The Teaching Manual on Plant Taxonomy Published 2019

Total Page:16

File Type:pdf, Size:1020Kb

The Teaching Manual on Plant Taxonomy Published 2019 The Teaching Manual on Plant Taxonomy Anjula Pandey Kuldeep Tripathi K Pradheep S Rajkumar Veena Gupta ICAR-National Bureau of Plant Genetic Resources Pusa Campus, New Delhi 110 012, India Pandey et al. Citation: Anjula Pandey, Kuldeep Tripathi, K Pradheep, S Rajkumar and Veena Gupta (2019) The Teaching Manual on Plant Taxonomy. ICAR-National Bureau of Plant Genetic Resources, New Delhi, India, 119p. Layout and design: Sh Shashi Kant Sharma Cover page photo identity: (top to bottom) flowers of Vigna stipulacea, Papaver rhoeos, Abelmoschus tetraphyllus; herbarium specimen of Momordica cochinchinensis Technical support: Ms Rita Gupta and Ms Urmila Singh Published by: The Director ICAR-National Bureau of Plant Genetic Resources New Delhi 110 012, India © 2019 ICAR-National Bureau of Plant Genetic Resources New Delhi 110 012, India Printed at: Yugantar Prakashan Pvt. Ltd. WH-23, Mayapuri Industrial Area Phase-I, New Delhi-64 Ph.: 011-28115949, 28116018, 9811349619, 9953134595 E-mail: [email protected], [email protected] The Teaching Manual on Plant Taxonomy About the Teaching Manual The ‘Teaching Manual on Plant Taxonomy’ has been developed for students of plant genetic resources (PGR) with an objective to provide an overview on taxonomy relevance to agriculture and PGR. The teaching course in PGR at ICAR-Indian Agricultural Research Institute, Post Graduate School was started in 1999 when taxonomy was included as a ‘core course’ in the discipline of PGR. Since then the syllabus in Plant Taxonomy for post-graduate studies was revised several times. Simplistic approach with basic understanding of various topics of taxonomy for the students coming from different backgrounds of agricultural sciences created interest towards better learning. Need to develop the “Teaching Manual on Taxonomy” was felt as there was insufficient information in various taxonomic treatises with respect to PGRs. This manual contains ten chapters, including various concepts used in understanding the basic aspects of taxonomy covering theory and practical exercises. “Learning by observing” has been emphasized while conducting of practical exercises. Study of taxonomy has been demonstrated through use of few simple equipment like measuring scale, pen and pencil, dissection needle, hand- lens and dissection microscope. In this manual, for smooth flow of the text, some topics have been divided whereas others have been merged together with the relevant topics. The practical considerations are put in chapter 10 of manual including important families (only agriculturally important ones) to ‘How to describe’ a taxon. We hope that the contents are not only useful to the students of PGR but also the agriculturists, amateur scientists, non-taxonomists, parabotanists and others working in related fields. Technical terms have been simplified and put as the understandable words; botanical terms have been included to know the traits associated with the species. The authors put on record the motivation and guidance by the Director, ICAR-NBPGR and Head, Division of Plant Exploration and Germplasm Collection, ICAR-NBPGR. While preparing this manual, contributions of our colleagues especially Dr ER Nayar the founder course leader for the Taxonomy Course in 1999 and other scientists particularly Dr KC Bhatt are greatly acknowledged. Chapter on Modern tools in Taxonomy for chemotaxonomy part was developed with the help of Dr R Bhardwaj and Ms Poonam Suneja, Division of Germplasm Evaluation, ICAR-NBPGR for which we greatly acknowledge their contributions. Our colleagues at the ICAR-NBPGR who have directly or indirectly helped in developing this manual but their names have not been reflected individually are also duly acknowledged. Authors The Teaching Manual on Plant Taxonomy Table of Contents About the Teaching Manual Introduction i Theory 1 Plant Taxonomy in Relation to Plant Genetic Resources 1 2 Terminology Used for Plant Description 7 3 The Species Concept and Variation in Species 15 4 Rules of Taxonomy, International Codes of Nomenclature (ICN) and 21 International Code of Nomenclature : Cultivated Plants (ICNCP) 5 Taxonomic System of Classification 31 6 Biosystematics Studies on Crop Taxa 37 7 Modern Tools in Plant Taxonomy 47 8 Field Studies: Collection and Identification of Plants 59 9 Field & Herbarium Methods 65 10 Taxonomic Literature: Role in Plant Systematics Study 79 Practical Exercise 11 Study of Angiosperm Families 87 a Alliaceae 98 b Asteraceae 100 c Brassicaceae 102 d Cucurbitaceae 104 e Fabaceae 106 f Malvaceae 108 g Poaceae 110 h Rosaceae 112 i Rutaceae 114 j Solanaceae 116 References / Selected Readings 118 The Teaching Manual on Plant Taxonomy Introduction Taxonomy is a basic science catering to other fields of science through its application. Majority of users working in agricultural crops are ignorant of taxonomic boundaries, intergeneric and intertribal hierarchy and hybridization potential in many crops. Traditional taxonomic methods generally use flowers, seeds and other identifiable parts to ascertain species the identity of a plant. But the Plant Genetic Resources (PGR) science deals with 'part of material' in the form of seed/or pod and vegetative propagules which are augmented while collecting and conserving the germplasm. Taxonomy of crop wild relatives and their use in crop improvement has been studied in some important taxa but there exists a gap for less-known crop/potential/underutilized crops. ‘Seed and seedling biology as aid in identification’ goes beyond the traditional methods to resolve identity issues. Taxonomic treatment of agriculturally important families will facilitate in generating interest of the users in taxonomy and will guide them to be confident while working with PGRs. Some of the important issues on plant taxonomic research in India are: z Confusion arising due to presence of large number of morphological variants leading polymorphism and identification of new species/taxa z Neglect of taxonomy of cultivated plants by the genetic resource personnel and agriculturists z Difficulty in Taxonomic validation/authentication z Meager referable material (as herbarium specimens) and information z Missing evidences on source data on gross morphology vs. phylogeny of species of PGR value Updating the knowledge on botanical nomenclature and information on economic plants is must before initiating an experimental work. There are many standard websites currently available - IPNI, Kew grasses, synonyms database, ILDIS database (for legumes), Conifer database, Checklist of selected families by Royal Botanical Gardens, Kew, Efloras, Species 2008, GRIN database, TROPICOS, etc. which can be used for validation; identification of voucher specimens of experimental material at herbarium can also serve as reference material. Training of the scientific/technical staff in field of taxonomy and phylogenetics such as cladistics, phenentics, and molecular approaches is desired for holistic understanding of various aspects in taxonomy and systematics. i The Teaching Manual on Plant Taxonomy 1 Plant Taxonomy in Relation to Plant Genetic Resources Introduction Taxonomy plays a direct or indirect role in execution of major activities of PGR management including plant exploration and germplasm collection, exchange and quarantine, characterization/ evaluation and multiplication, conservation and documentation. The knowledge on taxonomy with reference to genepools of crop taxa and crossability aspects among the related taxa are well understood and applied in PGR science in a broader way. In PGR management, correct identification of materials is the first step to enhance its utilization which can be achieved through knowledge of taxonomy. By furnishing correct information and references to a plant, an identifier helps all other fields of science. Unlike the traditional methodology used for identification of plants, identification of germplasm using material received as seed, vegetative buds, tubers, rhizomes, etc. for ex situ conservation requires good knowledge on taxonomy. Material incorporated into genebanks as unknown species or species identified only up to genus level (Triticum sp., Solanum sp., Mangifera sp.) or group level (as cucurbits, orchids, legumes) is of limited conservation and utilization value. Large germplasm holdings when processed for evaluation, seed increase or for growing out for validation have resulted into misidentification of the material. The PGR researchers should be familiar with fundamentals of plant taxonomy and identification procedures to enable them to identify the material. Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR- NBPGR) is continuously involved in capacity building in field of PGRs including plant taxonomy teaching programmes affiliated to the Post Graduate School, ICAR-IARI, New Delhi in developing taxonomic skills among the students. Awareness on value of taxonomy was imparted through conducting various trainings, workshops and brainstorming sessions at various platforms. This chapter provides information on PGR management with special reference to plant taxonomy. Plant exploration and germplasm collection Plant exploration and germplasm collection activity pertains to the collection of materials from cultivated and wild habitats. In addition to knowledge of plant morphology, the details of characters of the propagules (seed/tubers, rhizomes, etc.) (e.g. in seed-shape, size, colour, seed coat texture, etc. and in vegetatively propagated materials-bulb/ rhizome
Recommended publications
  • Finding List and Guide to Tllc Secrest Arboretum
    SPECIAL CIRCULAR 91 MAY 1960 REV ISED Finding List and Guide to tllc Secrest Arboretum Wood Utilization Research Laboratory and Secrest Arboretum Headquarters Effective July 1, 1965, the name of the Ohio Agricultural Experiment Station was changed to: 0 Ohio Agricu ltura I Research and Development Center, ')ll Wooster, Ohio • This page intentionally blank. • GUIBE TO THE SECREST ARBORETUM OHIO AGRICULTURAL EXPERJMENT STATION WOOSTER, OHIO '/ By John E. Aughanbaugh, Harry R. Muckley, and Oliver D. Diller* In May 1950 the forest and ornamental plantings at the Ohio Agricultural Experiment Station were dedicated as the Secrest Arboretum in memory of Edmund Secrest, the father of forestry in Ohio. Since 19o8 these plantings have been expanded to include well over 600 species and varieties of trees and shrubs from many parts of the world. It is the purpose of this publication to serve as a finding list and guide to the Arboretum. The Purpose of the Arboretum One purpose of the Arboretum is to _determine the species and varieties of trees adapted for ornamental, windbreak, and shelterbelt uses in 6hio. There are many varieties of spruces, firs, yews, arborvitae, and other coniferous trees and shrubs growing here for observation by people interested in landscaping and the planting of shelterbelts. Among the more recent additions to the Arboretum is a collection of over 60 varieties of flowering crabapples, 57 selections of hollies and a plot of Chinese dawnredwood. The second purpose of the Arboretum is to determine the spe?ies of trees best adapted for reforestation in Ohio and to determine the silvicultural requirements that will obtain best results in growth and maturity.
    [Show full text]
  • Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models
    Plant Genetics and Genomics: Crops and Models 20 Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models Volume 20 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 Rebecca Grumet • Nurit Katzir • Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Editors Rebecca Grumet Nurit Katzir Michigan State University Agricultural Research Organization East Lansing, Michigan Newe Ya’ar Research Center USA Ramat Yishay Israel Jordi Garcia-Mas Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Bellaterra, Barcelona Spain ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49330-5 ISBN 978-3-319-49332-9 (eBook) DOI 10.1007/978-3-319-49332-9 Library of Congress Control Number: 2017950169 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Haarschutz-Kosmetikum I
    (19) *DE102009027360A120110105* (10) DE 10 2009 027 360 A1 2011.01.05 (12) Offenlegungsschrift (21) Aktenzeichen: 10 2009 027 360.3 (51) Int Cl.8: A61K 8/97 (2006.01) (22) Anmeldetag: 30.06.2009 A61Q 5/12 (2006.01) (43) Offenlegungstag: 05.01.2011 A61K 8/96 (2006.01) A61K 8/67 (2006.01) (71) Anmelder: (72) Erfinder: Henkel AG & Co. KGaA, 40589 Düsseldorf, DE Noll, Monika, 22850 Norderstedt, DE; Schulze zur Wiesche, Erik, Dr., 20144 Hamburg, DE Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen (54) Bezeichnung: Haarschutz-Kosmetikum I (57) Zusammenfassung: Zusammensetzungen zur Behandlung keratinischer Fasern, enthaltend in einem geeigneten kosmetischen oder dermatologischen Träger - jeweils bezogen auf ihr Gewicht - mindestens eine dediffe- renzierte Pflanzenzellsuspension, mindestens einen Pfle- gestoff aus der Gruppe L-Carnitin und/oder seiner Salze, Panthenol und/oder Panthothensäure, der 2-Furanone und/oder deren Derivate, insbesondere Pantolacton; Nia- cin, Niacinamid bzw. Nicotinamid; L-Ascorbinsäure; Thia- min; Riboflavin; Biotin; Taurin und/oder deren Salze; Ubi- chinon; Ectoin; Allantoin; Coffein und/oder Theophyllin und/oder Theobromin; der Aminosäuren sowie 0,1 bis 80 Gew.-% Ethanol, eignen sich besonders gut, um intrinsi- sche und extrinsische Schädigungen zu verhindern und zu reparieren. 1/38 DE 10 2009 027 360 A1 2011.01.05 Beschreibung [0001] Die vorliegende Erfindung betrifft kosmetische Mittel, vorzugsweise Mittel zur Behandlung keratini- scher Fasern, die mindestens eine Pflanzenzellsuspension sowie die Verwendung mindestens einer Pflanzen- zellsuspension in Mitteln zur Behandlung keratinischer Fasern, vorzugsweise zur Verbesserung der Feuchtig- keit keratinhaltiger Fasern, insbesondere menschlicher Haare, zum Schutz der Fasern vor Oxidationsmitteln und UV-Strahlung, zum Schutz der Destrukturierung der Fasern sowie zur Verbesserung des Farberhalts und der Farbintensität gefärbter Fasern.
    [Show full text]
  • Dihydrochalcones in Malus Mill. Germplasm and Hybrid
    DIHYDROCHALCONES IN MALUS MILL. GERMPLASM AND HYBRID POPULATIONS A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Benjamin Leo Gutierrez December 2017 © 2017 Benjamin Leo Gutierrez DIHYDROCHALCONES IN MALUS MILL. GERMPLASM AND HYBRID POPULATIONS Benjamin Leo Gutierrez, Ph.D. Cornell University 2017 Dihydrochalcones are abundant in Malus Mill. species, including the cultivated apple (M. ×domestica Borkh.). Phloridzin, the primary dihydrochalcone in Malus species, has beneficial nutritional qualities, including antioxidant, anti-cancer, and anti-diabetic properties. As such, phloridzin could be a target for improvement of nutritional quality in new apple cultivars. In addition to phloridzin, a few rare Malus species produce trilobatin or sieboldin in place of phloridzin and hybridization can lead to combinations of phloridzin, trilobatin, or sieboldin in interspecific apple progenies. Trilobatin and sieboldin also have unique chemical properties that make them desirable targets for apple breeding, including high antioxidant activity, anti- inflammatory, anti-diabetic properties, and a high sweetness intensity. We studied the variation of phloridzin, sieboldin, and trilobatin content in leaves of 377 accessions from the USDA National Plant Germplasm System (NPGS) Malus collection in Geneva, NY over three seasons and identified valuable genetic resources for breeding and researching dihydrochalcones. From these resources, five apple hybrid populations were developed to determine the genetic basis of dihydrochalcone variation. Phloridzin, sieboldin, and trilobatin appear to follow segregation patterns for three independent genes and significant trait-marker associations were identified using genetic data from genotyping-by-sequencing. Dihydrochalcones are at much lower quantities in mature apple fruit compared with vegetative tissues.
    [Show full text]
  • Canadian Food Inspection Agency
    Canadian Food Inspection Agency Home > Plants > Plants With Novel Traits > Applicants > Directive 94­08 > Biology Documents > Malus domestica The Biology of Malus domestica Borkh. (Apple) Table of contents 1. General Administrative Information 2. Identity 3. Geographical Distribution 4. Biology 5. Related Species of Malus domestica 6. Potential Interaction of Malus domestica with Other Life Forms 7. References Appendix 1: Species and hybrid species currently recognized in the genus Malus, according to the taxonomy database of the U.S. Department of Agriculture Germplasm Resources Information Network GRIN) (USDA­ARS 2012) Biology Document BIO2014­01: A companion document to Directive 94­08 (Dir94­08), Assessment Criteria for Determining Environmental Safety of Plant with Novel Traits Photo credit: H. Ardiel Plant and Biotechnology Risk Assessment Unit Plant Health Science Division, Canadian Food Inspection Agency Ottawa, Ontario Oct 15, 2013 1. General Administrative Information 1.1 Background 1.2 Scope 1.1 Background The Canadian Food Inspection Agency's Plant and Biotechnology Risk Assessment (PBRA) Unit is responsible for assessing the potential risk to the environment from the release of plants with novel traits (PNTs) into the Canadian environment. The PBRA Unit is also responsible for assessing the pest potential of plant imports and plant species new to Canada. Risk assessments conducted by the PBRA Unit require biological information about the plant species being assessed. Therefore, these assessments can be done in conjunction with species­specific biology documents that provide the necessary biological information. When a PNT is assessed, these biology documents serve as companion documents to Dir94­08: Assessment Criteria for Determining Environmental Safety of Plants with Novel Traits.
    [Show full text]
  • Host Choice in Rotylenchulus Species
    Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance.
    [Show full text]
  • Arnold Arboretum Popular Information
    ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION NEW SERIES. VOLUME VII 1921 NEW SERIES VOL. VII N0.1I ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION JAMAICA PLAIN, MASS. APRIL 1 1, 19211 An early spring. An unusually mild winter during which a temper- ature of zero was recorded only twice at the Arboretum, followed by a March with a temperature of 80° on two days, and an unprecedented high average for the month, has caused many plants to flower earlier than they have flowered here before. On March 21 Cornus mas, Dir- ca palustris, Prunus Davidiana and Acer rubrum were in full flower. Rhododendron dahuricum and R. mucronulatum were opening their first buds, and on March 26 the first flowers on several of the For- sythias and on Magnolia stellata had opened, several Currants and Gooseberries were in bloom, and Corylopsis Gotoana was opening its innumerable flower-buds. The Silver Maple (Acer saccharinum) had flowered on the 9th of March, only eight days earlier than in 1920, although in the severe winter of 1918-19 it was in bloom in the Arbor- etum on the 28th of February. In earlier years Cornus mas has flow- ered usually as early as April 3 and as late as April 25. In the six years from 1914-1920 Dirca palustris which, with the exception of two or three Willows, is the first North American shrub to bloom in the Arboretum, began to flower as early as April 3 and as late as April 15. The fact that the winter flowering Witch Hazels bloom later in mild winters than they do in exceptionally cold winters is not easy to ex- plain.
    [Show full text]
  • Din Arad Facultatea De Ştiinţe Ale Naturii Flora
    UNIVERSITATEA DE VEST ”VASILE GOLDIŞ” DIN ARAD FACULTATEA DE ŞTIINŢE ALE NATURII IOAN DON FLORA LEMNOASĂ SPONTANĂ ŞI CULTIVATĂ DIN ZONA ARADULUI Rezumatul tezei de doctorat Conducător ştiinţific Prof. Univ. Dr. AUREL ARDELEAN -Arad, 2011- CUPRINS INTRODUCERE ............................................................................................................. 3 SCOPUL CERCETĂRILOR ........................................................................................... 3 OBIECTIVELE URMĂRITE .......................................................................................... 3 ZONA LUATĂ ÎN STUDIU............................................................................................ 4 ISTORICUL CERCETĂRILOR DENDO-BOTANICE.................................................. 4 STADIUL ACTUAL AL CUNOŞTINŢELOR ............................................................... 4 CADRUL FIZICO-GEOGRAFIC AL TERITORIULUI STUDIAT .............................. 4 MATERIAL ŞI METODĂ .............................................................................................. 4 REZULTATE ŞI DISCUŢII ............................................................................................ 5 CONCLUZII .................................................................................................................... 20 BIBLIOGRAFIE SELECTIVĂ ....................................................................................... 21 ANEXA – INDEXUL ALFABETIC AL GENURILOR ................................................ 22 2 INTRODUCERE
    [Show full text]
  • UV-Schutz-Kosmetikum
    (19) & (11) EP 2 266 529 A2 (12) EUROPÄISCHE PATENTANMELDUNG (43) Veröffentlichungstag: (51) Int Cl.: 29.12.2010 Patentblatt 2010/52 A61K 8/49 (2006.01) A61K 8/66 (2006.01) A61K 8/97 (2006.01) A61Q 19/08 (2006.01) (21) Anmeldenummer: 10158583.4 (22) Anmeldetag: 31.03.2010 (84) Benannte Vertragsstaaten: (71) Anmelder: Henkel AG & Co. KGaA AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 40589 Düsseldorf (DE) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR (72) Erfinder: Benannte Erstreckungsstaaten: • Holtkötter, Olaf AL BA ME RS 50354, Hürth (DE) • Bock, Andreas (30) Priorität: 25.06.2009 DE 102009027199 40591, Düsseldorf (DE) • Janßen, Frank 41470, Neuss (DE) (54) UV-Schutz-Kosmetikum (57) Die Wirkung von dedifferenzierten Pflanzenzellen in kosmetischen Produkten läßt sich durch den zusätzlichen Einsatz von 6,7-disubstituierten 2,2-Dialkylchromanen oder -chromenen signifikant steigern. Bevorzugte kosmetische oder dermatologische topische Zusammensetzungen, enthalten in einem geeigneten kosmetischen oder dermatologi- schen Träger mindestens eine Substanz, ausgewählt aus 6,7-disubstituierten 2,2-Dialkylchromanen oder -chromenen der allgemeinen Formeln (I) oder (II), 1 2 3 wobei R und R unabhängig voneinander eine OH- Gruppe, eine Methoxy-Gruppe oder eine CF3CH2O-Gruppe und R 4 und R unabhängig voneinander eine C 1-C4-Alkylgruppe darstellen, insbesondere Lipochroman- 6 und mindestens eine dedifferenzierte Pflanzenzellsuspension. EP 2 266 529 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 266 529 A2 Beschreibung [0001] Die Erfindung betrifft topische kosmetische oder dermatologische Zusammensetzungen zur Hautbehandlung, die der Hautalterung und deren Anzeichen entgegenwirken.
    [Show full text]
  • Turner Photographics Horticultural Stock List by Scientific Name 11/27
    Turner Photographics Horticultural Stock List by Scientific Name 11/27/2012 Page 1 • • Abies lasiocarpa; Cedrus deodara; Juniperus conferta; Prunus avium; Antennaria dioica; • Abelia chinensis Fragaria cv.; Armeria sp. • Abelia X grandiflora • Abies lasiocarpa; Juniperus conferta; Pinus • Abelia X grandiflora; Leptospermum scoparium aristata; Cedrus deodara; Hyacinthoides 'Kiwi'; Erica cinerea alba; Calluna vulgaris 'Sir hispanica; Antennaria dioica; Iris pumila John Charrington'; Pelargonium alchemilloides • Abies lasiocarpa; Pinus aristata; Juniperus • Abelia x grandiflora 'Rose Creek' conferta • Abies magnifica; Leptarrhena pyrolifolia • Abeliophyllum distichum • Abies pinsapo; Gleditsia triacanthos var. inermis • Abelmoschus esculentus • Abies procera 'Glauca' • Abelmoschus esculentus cv. • Abies procera 'Glauca prostrata' • Abies cv. • Abies procera 'Glauca Prostrata'; Rhododendron • Abies cv.; Acer palmatum cv. pachysanthum • Abies cv.; Acer palmatum cv.; Pseudotsuga • Abies procera 'Glauca Protrata'; Rhododendron menziesii pachysanthum • Abies cv.; Acer palmatum cvs. • Abies sp. • Abies cv.; Juniperus cv. • Abutilon cv. • Abies cv.; Pinus cv.; Acer palmatum cv. • Abutilon 'Moonbeam' • Abies cv.; Pinus cv.; Juniperus cv.; Acer palmatum • Abutilon 'Moonbeam'; Pelargonium 'Taj Majal'; P. cv. 'Schoene Helena'; Verbena 'Blue'; Nemesia • Abies cv.; Pinus sp.; Juniperus cv.; Thuja cv.; Acer 'Sweetie Bird' palmatum cv. • Abutilon pictum 'Thompsonii' • Abies cv.; Pinus sp.; Thuja cv.; Acer palmatum cv. • Abutilon sp.; Corydalis lutea • Abies
    [Show full text]
  • Popular Information
    ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION NEW SERIES. VOLUME IX 1923 NEW SERIES VOL. IX NO. I ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION JAMAICA PLAIN, MASS. MAY 1. 1923 Compared with those of recent years it is a "late spring" in the Arboretum after a winter remarkable in the large amount of snow which has fallen and which has covered the ground continuously from the middle of December to the middle of March. The deep cover of snow has successfully protected low growing plants; it has protected, too, field mice which have injured some valuable shrubs by stripping the bark from their stems and branches. The cold was not unusually severe. Covered by the deep snow the ground was free or nearly so of frost during the winter, and in March there was promise of an ex- ceptionally early spring, but on the morning of March 29th the ther- mometer registered two degrees below zero and the prospect of an early spring was ended. Fortunately this extreme cold at the end of March had not been preceded by days of high temperature, and com- paratively little damage to plants in the Arboretum was caused by it. Rhododendrons with persistent leaves have suffered here more than any other plants by the low temperature at the end of March. There are dead branches on many plants of the Catawbiense Hybrids which have grown uninjured here for years; and some of the large plants of the native Rhododendron maximum have suffered even more than the Cataw- biense Hybrids. The hybrid Rhododendron myrtifolium (R.
    [Show full text]
  • Identification, Cloning and Functional Characterisation of Related Genes On
    Isabelle Vogt Institut für Züchtungsforschung an Obst Fire blight: identifi cation, cloning and functional characterisation of related genes on Malus ×robusta Dissertationen aus dem Julius Kühn-Institut Julius Kühn-Institut Bundesforschungsinstitut für Kulturpfl anzen Kontakt/Contact: Isabelle Vogt Kamenzerstr. 42b 01099 Dresden Die Schriftenreihe ,,Dissertationen aus dem Julius Kühn-lnstitut" veröffentlicht Doktorarbeiten, die in enger Zusammenarbeit mit Universitäten an lnstituten des Julius Kühn-lnstituts entstanden sind. The publication series „Dissertationen aus dem Julius Kühn-lnstitut" publishes doctoral dissertations originating from research doctorates and completed at the Julius Kühn-Institut (JKI) either in close collaboration with universities or as an outstanding independent work in the JKI research fields. Der Vertrieb dieser Monographien erfolgt über den Buchhandel (Nachweis im Verzeichnis lieferbarer Bücher - VLB) und OPEN ACCESS im lnternetangebot www.julius-kuehn.de Bereich Veröffentlichungen. The monographs are distributed through the book trade (listed in German Books in Print - VLB) and OPEN ACCESS through the JKI website www.julius-kuehn.de (see Publications). Wir unterstützen den offenen Zugang zu wissenschaftlichem Wissen. Die Dissertationen aus dem Julius Kühn-lnstitut erscheinen daher OPEN ACCESS. Alle Ausgaben stehen kostenfrei im lnternet zur Verfügung: http://www.julius-kuehn.de Bereich Veröffentlichungen. We advocate open access to scientific knowledge. Dissertations from the Julius Kühn-lnstitut are therefore
    [Show full text]