata were reared on Pieris brassicae fed —honeydew with Brussels sprouts plants [Brassicae oleracea (L.) Trehalose —honeydew (insect synthesized) = ° = Maltose —coccid honeydew var. Gemmifera]atT 21 C; RH 60%; 16L:8D. Two —floral nectar days after the parasitoid larvae had egressed from their Melibiose —floral nectar host, parasitoid coccoons were collected and transferred —eucalyptus exudate (manna) to a climate chamber (T=15°C; RH=95%; 16L:8D). Lactose —fruits of Achras sapota Upon emergence, groups of 30–40 parasitoids of both Trisaccharides Raffinose —primarily in honeydew (plant sexes were transferred to polypropylene cages derived and insect synthesized) (30×30×30 cm). Parasitoids were neither exposed to —some floral nectars food or water prior to the experiments. Water depri- Melezitose —primarily in honeydew (insect vation was required to assure some level of sugar uptake synthesized) even for those sugars that fail to stimulate feeding —rare in (extra)floral nectars Erlose —honeydew (Wa¨ckers, 1999). Tertrasaccharide Stachyose —honeydew 2.2. Longevity experiments: single sugars a Literature references for the sources of sugars mentioned in this One day following emergence, cohorts of 10 unfed C. table are available direct from the author if required. glomerata females were placed in plexiglas containers (7×3×14 cm) and offered three drops (10 µl each) of a the effect of the three more common nectar sugars 1M sugar solution. A control group was offered water (sucrose, fructose and glucose) on parasitoid longevity on a wet filter paper. The following sugars were tested: (Leatemia et al., 1995; Morales-Ramos et al., 1996; the monosaccharides glucose, fructose, galactose, man- McDougall, 1997), few have extended their assays to nose, and rhamnose, the disaccharides sucrose, trehalose, include additional carbohydrates. Zoebelein (1955) maltose, melibiose, and lactose the trisaccharides raf- included melezitose and dextrin in his longevity experi- finose, melezitose, and erlose, as well as the tetrasacch- ments with Microplectron uscipennis, while Ponnamma aride stachyose. Even though a number of these sugars and Kurian (1983) compared six sugars and mannitol do not elicit feeding behavior in food deprived C. glo- (a sugar alcohol) with respect to their effect on Bracon merata, they do not deter liquid uptake by water brevicornis longevity. deprived individuals (Wa¨ckers, 1999). Since no separate To obtain a more comprehensive overview on carbo- water source was provided in this experiment, parasit- hydrate utilization by the ecologically and economically oids could be expected to consume all sugar solutions important group of Hymenopteran parasitoids, I tested a irrespective of their feeding stimulatory properties. All range of 14 naturally occurring sugars (listed in Fig. 1) sugar solutions were renewed weekly through a reseal- with respect to their suitability as food sources for Cote- able hole in the container. This renewal schedule was sia glomerata (L.) (Hymenoptera: Braconidae). This based on HPLC analyses, showing microbial breakdown species represents the large group of parasitoids whose of sugars when solutions were exposed for longer per- adult nutrition is likely entirely restricted to carbohydrate iods. Due to the tendency of melezitose and raffinose to rich solutions, as it refrains from feeding on host haemo- crystallize, these two sugar solutions had to be renewed lymph or pollen (Wa¨ckers, personal observation). daily. The high humidity in the climate chamber and the The common practice in sugar suitability assays is to hygroscopic property of the other sugars prevented keep individuals with a particular sugar solution and their crystallization. F.L. Wa¨ckers / Journal of Insect Physiology 47 (2001) 1077–1084 1079 Fig. 1. Average longevity of C. glomerata females when provided with solutions of individual sugars. A total of 30 parasitoids were tested with each sugar. Different letters indicate significant differences (Fisher PLSD). Error bars represent standard deviations. Survival of the parasitoids was scored daily. A total ence. Parasitoids were transferred to a vial containing a of 30 parasitoids were tested with each sugar. Data were droplet (5 µl) of a 1M solution of an individual sugar.
Recommended publications
  • Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance
    J. AMER. SOC. HORT. SCI. 127(1):45–49. 2002. Soluble Carbohydrates in Two Buffalograss Cultivars with Contrasting Freezing Tolerance S. Ball, Y.L. Qian,1 and C. Stushnoff Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523-1173 DDITIONAL INDEX WORDS A . Buchloe dactyloides, cold hardiness, fructose, glucose, raffinose, sucrose, LT50 ABSTRACT. No information is available regarding endogenous soluble carbohydrate accumulation in buffalograss [Buchloe dactyloides (Nutt.) Engelm.] during cold acclimation. The objective of this study was to determine composition of soluble carbohydrates and their relationship to freezing tolerance in two buffalograss cultivars, 609 and NE 91-118, with different freezing tolerances. The experiment was conducted under natural cold acclimation conditions in two consecutive years in Fort Collins, Colo. Based upon average LT50 (subfreezing temperature resulting in 50% mortality) from seven sampling intervals in 1998–99 and six sampling intervals in 1999–2000, ‘NE 91-118’ survived 4.5 °C and 4.9 °C colder temperatures than ‘609’, during the 1998-1999 and 1999–2000 winter seasons, respectively. Glucose, fructose, sucrose, and raffinose were found in both cultivars in both years, and were generally higher in acclimated than pre- and post-acclimated stolons. Stachyose was not present in sufficient quantities for quantification. Cultivar NE 91-118 contained 63% to 77% more glucose and 41% to 51% more raffinose than ‘609’ in the 1998–99 and 1999–2000 winter seasons, respectively. In 1999–2000, fructose content in ‘NE 91-118’ was significantly higher than that of ‘609’. A significant negative correlation was found between LT50 vs. all carbohydrates in 1999–2000, and LT50 vs.
    [Show full text]
  • Carbohydrates Are Defined As Polyhydroxy Aldehydes Or Polyhydroxy Ketones Or Compounds That on Hydrolysis Produce Either Acetic Acid and Lactic Acid
    ¾ Carbohydrates are defined as polyhydroxy aldehydes or polyhydroxy ketones or compounds that on hydrolysis produce either acetic acid and lactic acid. They are substances of universal occurrence and are much abundant in plants rather than in animals. ¾ Carbohydrates are grouped into two major classes: simple sugars (saccharides) and polysaccharides. Low molecular weight carbohydrtes are crystalline, soluble in water and sweet in taste; example glucose, fructose and sucrose. The high molecular weight carbohydrates (polymers) are amorphous, tasteless and relatievly less soluble in water; example starch, cellulose, gums, pectins, inulin etc. Bioses : Two carbon atom. Trisoes: Three carbon atoms, but in the form of phospheric esters, eg: glyceraldehyde Tetroses : Four carbon atoms eg: erythroses Pentoses: hemicellulose, mucilage ad gums Hexoses : six carbon atoms aldoses: glucose, mannose, galactose. ketoses: fructose and sorbose Carbohydrates which upon hydrolysis yield two molecules of monosaccharide are called as disaccharides. Sucrose on hydrolysis gives glucose and fructose (sugarcane) Maltose on hydrolysis gives glucose and glucose (malt sugar) Lactose on hydrolysis gives glucose and galactose (cow’s milk) These liberate three molecules of monosaccharides on hydrolysis. Raffinose on hydrolysis gives glucose , fructose and galactose. Gentianose on hydrolysis gives two glucose molecules and fructose Scillatriose , mannotrose , phanteose are the other examples. Stachyose , a tetrasaccharide, yields on hydrolysis , four molecules
    [Show full text]
  • GRAS Notice 896, Alpha-Galacto-Oligosaccharides
    GRAS Notice (GRN) No. 896 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory NOV 1 8 2019 OFFICE OF FOOD ADDITI\/t: SAFETY GENERALLY RECOGNIZED AS SAFE (GRAS) NOTIFICATION FOR ALPHA-GALACTO­ OLIGOSACCHARIDES (ALPHAGOS®) IN CONVENTIONAL FOODS AND BEVERAGES AND NON-EXEMPT INFANT FORMULAS Prepared for: Olygose Pare Technologique des Rives de l'Oise BP 50149, F-60201 Compiegne Cedex France Prepared by: Spherix Consulting Group, Inc. 11821 Parklawn Drive, Suite 310 Rockville, MD 20852 USA November 13, 2019 GRAS Notification for the Use of alpha-GOS November 13, 2019 Prepared for Olygose TABLE OF CONTENTS I. SIGNED STATEMENT OF THE CONCLUSION OF GENERALLY RECOGNIZED AS SAFE (GRAS) AND CERTIFICATION OF CONFORMITY TO 21 CFR §170.205-170.260 .... 1 A. SUBMISSION OF GRAS NOTICE .................................................................................1 B. NAME AND ADDRESS OF THE SPONSOR ................................................................1 C. COMMON OR USUAL NAME .......................................................................................1 D. TRADE SECRET OR CONFIDENTIAL INFORMATION ............................................1 E. INTENDED USE ..............................................................................................................1 F. BASIS FOR GRAS DETERMINATION .........................................................................1 G. PREMARKET APPROVAL ............................................................................................3 H. AVAILABILITY OF
    [Show full text]
  • Pioneer Hi-Bred International, Inc. High Oleic 305423 Soybean
    Pioneer Hi-Bred International, Inc. High Oleic 305423 Soybean OECD Unique Identifier: DP-3Ø5423-1 Draft Environmental Assessment June 2009 Agency Contact Cynthia Eck Document Control Officer Biotechnology Regulatory Services USDA, APHIS Riverdale, MD 20737 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720– 5964 (voice and TDD). USDA is an equal opportunity provider and employer. __________________________________________________________ Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. __________________________________________________________ This publication reports research involving pesticides. All uses
    [Show full text]
  • Electronic Supplementary Information
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information Poly(ionic liquid)s as a Distinct Receptor Material to Create Highly- Integrated Sensing Platform for Efficiently Identifying a Myriad of Saccharides Wanlin Zhang, Yao Li, Yun Liang, Ning Gao, Chengcheng Liu, Shiqiang Wang, Xianpeng Yin, and Guangtao Li* *Corresponding authors: Guangtao Li ([email protected]) S1 Contents 1. Experimental Section (Page S4-S6) Materials and Characterization (Page S4) Experimental Details (Page S4-S6) 2. Figures and Tables (Page S7-S40) Fig. S1 SEM image of silica colloidal crystal spheres and PIL inverse opal spheres. (Page S7) Fig. S2 Adsorption isotherm of PIL inverse opal. (Page S7) Fig. S3 Dynamic mechanical analysis and thermal gravimetric analysis of PIL materials. (Page S7) Fig. S4 Chemical structures of 23 saccharides. (Page S8) Fig. S5 The counteranion exchange of PIL photonic spheres from Br- to DCA. (Page S9) Fig. S6 Reflection and emission spectra of spheres for saccharides. (Page S9) Table S1 The jack-knifed classification on single-sphere array for 23 saccharides. (Page S10) Fig. S7 Lower detection concentration at 10 mM of the single-sphere array. (Page S11) Fig. S8 Lower detection concentration at 1 mM of the single-sphere array. (Page S12) Fig. S9 PIL sphere exhibiting great pH robustness within the biological pH range. (Page S12) Fig. S10 Exploring the tolerance of PIL spheres to different conditions. (Page S13) Fig. S11 Exploring the reusability of PIL spheres. (Page S14) Fig. S12 Responses of spheres to sugar alcohols. (Page S15) Fig.
    [Show full text]
  • Determination of Carbohydrates in Honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA
    Determination of carbohydrates in honey Manali Aggrawal, Jingli Hu and Jeff Rohrer, Thermo Fisher Scientific, Sunnyvale, CA ABSTRACT RESULTS SAMPLE ANALYSIS METHOD ACCURACY Table 7. Adulteration parameters for HS6 adulterated with 10% SS1 through SS5. Purpose: To develop an HPAE-PAD method for the determination of carbohydrates in honey Honey sugar analysis Sample Recovery HS6 (Wild Mountain Honey) samples to evaluate their quality and to assess the possibility of adulteration. Separation Adulteration Honey sugars were separated using a Dionex CarboPac PA210-Fast-4μm column (150 × 4 mm) in Method accuracy was evaluated by measuring recoveries of 10 sugar standards spiked into honey Parameters 100% + 10% + 10% + 10% + 10% + 10% For this study, we purchased 12 commercial honey samples (Table 1) and analyzed them using Honey SS1 SS2 SS3 SS4 SS5 Methods: Separation of individual honey sugars was achieved on the recently introduced Thermo series with a Dionex CarboPac PA210 guard column (50 × 4 mm). The column selectivity allow samples. For spiking experiments, four honey samples were used (HS7–HS10) and spiked with a 10- HPAE-PAD. Figure 3 shows the representative chromatograms of 3 honey samples. For all 12 Glucose(G), mg/L 121 115 116 117 119 107 Scientific™ Dionex™ CarboPac™ PA210-Fast-4μm column. Carbohydrate detection was by pulsed carbohydrates to be separated with only a hydroxide eluent generated using an eluent generator. A sugar standard mix at two concentration levels. Figure 4 shows the representative chromatograms investigated honey samples, fructose and glucose (Peak 2 and Peak 3), were found to be the major Fructose(F), mg/L 127 115 115 116 126 116 amperometric detection (PAD) with a gold working electrode and, therefore, no sample derivatization solution of honey sugar standards was prepared and an aliquot (10 μL) of the solution was injected of unspiked and spiked honey sample HS7.
    [Show full text]
  • Sucrose/ Glucose
    www.megazyme.com RAFFINOSE/ SUCROSE/ GLUCOSE ASSAY PROCEDURE K-RAFGL 04/18 (120 Assays per Kit) © Megazyme 2018 INTRODUCTION: Grain legumes are an important component of both human and livestock diets. Galactosyl-sucrose oligosaccharides (raffinose, stachyose and verbascose) are major components in many food legumes,1 and the anti-nutritional activity of grain legumes is frequently associated with the presence of these oligosaccharides.2 Galactosyl-sucrose oligosaccharides are not hydrolysed in the upper gut due to the absence of α-galactosidase. In the lower intestine they are metabolised by bacterial action, producing methane, hydrogen and carbon dioxide, which lead to flatulence and diarrhoea. Galactosyl- sucrose oligosaccharides are thus a factor limiting the use of grain legumes in monogastric diets.3 Several solvents have been employed for the extraction of galactosyl- sucrose oligosaccharides from legume-seed flours. These are generally water/alcohol mixtures. Before (or concurrent with) extraction, it is vital that endogenous α-galactosidase and invertase are inactivated. This can be achieved by refluxing the flour in ethanol or in an aqueous ethanol mixture before the flour is subjected to aqueous extraction. Identification and quantification of the extracted galactosyl- sucrose oligosaccharides have been achieved using an array of chromatographic procedures, however many of these methods are, at best, semi-quantitative. Chromatographic procedures employing high performance liquid chromatography and low pressure liquid chromatography (using Bio-Gel P2) are quantitative, but can be time consuming, particularly in the area of sample preparation. It is well known that raffinose, stachyose and verbascose are hydrolysed by α-galactosidase to D-galactose and sucrose. Biochemical kits for the measurement of raffinose are commercially available.
    [Show full text]
  • Workflow for the Quantification of Soluble and Insoluble Carbohydrates in Soybean Seed
    Article Workflow for the Quantification of Soluble and Insoluble Carbohydrates in Soybean Seed Ademar Moretti 1, Cintia L. Arias 1, Leandro A. Mozzoni 2, Pengyin Chen 3, Brant T. McNeece 4, M.A. Rouf Mian 4, Leah K. McHale 5 and Ana P. Alonso 1,* 1 BioDiscovery Institute, University of North Texas, Denton, TX 76201, USA; [email protected] (A.M.); [email protected] (C.L.A.) 2 Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA; [email protected] 3 Fisher Delta Research Center, University of Missouri, Portageville, MO 63873, USA; [email protected] 4 USDA-ARS, Soybean & Nitrogen Fixation Unit, Raleigh, NC 27607, USA; [email protected] (B.T.M.); [email protected] (M.A.R.M.) 5 Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-940-369-5229 Academic Editor: Jesus Simal-Gandara Received: 30 July 2020; Accepted: 20 August 2020; Published: 21 August 2020 Abstract: Soybean seed composition has a profound impact on its market value and commercial use as an important commodity. Increases in oil and protein content have been historically pursued by breeders and genetic engineers; consequently, rapid methods for their quantification are well established. The interest in complete carbohydrate profiles in mature seeds, on the other hand, has recently increased due to numerous attempts to redirect carbohydrates into oil and protein or to offer specialty seed with a specific sugar profile to meet animal nutritional requirements. In this work, a sequential protocol for quantifying reserve and structural carbohydrates in soybean seed was developed and validated.
    [Show full text]
  • Raffinose and Stachyose Metabolism Are Not Required for Efficient Soybean Seed Germination
    ARTICLE IN PRESS Journal of Plant Physiology 166 (2009) 1329—1335 www.elsevier.de/jplph SHORT COMMUNICATION Raffinose and stachyose metabolism are not required for efficient soybean seed germination Emily C. Dierkinga, Kristin D. Bilyeub,Ã aUniversity of Missouri-Columbia, Division of Plant Sciences, 110 Waters Hall, Columbia, MO 65211, USA bUSDA-ARS, Plant Genetics Research Unit, 110 Waters Hall, Columbia, MO 65211, USA Received 14 November 2008; received in revised form 20 January 2009; accepted 20 January 2009 KEYWORDS Summary a-galactosidase Raffinose family oligosaccharides (RFOs), which include raffinose and stachyose, are inhibitor; thought to be an important source of energy during seed germination. In contrast to Carbohydrates; their potential for promoting germination, RFOs represent anti-nutritional units for Raffinose family monogastric animals when consumed as a component of feed. The exact role for oligosaccharides; RFOs during soybean seed development and germination has not been experimen- Seed germination; tally determined; but it has been hypothesized that RFOs are required for successful Soybean germination. Previously, inhibition of RFO breakdown during imbibition and germination was shown to significantly delay germination in pea seeds. The objective of this study was to compare the germination potential for soybean seeds with either wild-type (WT) or low RFO levels and to examine the role of RFO breakdown in germination of soybean seeds. There was no significant difference in germination between normal and low RFO soybean seeds when imbibed/germinated in water. Similar to the situation in pea, soybean seeds of wild-type carbohydrate composition experienced a delay in germination when treated with a chemical inhibitor of a-galactosidase activity (1-deoxygalactonojirimycin or DGJ) during imbibition.
    [Show full text]
  • Structures and Characteristics of Carbohydrates in Diets Fed to Pigs: a Review Diego M
    Navarro et al. Journal of Animal Science and Biotechnology (2019) 10:39 https://doi.org/10.1186/s40104-019-0345-6 REVIEW Open Access Structures and characteristics of carbohydrates in diets fed to pigs: a review Diego M. D. L. Navarro1, Jerubella J. Abelilla1 and Hans H. Stein1,2* Abstract The current paper reviews the content and variation of fiber fractions in feed ingredients commonly used in swine diets. Carbohydrates serve as the main source of energy in diets fed to pigs. Carbohydrates may be classified according to their degree of polymerization: monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Digestible carbohydrates include sugars, digestible starch, and glycogen that may be digested by enzymes secreted in the gastrointestinal tract of the pig. Non-digestible carbohydrates, also known as fiber, may be fermented by microbial populations along the gastrointestinal tract to synthesize short-chain fatty acids that may be absorbed and metabolized by the pig. These non-digestible carbohydrates include two disaccharides, oligosaccharides, resistant starch, and non-starch polysaccharides. The concentration and structure of non-digestible carbohydrates in diets fed to pigs depend on the type of feed ingredients that are included in the mixed diet. Cellulose, arabinoxylans, and mixed linked β-(1,3) (1,4)-D-glucans are the main cell wall polysaccharides in cereal grains, but vary in proportion and structure depending on the grain and tissue within the grain. Cell walls of oilseeds, oilseed meals, and pulse crops contain cellulose, pectic polysaccharides, lignin, and xyloglucans. Pulse crops and legumes also contain significant quantities of galacto-oligosaccharides including raffinose, stachyose, and verbascose.
    [Show full text]
  • Cheminformatics for Genome-Scale Metabolic Reconstructions
    CHEMINFORMATICS FOR GENOME-SCALE METABOLIC RECONSTRUCTIONS John W. May European Molecular Biology Laboratory European Bioinformatics Institute University of Cambridge Homerton College A thesis submitted for the degree of Doctor of Philosophy June 2014 Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation is not substantially the same as any I have submitted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification. This dissertation does not exceed the specified length limit of 60,000 words as defined by the Biology Degree Committee. This dissertation has been typeset using LATEX in 11 pt Palatino, one and half spaced, according to the specifications defined by the Board of Graduate Studies and the Biology Degree Committee. June 2014 John W. May to Róisín Acknowledgements This work was carried out in the Cheminformatics and Metabolism Group at the European Bioinformatics Institute (EMBL-EBI). The project was fund- ed by Unilever, the Biotechnology and Biological Sciences Research Coun- cil [BB/I532153/1], and the European Molecular Biology Laboratory. I would like to thank my supervisor, Christoph Steinbeck for his guidance and providing intellectual freedom. I am also thankful to each member of my thesis advisory committee: Gordon James, Julio Saez-Rodriguez, Kiran Patil, and Gos Micklem who gave their time, advice, and guidance. I am thankful to all members of the Cheminformatics and Metabolism Group.
    [Show full text]
  • Production of Prebiotic Exopolysaccharides by Lactobacilli
    Lehrstuhl für Technische Mikrobiologie Production of prebiotic exopolysaccharides by lactobacilli Markus Tieking Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor - Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.- Ing. E. Geiger Prüfer der Dissertation: 1. Univ.-Prof. Dr. rer. nat. habil. R. F. Vogel 2. Univ.-Prof. Dr.- Ing. D. Weuster-Botz Die Dissertation wurde am 09.03.2005 bei der Technischen Universität eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 27.05.2005 angenommen. Lehrstuhl für Technische Mikrobiologie Production of prebiotic exopolysaccharides by lactobacilli Markus Tieking Doctoral thesis Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Freising 2005 Mein Dank gilt meinem Doktorvater Prof. Rudi Vogel für die Überlassung des Themas sowie die stete Diskussionsbereitschaft, Dr. Michael Gänzle für die kritische Begleitung, die ständige Diskussionsbereitschaft sowie sein fachliches Engagement, welches weit über das übliche Maß hinaus geht, Dr. Matthias Ehrmann für seine uneingeschränkte Bereitwilligkeit, sein Wissen auf dem Gebiet der Molekularbiologie weiterzugeben, seine unschätzbar wertvollen praktischen Ratschläge auf diesem Gebiet sowie für seine Geduld, meiner lieben Frau Manuela, deren Motivationskünste und emotionale Unterstützung mir wissenschaftliche
    [Show full text]