Exploiting Aldolase Variants in the Synthesis of Fluorinated Analogues of N-Acetyl Neuraminic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Exploiting Aldolase Variants in the Synthesis of Fluorinated Analogues of N-Acetyl Neuraminic Acid Exploiting aldolase variants in the synthesis of fluorinated analogues of N-acetyl neuraminic acid Jennifer Ann Stockwell Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Astbury Centre for Structural Molecular Biology and Department of Chemistry September 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. ©2013 The University of Leeds and Jennifer Ann Stockwell The right of Jennifer Ann Stockwell to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. i Acknowledgements I'd like to start off by thanking my supervisors Prof. Adam Nelson and Prof. Alan Berry for all the help and guidance they have given me over the last four years. Without their support, I wouldn't be sitting here writing these acknowledgements. I'd also like to thank my industrial supervisor Dr. Keith Mulholland, it was with his support and friendship that I was able to gain confidence and realise what I wanted to do with my life. My time at AstraZeneca was brilliant and there are too many people to thank individually, so I would like to say thank you all for making me feel so welcome. I would particularly like to thank Dr. Adam Daniels and Claire Windle for all their contributions, to Adam for his brilliant work towards greater understanding of the enzyme mechanism and to Claire for her beautiful crystal structure. I would also like to thank Dr. Tomas Lebl from the University of St. Andrews for all his help with the 2D 19F NMR studies. Thank you also to the support staff at the University of Leeds; Martin Huscroft for his help with HPLC, Simon Barrett for his help with NMR and Tanya Marinko-Covell for providing the HRMS service. I'd also like to thank all the past and present members of the Nelson and Berry groups for their support and contributions. Next I would like to thank my proof readers. Richard Doveston you have been brilliant, thank you so much for all your help. Also, thank you to my wonderful boyfriend Nathan Chapman; even though you had no idea what I was on about, you were still brilliant at picking out the times when I'd just written incomprehensible and grammatically incorrect gibberish. Also, thank you to Nathan for keeping me sane over the last few months. I'd like to thank my family. My parents, for motivating me and for staying calm when I was at my most stressed. Finally, I'd particularly like to thank my two grandfathers who unfortunately didn't live long enough to see me fulfil my dreams, but supported me throughout my education and would be so proud to see me now. ii Thank you Grandpa and Grandad Ken Harrington Ken Stockwell 1919 - 2007 1924 - 2013 iii Abstract This thesis reports the use of NAL variants to catalyse the reaction between a range of aldehyde analogues and fluoropyruvate, generating two new stereogenic centres. These reactions were catalysed by variants of N-acetyl neuraminic acid lyase (NAL). Wild-type NAL catalyses the aldol reaction between pyruvate and N-acetyl mannosamine (ManNAc) to give N-acetylneuraminic acid (Neu5Ac) whereas the NAL variants were evolved to catalyse the aldol reaction between pyruvate and the aldehyde analogue DHOB ([2R,3S]‐2,3‐dihydroxy‐4‐oxo‐N,N‐dipropylbutanamide) to give DPAH ([5R,6R]‐7‐(dipropylamino)‐4,5,6‐trihydroxy‐2,7‐dioxoheptanoic acid). This work has sought to explore the effect on the activity and stereoselectivity of the NAL variants with a broader range of substrates. A major challenge was the identification of the products of the NAL variant catalysed reactions and to determine the selectivity of each NAL variant. 19F NMR spectroscopy was invaluable in aiding characterisation of the enzyme reaction products. Synthesis of the enzyme substrate where X=NHAc has been of particular focus within this work and has provided further insight into the potential importance of the N- acetyl group in directing the binding of the aldehyde, therefore directing the diastereoselectivity. This work has also discovered that the introduction of fluorine may have an effect on the energy barrier to the transition state leading to the (4R) and (4S)-epimers of the products. However, in the case of more sterically demanding aldehydes, the diastereoselectivity is predominantly driven by the initial binding mode. This work has provided a more in-depth understanding of the effect of changing both the donor and acceptor substrates of the NAL-catalysed reaction. It has also evaluated the viability of using NAL variants in the synthesis of fluorinated analogues of N-acetyl neuraminic acid. iv Contents Acknowledgements .................................................................................................. ii Abstract ................................................................................................................... iv Contents ................................................................................................................... v List of Figures, Schemes, Tables and Charts ............................................................... x Abbreviations ....................................................................................................... xvii Chapter 1 Introduction ......................................................................................... 1 1.1 Relevance of fluorinated sialic acid analogues in medicinal chemistry .................. 2 1.1.1 Biological activity and applications of sialic acid analogues.................................... 2 1.1.2 The importance of fluorine in medicinal chemistry ................................................ 4 1.1.3 The gauche effect in organo-fluorine molecules .................................................... 5 1.1.4 Potential value of fluorinated sialic acid analogues ................................................ 6 1.2 Chemical methods for the synthesis of organo-fluorine molecules ....................... 7 1.2.1 Aldol reactions of -fluoro ketones ........................................................................ 7 1.2.2 Carbon-fluorine bond forming reactions ................................................................. 9 1.3 Wild type N-Acetyl-neuraminate lyase (NAL) ........................................................ 13 1.3.1 Mechanism of wild-type NAL................................................................................. 13 1.3.2 Substrate specificity of NAL ................................................................................... 18 1.4 Protein engineering of NAL E192N variants .......................................................... 22 1.4.1 Engineering of NAL variants with modified activity .............................................. 23 1.4.2 Identification of the NAL E192N variant and substrate specificity ....................... 24 1.4.3 Quantum mechanical/molecular mechanical studies of the active-site of NAL E192N .............................................................................................................................. 27 1.4.4 Discovery of a complementary pair of stereoselective enzymes .......................... 28 1.5 Thesis overview ..................................................................................................... 30 Chapter 2 Synthesis of Enzyme Substrates .......................................................... 32 v 2.1. Substrate Design .................................................................................................... 32 2.2. Synthesis of the stable alkene precursor of DHOB................................................ 34 2.3. Synthesis of a stable precursors of AHOB and ent-AHOB ..................................... 35 2.3.1. Retrosynthetic analysis of the stable precursors of AHOB/ent-AHOB .................. 35 2.3.2. Synthesis of AHOB utilising the Petasis reaction ................................................... 36 2.3.3. Reactions of the lactone intermediate 33 ............................................................. 42 2.3.4. Conversion of the lactone intermediate 35 into AHOB......................................... 46 Chapter 3 NAL-catalysed reactions of aldehyde analogues and pyruvate ............ 51 3.1 NAL E192N variants in the preparation of N-acetyl neuraminic acid analogues .. 51 3.1.1 Preparation of NAL variants and aldehyde substrates .......................................... 51 3.1.2 Preparative scale enzyme catalysed reactions of AHOB with pyruvate ................ 53 3.1.3 Identification and characterisation of AHOB enzyme catalysed reaction products .......................................................................................................................... 54 3.1.4 Measuring activity of the cleavage of the products of enzyme catalysed reactions .......................................................................................................................... 56 3.2 Monitoring enzyme catalysed reactions of AHOB by 500 MHz 1H NMR spectroscopy ................................................................................................................... 59 3.2.1 Comparison of activities and kinetic selectivity of enzyme catalysed reactions of AHOB ..............................................................................................................................
Recommended publications
  • Reactions of Saccharides Catalyzed by Molybdate Ions. XXII.* Oxidative Degradation of D-Galactose Phenylhydrazones
    Reactions of saccharides catalyzed by molybdate ions. XXII.* Oxidative degradation of D-galactose phenylhydrazones L. PETRUŠ, V. BILIK, K. LINEK, and M. MISIKOVA Institute of Chemistry, Slovak Academy of Sciences, 809 33 Bratislava Received 4 March 1977 D-Galactose phenylhydrazone was degraded with hydrogen peroxide in the presence of molybdate ions to D-lyxose in 50% yield. The oxidative degrada­ tion of D-galactose 2,5-dichlorophenylhydrazone and D-galactose 2,4-dinitro- phenylhydrazone gave D-lyxose and D-galactose in the ratio 4:1 and 1:9, respectively. 2,6-Anhydro-l-deoxy-l-nitro-D-galactitol was prepared from D-lyxose. Фенилгидразон D-галактозы разрушается перекисью водорода в при­ сутствии молибдатных ионов с 50%-ным превращением в D-ликсозу. В случае окислительной деградации 2,5-дихлорфенилгидразона D-галак­ тозы образуется D-ликсоза и D-галактоза в отношении 4:1, в случае же 2,4-динитрофенилгидразона D-галактозы в отношении 1:9. Из D-ликсозы был приготовлен 2,6-ангидро-1-дезокси-1-нитро-о-галактитол. Treatment of 1-deoxy-l-nitroalditols in alkaline medium with hydrogen peroxi­ de in the presence of molybdate ions leads to the formation of corresponding aldoses [1]. This reaction is, particularly with nitroalditols prepared from L-ribose [2] and D-glucose [3], accompanied by a parallel elimination reaction leading back to the starting aldoses. Schulz and Somogyi [4] treating L-rhamnose phenylhydra­ zone with oxygen in acetone or 2,3,4,5,6-penta-O-acetyl-D-galactose phenylhy­ drazone in benzene, obtained the corresponding 1-hydroperoxo derivatives which decomposed in alcohol solution of sodium methanolate to the corresponding pentoses.
    [Show full text]
  • Electronic Supplementary Information
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information Poly(ionic liquid)s as a Distinct Receptor Material to Create Highly- Integrated Sensing Platform for Efficiently Identifying a Myriad of Saccharides Wanlin Zhang, Yao Li, Yun Liang, Ning Gao, Chengcheng Liu, Shiqiang Wang, Xianpeng Yin, and Guangtao Li* *Corresponding authors: Guangtao Li ([email protected]) S1 Contents 1. Experimental Section (Page S4-S6) Materials and Characterization (Page S4) Experimental Details (Page S4-S6) 2. Figures and Tables (Page S7-S40) Fig. S1 SEM image of silica colloidal crystal spheres and PIL inverse opal spheres. (Page S7) Fig. S2 Adsorption isotherm of PIL inverse opal. (Page S7) Fig. S3 Dynamic mechanical analysis and thermal gravimetric analysis of PIL materials. (Page S7) Fig. S4 Chemical structures of 23 saccharides. (Page S8) Fig. S5 The counteranion exchange of PIL photonic spheres from Br- to DCA. (Page S9) Fig. S6 Reflection and emission spectra of spheres for saccharides. (Page S9) Table S1 The jack-knifed classification on single-sphere array for 23 saccharides. (Page S10) Fig. S7 Lower detection concentration at 10 mM of the single-sphere array. (Page S11) Fig. S8 Lower detection concentration at 1 mM of the single-sphere array. (Page S12) Fig. S9 PIL sphere exhibiting great pH robustness within the biological pH range. (Page S12) Fig. S10 Exploring the tolerance of PIL spheres to different conditions. (Page S13) Fig. S11 Exploring the reusability of PIL spheres. (Page S14) Fig. S12 Responses of spheres to sugar alcohols. (Page S15) Fig.
    [Show full text]
  • Using Carbon Dioxide As a Building Block in Organic Synthesis
    REVIEW Received 10 Jul 2014 | Accepted 21 Nov 2014 | Published 20 Jan 2015 DOI: 10.1038/ncomms6933 Using carbon dioxide as a building block in organic synthesis Qiang Liu1, Lipeng Wu1, Ralf Jackstell1 & Matthias Beller1 Carbon dioxide exits in the atmosphere and is produced by the combustion of fossil fuels, the fermentation of sugars and the respiration of all living organisms. An active goal in organic synthesis is to take this carbon—trapped in a waste product—and re-use it to build useful chemicals. Recent advances in organometallic chemistry and catalysis provide effective means for the chemical transformation of CO2 and its incorporation into synthetic organic molecules under mild conditions. Such a use of carbon dioxide as a renewable one-carbon (C1) building block in organic synthesis could contribute to a more sustainable use of resources. more sensible resource management is the prerequisite for the sustainable development of future generations. However, when dealing with the feedstock of the chemical Aindustry, the level of sustainability is still far from satisfactory. Until now, the vast majority of carbon resources are based on crude oil, natural gas and coal. In addition to biomass, CO2 offers the possibility to create a renewable carbon economy. Since pre-industrial times, the amount of CO2 has steadily increased and nowadays CO2 is a component of greenhouse gases, which are primarily responsible for the rise in atmospheric temperature and probably abnormal changes in the global climate. This increase in CO2 concentration is largely due to the combustion of fossil fuels, which are required to meet the world’s energy demand1.
    [Show full text]
  • Studying the Ring-Opening Polymerization of 1,5-Dioxepan-2-One with Organocatalysts
    polymers Article Studying the Ring-Opening Polymerization of 1,5-Dioxepan-2-one with Organocatalysts Jinbao Xu *, Yang Chen, Wenhao Xiao, Jie Zhang, Minglu Bu, Xiaoqing Zhang and Caihong Lei * Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China; [email protected] (Y.C.); [email protected] (W.X.); [email protected] (J.Z.); [email protected] (M.B.); [email protected] (X.Z.) * Correspondence: [email protected] (J.X.); [email protected] (C.L.) Received: 23 September 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Three different organocatalysts, namely, 1-tert-butyl-4,4,4-tris(dimethylamino)-2,2-bis[tris 5 5 (dimethylamino) phosphoranylidenamino]-2L ,4L -catenadi(phosphazene) (t-BuP4), 1,5,7- triazabicyclo[4.4.0]dec-5-ene (TBD) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), have been used as 1,5-dioxepan-2-one (DXO) ring-opening polymerization (ROP) catalysts at varied reaction conditions. 1H NMR spectra, size exclusion chromatography (SEC) characterizations, and kinetic studies prove that the (co)polymerizations are proceeded in a controlled manner with the three organocatalysts. It is deduced that t-BuP4 and DBU catalysts are in an initiator/chain end activated ROP mechanism and TBD is in a nucleophilic ROP mechanism. Keywords: 1,5-dioxepan-2-one; t-BuP4; DBU; TBD; organocatalyst 1. Introduction During the last several decades, for the ring-opening polymerization (ROP) of cyclic esters, transition metal and organometallic compounds were commonly used as initiators or polymerization catalysts [1–4].
    [Show full text]
  • UV-Curable Thiol–Ene Networks Based on Renewable Resources
    Macromolecular Design: UV-Curable Thiol–Ene Networks Based on Renewable Resources MAURO CLAUDINO Doctoral Thesis in Polymer Technology Stockholm, Sweden 2013 MACROMOLECULAR DESIGN: UV-CURABLE THIOL–ENE NETWORKS BASED ON RENEWABLE RESOURCES MAURO CLAUDINO Doctoral Thesis Kungliga Tekniska högskolan, Stockholm 2013 AKADEMISK AVHANDLING Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan i Stockholm, framlägges till offentlig granskning för avläggande av teknologie doktorsexamen torsdagen den 03 oktober 2013, kl. 14.30 i sal F3, Lindstedtsvägen 26, KTH, Stockholm. Avhandlingen försvaras på engelska. Fakultetsopponent: Professor Dr. Michael A. R. Meier från Karlsruhe Institute of Technology (KIT), Germany. Copyright © 2013 Mauro Claudino All rights reserved Paper I © 2010 European Polymer Journal Paper II © 2012 Journal of Polymer Science Part A: Polymer Chemistry Paper III © 2013 RSC Advances Paper IV © 2013 TRITA-CHE Report 2013:36 ISSN 1654-1081 ISBN 978-91-7501-845-4 To my parents Eduardo e Mariana Eles não sabem que o sonho é uma constante da vida tão concreta e definida como outra coisa qualquer, Eles não sabem, nem sonham, que o sonho comanda a vida. Que sempre que um homem sonha o mundo pula e avança como bola colorida entre as mãos de uma criança. – António Gedeão (Rómulo de Carvalho, 1906-2006) Excertos de Poema “Pedra Filosofal”, In Movimento Perpétuo, 1956 Abstract Plant oils and terpenes are ubiquitous natural renewable compounds. The double bonds contained in most of these monomers can be utilized via the photo-induced free-radical thiol–ene reaction to create novel bio-derived polymer thermosets representing a valuable ‘green’ alternative to petrochemical olefins and resulting synthetic plastic materials.
    [Show full text]
  • Concerted Nucleophilic Aromatic Substitution Reactions Simon Rohrbach+, Andrew J
    Angewandte Reviews Chemie International Edition: DOI: 10.1002/anie.201902216 Nucleophilic Aromatic Substitution German Edition: DOI: 10.1002/ange.201902216 Concerted Nucleophilic Aromatic Substitution Reactions Simon Rohrbach+, Andrew J. Smith+, Jia Hao Pang+, Darren L. Poole, Tell Tuttle,* Shunsuke Chiba,* and John A. Murphy* Keywords: Dedicated to Professor Koichi concerted reactions Narasaka on the occasion of ·cSNAr mechanism · his 75th birthday Meisenheimer complex · nucleophilicaromatic substitution Angewandte Chemie &&&& 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2019, 58,2–23 Ü Ü These are not the final page numbers! Angewandte Reviews Chemie Recent developments in experimental and computational From the Contents chemistry have identified a rapidly growing class of nucleophilic 1. Aromatic Substitution Reactions 3 aromatic substitutions that proceed by concerted (cSNAr) rather than classical, two-step, SNAr mechanisms. Whereas traditional 2. Some Contributions by SNAr reactions require substantial activation of the aromatic ring Computational Studies 6 by electron-withdrawing substituents, such activating groups are not mandatory in the concerted pathways. 3. Fluorodeoxygenation of Phenols and Derivatives 9 4. Aminodeoxygenation of Phenol 1. Aromatic Substitution Reactions Derivatives 10 Substitution reactions on aromatic rings are central to 5. Hydrides as Nucleophiles 11 organic chemistry. Besides the commonly encountered elec- trophilic aromatic substitution,[1] other mechanisms include 6. P, N, Si, C Nucleophiles 13 [2,3] SNAr nucleophilic aromatic substitutions and the distinct [4] but related SNArH and vicarious nucleophilic substitutions, 7. Organic Rearrangements via Spiro substitutions brought about through benzyne intermedi- Species: Intermediates or Transition ates,[5,6] radical mechanisms including electron transfer- States? 14 [7] based SRN1 reactions and base-promoted homolytic aro- matic substitution (BHAS) couplings,[8] sigmatropic rear- 8.
    [Show full text]
  • Supporting Information Summary: 1
    Supporting Information Summary: 1. SI Materials and Methods 2. Tables S1-S6 3. Figures S1-S10 4. Supporting Text 5. References SI Materials and Methods In silico modeling The most current version of the genome scale model for Escherichia coli K-12 MG1655, ​ iJO1366(Orth et al., 2011), was utilized in this study as the base model before adding ​ ​ ​ underground reactions related to the five substrates analyzed as previously reported(Notebaart ​ et al., 2014). The underground reactions previously reported were added to iJO1366 using the ​ ​ ​ constraint-based modeling package, COBRApy(Ebrahim et al., 2013). All growth simulations ​ ​ using parsimonious flux balance analysis were conducted using COBRApy. Growth simulations were performed by optimizing the default core biomass objective function (a representation of essential biomass compounds in stoichiometric amounts)(Feist and Palsson, 2010). To ​ ​ simulate aerobic growth on a given substrate, the exchange reaction lower bound for that -1 -1 substrate was adjusted to -10 mmol gDW h​ r .​ ​ ​ Sampling was conducted to determine the most likely high flux metabolic pathways for growth on D-2-deoxyribse (Dataset S3). The Artificial Centering Hit-and-Run algorithm, optGpSampler(Megchelenbrink et al., 2014), was utilized to sample the steady-state solution ​ ​ space. The lower bound of the biomass objective function was set to 90% of the optimum in order to better simulate realistic growth conditions. The number of sample points used was two times the number of reactions in the iJO1366 model (5186 sample points) and the step count was set to 25000 in order to ensure a nearly uniformly sampled solution space. Thus for each reaction, a distribution of likely flux states was acquired.
    [Show full text]
  • Plausible Prebiotic Synthesis of Aldopentoses from Simple Substrates, Glycolaldehyde and Formaldehyde
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259637530 Plausible prebiotic synthesis of aldopentoses from simple substrates, glycolaldehyde and formaldehyde Article in Paleontological Journal · December 2013 DOI: 10.1134/S0031030113090062 CITATION READS 1 57 3 authors: Irina Delidovich Oxana Taran RWTH Aachen University Boreskov Institute of Catalysis 53 PUBLICATIONS 1,539 CITATIONS 136 PUBLICATIONS 1,152 CITATIONS SEE PROFILE SEE PROFILE Valentin N Parmon Boreskov Institute of Catalysis 755 PUBLICATIONS 10,960 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Indo-Russia Joint project -Development of integrated (biotechnological and nanocatalytic) biorefinery for fuels and platform chemicals production from lignocellulosic biomass (crop/wood residues) View project In situ NMR of catalytic reactions View project All content following this page was uploaded by Oxana Taran on 20 July 2015. The user has requested enhancement of the downloaded file. ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 9, pp. 1093–1096. © Pleiades Publishing, Ltd., 2013. Plausible Prebiotic Synthesis of Aldopentoses from Simple Substrates, Glycolaldehyde and Formaldehyde I. V. Delidovicha, O. P. Taranb, and V. N. Parmonc aBoreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, pr. akademika Lavrent’eva 5, Novosibirsk, 630090 Russia bNovosibirsk State Technical University, pr. K. Marksa, 20, Novosibirsk, 630073 Russia cNovosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia email: [email protected] Received February 15, 2012 Abstract—Possible ways of abiotic catalytic synthesis of biologically significant aldopentoses (ribose, xylose, arabinose, lyxose) from elementary substrates, i.e., formaldehyde (FA) and glycolaldehyde (GA) in aqueous solutions are discussed.
    [Show full text]
  • Organocatalytic Decomposition of Poly(Ethylene Terephthalate) Using Triazabicyclodecene Proposal
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2010 Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal Julien Matsumoto Lecuyer San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lecuyer, Julien Matsumoto, "Organocatalytic decomposition of poly(ethylene terephthalate) using triazabicyclodecene proposal" (2010). Master's Theses. 3873. DOI: https://doi.org/10.31979/etd.c3kc-xcdz https://scholarworks.sjsu.edu/etd_theses/3873 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE A Thesis Presented to The Faculty of the Department of Chemical and Materials Engineering San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Julien Matsumoto Lecuyer December 2010 © 2010 Julien Matsumoto Lecuyer ALL RIGHTS RESERVED ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE by Julien Lecuyer APPROVED FOR THE DEPARTMENT OF CHEMICAL & MATERIALS ENGINEERING SAN JOSÉ STATE UNIVERSITY August 2010 Dr. Melanie McNeil Department of Chemical & Materials Engineering Dr. Richard Chung Department of Chemical & Materials Engineering Dr. James Hedrick IBM Almaden Research Center Dr. Kazuki Fukushima IBM Almaden Research Center ABSTRACT ORGANOCATALYTIC DECOMPOSITION OF POLYETHYLENE TEREPHTHALATE USING TRIAZABICYCLODECENE This study focuses on the organocatalytic decomposition of polyethylene terephthalate (PET) using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) to form a diverse library of aromatic amides.
    [Show full text]
  • Extreme Ultraviolet Photoionization of Aldoses and Ketoses ⇑ Joong-Won Shin A,C, Feng Dong A,C, Michael E
    Chemical Physics Letters 506 (2011) 161–166 Contents lists available at ScienceDirect Chemical Physics Letters journal homepage: www.elsevier.com/locate/cplett Extreme ultraviolet photoionization of aldoses and ketoses ⇑ Joong-Won Shin a,c, Feng Dong a,c, Michael E. Grisham b,c, Jorge J. Rocca b,c, Elliot R. Bernstein a,c, a Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA b Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523-1373, USA c NSF Engineering Research Center for Extreme Ultraviolet Science and Technology, Colorado State University, CO 80523-1320, USA article info abstract Article history: Gas phase monosaccharides (2-deoxyribose, ribose, arabinose, xylose, lyxose, glucose galactose, fructose, Received 24 January 2011 and tagatose), generated by laser desorption of solid sample pellets, are ionized with extreme ultraviolet In final form 9 March 2011 photons (EUV, 46.9 nm, 26.44 eV). The resulting fragment ions are analyzed using a time of flight mass Available online 29 March 2011 spectrometer. All aldoses yield identical fragment ions regardless of size, and ketoses, while also gener- ating same ions as aldoses, yields additional features. Extensive fragmentation of the monosaccharides is the result the EUV photons ionizing various inner valence orbitals. The observed fragmentation patterns are not dependent upon hydrogen bonding structure or OH group orientation. Ó 2011 Elsevier B.V. All rights reserved. 1. Introduction conformer can additionally be either an a or b anomer, depending upon the orientation of the OH at C1 (for aldose) or C2 (for ketose) Functions of biological molecules depend upon their different anomeric centers.
    [Show full text]
  • Quantitative Analysis of Polysaccharide Composition in Polyporus Umbellatus by HPLC–ESI–TOF–MS
    molecules Article Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC–ESI–TOF–MS Ning Guo 1, Zongli Bai 2, Weijuan Jia 1, Jianhua Sun 2, Wanwan Wang 1, Shizhong Chen 1,* and Hong Wang 1,* 1 School of Pharmaceutical Sciences, Peking University, Beijing 100191, China 2 Kangmei Pharmaceutical Co.Ltd, Puning 515300, China * Correspondence: [email protected] (H.W.); [email protected] (S.C.) Academic Editor: Cédric Delattre Received: 23 June 2019; Accepted: 8 July 2019; Published: 10 July 2019 Abstract: Polyporus umbellatus is a well-known and important medicinal fungus in Asia. Its polysaccharides possess interesting bioactivities such as antitumor, antioxidant, hepatoprotective and immunomodulatory effects. A qualitative and quantitative method has been established for the analysis of 12 monosaccharides comprising polysaccharides of Polyporus umbellatus based on high-performance liquid chromatography coupled with electrospray ionization–ion trap–time of flight–mass spectrometry. The hydrolysis conditions of the polysaccharides were optimized by orthogonal design. The results of optimized hydrolysis were as follows: neutral sugars and uronic acids 4 mol/L trifluoroacetic acid (TFA), 6 h, 120 ◦C; and amino sugars 3 mol/L TFA, 3 h, 100 ◦C. The resulting monosaccharides derivatized with 1-phenyl-3-methyl-5-pyrazolone have been well separated and analyzed by the established method. Identification of the monosaccharides was carried out by analyzing the mass spectral behaviors and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone labeled monosaccharides. The results showed that polysaccharides in Polyporus umbellatus were composed of mannose, glucosamine, rhamnose, ribose, lyxose, erythrose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, and fucose.
    [Show full text]
  • Phenotype Microarrays™
    Phenotype MicroArrays™ PM1 MicroPlate™ Carbon Sources A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 Negative Control L-Arabinose N-Acetyl -D- D-Saccharic Acid Succinic Acid D-Galactose L-Aspartic Acid L-Proline D-Alanine D-Trehalose D-Mannose Dulcitol Glucosamine B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 D-Serine D-Sorbitol Glycerol L-Fucose D-Glucuronic D-Gluconic Acid D,L -α-Glycerol- D-Xylose L-Lactic Acid Formic Acid D-Mannitol L-Glutamic Acid Acid Phosphate C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 D-Glucose-6- D-Galactonic D,L-Malic Acid D-Ribose Tween 20 L-Rhamnose D-Fructose Acetic Acid -D-Glucose Maltose D-Melibiose Thymidine α Phosphate Acid- -Lactone γ D-1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 L-Asparagine D-Aspartic Acid D-Glucosaminic 1,2-Propanediol Tween 40 -Keto-Glutaric -Keto-Butyric -Methyl-D- -D-Lactose Lactulose Sucrose Uridine α α α α Acid Acid Acid Galactoside E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 L-Glutamine m-Tartaric Acid D-Glucose-1- D-Fructose-6- Tween 80 -Hydroxy -Hydroxy -Methyl-D- Adonitol Maltotriose 2-Deoxy Adenosine α α ß Phosphate Phosphate Glutaric Acid- Butyric Acid Glucoside Adenosine γ- Lactone F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 Glycyl -L-Aspartic Citric Acid myo-Inositol D-Threonine Fumaric Acid Bromo Succinic Propionic Acid Mucic Acid Glycolic Acid Glyoxylic Acid D-Cellobiose Inosine Acid Acid G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 Glycyl-L- Tricarballylic L-Serine L-Threonine L-Alanine L-Alanyl-Glycine Acetoacetic Acid N-Acetyl- -D- Mono Methyl Methyl Pyruvate D-Malic Acid L-Malic Acid ß Glutamic Acid Acid
    [Show full text]