Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models

Total Page:16

File Type:pdf, Size:1020Kb

Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models Plant Genetics and Genomics: Crops and Models 20 Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models Volume 20 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 Rebecca Grumet • Nurit Katzir • Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Editors Rebecca Grumet Nurit Katzir Michigan State University Agricultural Research Organization East Lansing, Michigan Newe Ya’ar Research Center USA Ramat Yishay Israel Jordi Garcia-Mas Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Bellaterra, Barcelona Spain ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49330-5 ISBN 978-3-319-49332-9 (eBook) DOI 10.1007/978-3-319-49332-9 Library of Congress Control Number: 2017950169 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface The twenty-first century is a golden age for genetics. Massively increasing DNA sequence information and sophisticated bioinformatic capacity at exponentially decreasing cost allow for a world of knowledge that is no longer limited to model species. Members of the Cucurbitaceae family are among the beneficiaries of these technological gains. The Cucurbitaceae, often referred to as “cucurbits,” are proba- bly best known for their large (sometimes extremely large), colorful, and morpho- logically variable fruits. The most economically important crops are watermelon (Citrullus lanatus), melon (Cucumis melo), cucumber (Cucumis sativus), and vari- ous squashes and pumpkins (Cucurbita pepo, maxima, and moschata), which are produced in widely diverse forms throughout the world. Depending on the specific crop and type, they can be consumed as vegetable or dessert, and in some cases, especially for various squashes and pumpkin, can serve as mainstays of the diet. Additional cultivated crops include bitter, bottle, wax, snake sponge, and ridge gourds, which are primarily cultivated in southern and southeastern Asia. Seeds of cucurbit crops also can be an important source of nutrition. In addition, certain cucurbit species are noted for medicinal properties, and gourd shells have historical uses as containers and musical instruments. Several genomic initiatives throughout the world are exploring the genetics and genomics of these crops. Genetic features, including diploid genomes and relatively small genome size (~367, 454, 450, and 400 Mbp for cucumber, melon, water- melon, and squash, respectively), facilitate these efforts, and close genetic relation- ships allow for synergistic approaches. Over the course of the past decade draft genome sequences have been assembled for cucumber, melon, and watermelon; assemblies of Cucurbita species are in progress. As would be expected, a major sec- tion of “Genetics and Genomics of the Cucurbitaceae” is devoted to description of cucurbit genomes and available genomic resources. Of course genomic information does not exist in a vacuum and must be inter- preted within the context of the crop or species and its agronomic, geographic, and evolutionary relationships. The Cucurbitaceae family contains approximately 1000 species, with origins tracing to Southeast Asia prior to subsequent distribution and diversification in Africa and South America. From this great diversity, a small num- v vi Preface ber were domesticated and carried to current crop status. Over the past century, the most extensively cultivated cucurbits have been greatly improved by plant breeders using conventional plant breeding techniques to increase productivity, yield, fruit size, and quality. This volume provides an overview of use of cucurbits and their evolutionary relationships and explores the genetic resources for the cucurbit crops. Much current effort in each of the crops is devoted to incorporation of resistance to critical diseases for which germplasm collections around the world serve as invalu- able, critical resources. Looking forward, molecular breeding approaches facilitated by genomic advances are expected to play an increasing role in facilitating crop improvement, including introgression of novel resistance alleles along with other desirable traits. Finally, the cucurbits are especially noteworthy for several biological features such as unique phloem structure, highly flexible sex expression patterns, extensively diverse fruit size, shape, colors and patterns, and delicious flavors and aromas. Increasing genomic tools and genetic analyses are making major contributions to our understanding of the fundamental bases for these biological phenomena. Thus, collectively, “Genetics and Genomics of the Cucurbitaceae” explores the genetic diversity of cucurbit crops, the current state of knowledge of cucurbit genomics, and evolving applications of genetics and genomics for improvement of cucurbit crops and understanding of cucurbit growth, development, and adaptation to their environments. Contents Cultivation and Uses of Cucurbits ������������������������������������������������������������������ 1 James D. McCreight Phylogeny and Evolution of the Cucurbitaceae �������������������������������������������� 13 Susanne S. Renner and Hanno Schaefer Melon Genetic Resources: Phenotypic Diversity and Horticultural Taxonomy �������������������������������������������������������������������������� 25 Michel Pitrat Genetic Resources of Cucumber . 61 Rachel P. Naegele and Todd C. Wehner Genetic Resources of Watermelon ������������������������������������������������������������������ 87 Amnon Levi, Robert Jarret, Shaker Kousik, W. Patrick Wechter, Padma Nimmakayala, and Umesh K. Reddy Genetic Resources of Pumpkins and Squash, Cucurbita spp. ���������������������� 111 Harry S. Paris Gourds: Bitter, Bottle, Wax, Snake, Sponge and Ridge �������������������������������� 155 Narinder P.S. Dhillon, Supannika Sanguansil, Sheo Pujan Singh, Mohammed Abu Taher Masud, Prashant Kumar, Latchumi Kanthan Bharathi, Halit Yetişir, Rukui Huang, Doan Xuan Canh, and James D. McCreight The Melon Genome ������������������������������������������������������������������������������������������ 173 Josep Casacuberta, Pere Puigdomènech, and Jordi Garcia-Mas The Cucumber Genome ���������������������������������������������������������������������������������� 183 Yiqun Weng The Watermelon Genome �������������������������������������������������������������������������������� 199 Xu Yong and Shaogui Guo Genetics and Genomics of Cucurbita spp.. 211 J. Montero-Pau, C. Esteras, J. Blanca, P. Ziarsolo, J. Cañizares, and B. Picó vii viii Contents Comparative Genomics of the Cucurbitaceae . 229 Padma Nimmakayala, Thangasamy Saminathan, Venkata Lakshmi Abburi, Lav Kumar Yadav, Yan Tomason, Amnon Levi, Yiqun Weng, and Umesh K. Reddy Organellar Genomes of the Cucurbits . 241 Michael J. Havey Databases and Bioinformatics for Cucurbit Species . 253 Yang Bai, Zhonghua Zhang, and Zhangjun Fei Genetic Mapping of Complex Traits in Cucurbits ���������������������������������������� 269 María José Gonzalo and Antonio J. Monforte Phloem Biology of the Cucurbitaceae ������������������������������������������������������������ 291 Robert Turgeon Sex Determination in Cucumis . 307 Natalia Yaneth Rodriguez-Granados, Afef Lemhemdi, Fadi Abou Choucha, David Latrasse, Moussa Benhamed, Adnane Boualem, and Abdelhafid Bendahmane Genomic Analysis of Cucurbit Fruit Growth ������������������������������������������������ 321 Rebecca Grumet and Marivi Colle Fruit Ripening in Melon ���������������������������������������������������������������������������������� 345 Ryoichi Yano and Hiroshi Ezura Genomic Aspects of Melon Fruit Quality ������������������������������������������������������ 377 Amit Gur, Itay Gonda, Vitaly Portnoy, Galil Tzuri, Noam Chayut, Shahar Cohen, Yelena Yeselson, Ayala Meir, Einat Bar, Rachel Davidovitz-Rikanati, Uzi Saar, Harry S. Paris, Joseph Burger, Yaakov Tadmor, Efraim Lewinsohn, Arthur A. Schaffer, and Nurit Katzir Cucurbit Genetics and Genomics: A Look to the Future . 409 Rebecca Grumet, Jordi Garcia-Mas,
Recommended publications
  • Minimum Dietary Diversity for Women a Guide to Measurement
    FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S.
    [Show full text]
  • Phytochemicals Are Natural Resources of Food Supplement for Happier People
    Horticulture International Journal Review Article Open Access Phytochemicals are natural resources of food supplement for happier people Abstract Volume 3 Issue 6 - 2019 Cacao plants are used for a widespread range of diseases and used in different forms such 1 2 as the full of magnesium for a healthy heart, brain for human, highest plant-based source Fakhrul Islam Sukorno, Shariful Islam, Ak of iron and used as mood elevator like a natural mood elevator and anti-depressant. Maca Lutful Kabir,3 Celia Vargas de la Cruz,4 Sakila are widely used in increases energy level and stamina. It is effectively used in women’s Zaman,5 Gali Adamu Ishaku6 health and mood like alleviates menstrual and menopause issues. Quinoa contains all the 1Department of Pharmacy, North south University, Bangladesh nine essential amino acids, almost twice as much fiber as most other grains and perfect 2Department of Pharmacy, Southeast University, Bangladesh for people with gluten intolerance. Goldenberry helps to prevent certain chronic diseases; 3Faculty of Pharmaceutical Technology, University of Dhaka, low in calories only has about 53 calories per 100 grams and modulates immune function. Bangladesh 4 Lucuma contains beneficial nutrients that sugar lacks. It can help the digestive system Faculty of Pharmacy and Biochemistry - Centro work properly and improves the transportation of oxygen into cells. Purple Corn helps Latinoamericano de Enseñanza e Investigación en Bacteriología the regeneration of cells and connective tissues. Could reduce cancer risk as anthocyanins Alimentaria, Universidad Nacional Mayor de San Marcos, Perú 5Department of Pharmacy, Daffodil International University, could kill cancer cells. Prevents degeneration of cells and slows aging process.
    [Show full text]
  • Comparative Studies on Citrullus Vulgaris, Citrullus Colocynthis and Cucumeropsis Mannii for Ogiri Production
    British Microbiology Research Journal 3(1): 1-18, 2013 SCIENCEDOMAIN international www.sciencedomain.org Comparative Studies on Citrullus vulgaris, Citrullus colocynthis and Cucumeropsis mannii for Ogiri Production B. J. Akinyele1* and O. S. Oloruntoba1 1Department of Microbiology, Federal University of Technology, P.M.B 704, Akure, Nigeria. Authors’ contributions This work was carried out in collaboration between both authors. Author BJA designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Author OSO managed the analyses of the study and the literature searches. The both authors read and approved the final manuscript. Received 17th October 2012 th Research Article Accepted 28 December 2012 Published 5th February 2013 ABSTRACT Aim: This study investigated the microbiological, physicochemical and antinutritional properties of three varieties of fermenting melon seeds namely: Citrullus vulgaris (Schrad), Citrullus colocynthis (L) and Cucumeropsis mannii (Naud) for ogiri production. Methodology: Ogiri was produced from these three varieties of melon seeds following the traditional fermentation process while online monitoring was used to evaluate microbial hazards using standard microbiological techniques. Physicochemical and antinutritional properties were determined using standard methods. Results: Bacterial counts ranged from 7.0 x 103 cfu/g to 2.4 x 104 cfu/g for Citrullus vulgaris, 3.2 x 105 cfu/g to 3.7 x105 cfu/g for Citrullus colocynthis and 8.7 x 106 cfu/g to 9.1 x 106 cfu/g for Cucumeropsis mannii. Some of the isolated microorganisms from the fermenting melon seeds include Lactobacillus species, Bacillus species, Aerococcus viridans, Staphylococcus aureus, Micrococcus luteus, Aspergillus niger, Penicillium species and Fusarium eguseti.
    [Show full text]
  • Determining the Physiochemical and Phytochemical Properties of Local Nigerian White Melon Seed Flour
    [Okorie *, Vol.6 (Iss.5): May 2018] ISSN- 2350-0530(O), ISSN- 2394-3629(P) (Received: May 02, 2018 - Accepted: May 29, 2018) DOI: 10.29121/granthaalayah.v6.i5.2018.1437 Science DETERMINING THE PHYSIOCHEMICAL AND PHYTOCHEMICAL PROPERTIES OF LOCAL NIGERIAN WHITE MELON SEED FLOUR Peter Anyigor Okorie *1 *1 Department of Food Science and Technology Ebonyi State University, Abakaliki, Nigeria Abstract The functional properties, proximate composition and phytochemical characteristics of a local Nigerian white melon seed flour was determine in this study. Foaming capacity, emulsion capacity, oil absorption, water absorption, and bulk density tests were conducted. The moisture, protein, fat, fibre, ash, carbohydrate, flavonoid, saponin, carotenoid and alkaloid contents of the flour were determined. The results show that the functional properties of the flour are: foaming capacity 0.03 %, emulsion capacity 60.50 %, oil absorption capacity 34.10 %, water absorption capacity 18.60 % and bulk density 1.62 g/ml. The proximate composition of the flour are: carbohydrate 58.43 %, protein 32.55 %, moisture 1.70 %, fat 29.00 %, crude fibre 6.15 % and ash 0.85 %. The flour has the following phytochemical composition: flavonoid 3.13 %, saponin 4.88 %, carotenoid 1.80 % and alkaloid 5.90 %. The analysis revealed that the flour could be used in soup making and infant food formulation. It could also be useful for prevention and cure of heart related diseases. Keywords: Physiochemical Properties; Phytochemical Properties; Melon Seed Flour; White Melon. Cite This Article: Peter Anyigor Okorie. (2018). “DETERMINING THE PHYSIOCHEMICAL AND PHYTOCHEMICAL PROPERTIES OF LOCAL NIGERIAN WHITE MELON SEED FLOUR.” International Journal of Research - Granthaalayah, 6(5), 157-166.
    [Show full text]
  • The Use of Plants in the Traditional Management of Diabetes in Nigeria: Pharmacological and Toxicological Considerations
    Journal of Ethnopharmacology 155 (2014) 857–924 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations Udoamaka F. Ezuruike n, Jose M. Prieto 1 Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom article info abstract Article history: Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is Received 15 November 2013 now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of Received in revised form herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby 26 May 2014 carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on Accepted 26 May 2014 the available evidence on the species' pharmacology and safety, we highlight ways in which their Available online 12 June 2014 therapeutic potential can be properly harnessed for possible integration into the country's healthcare Keywords: system. Diabetes Materials and methods: Ethnobotanical information was obtained from a literature search of electronic Nigeria databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants Ethnopharmacology used in diabetes management, in which the place of use and/or sample collection was identified as Herb–drug interactions Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – WHO Traditional Medicine Strategy accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches.
    [Show full text]
  • An Ethanobotanical Investigation Of
    Journal of Medicinal Plants Studies 2017; 5(3): 250-254 ISSN (E): 2320-3862 ISSN (P): 2394-0530 An ethanobotanical investigation of cucurbitaceae NAAS Rating 2017: 3.53 JMPS 2017; 5(3): 250-254 from South India: A review © 2017 JMPS Received: 05-03-2017 Accepted: 06-04-2017 Thammaihraj Shanthi Avinash and Vittal Ravishankar Rai Thammaihraj Shanthi Avinash Department of Studies in Abstract Microbiology, University of Cucurbitaceae crops are cash crops grown as vegetables. The family cucurbitaceae well known medicinal Mysore, Manasagangothri, uses the whole plant parts including roots, leaves, fruits and seeds have been extensively studied for their Mysore, Karnataka, India. pharmacological activity. A herb is a plant that is valued for flavor, scent, or other qualities. From ancient Vittal Ravishankar Rai days to now a day, plant parts used in cooking, as medicines as they were potential and treatment of Department of Studies in several diseases and disorders. Main behind of that is medicinal plants is not having any side effects. Microbiology, University of Fruits of which are widely used in ayurveda and other folk medicines traditionally used for its Mysore, Manasagangothri, cardioprotective, cardiotonic, general tonic, diuretic, aphrodisiac, antidote to certain poisons and scorpion Mysore, Karnataka, India. strings, alternative purgative, cooling effects. It cures pain, ulcers and fever and used for pectoral cough, asthma and other bronchial disorders-especially syrup prepared from the tender fruits. The fruit is reported to contain the triterepeniode cucurbitacins B, D, G, H and 22-deoxy cucurbitacin. This is an attempt to compile an up-to-date and comprehensive review of that covers its traditional and folk medicinal uses, phytochemistry and pharmacology.
    [Show full text]
  • Some Biological Observations on Pale Fruit, a Viroid-Incited Disease of Cucumber
    Neth.J . PI.Path . 80(1974 )85-9 6 Some biological observations on pale fruit, a viroid-incited disease of cucumber H. J. M. VAN DORST1 and D. PETERS2 1 Glasshouse CropsResearc han d Experiment Station, Naaldwijlk 2 Laboratory ofVirology ,Agricultura l University, Wageningen Accepted 13 December 1973 Abstract A viroid-incited disease characterized by palefruits , crumpledflowers, an d rugosity and chlorosis on the leaves of cucumber, occurs occasionally in cucumber crops grown in glasshouses in the Nether­ lands. The disease is found primarily in crops planted in spring, rarely in those planted in summer but not in those planted in late summer. The pathogen can be transmitted with sap, during pruning, bygraftin g and with dodder to cucumber and a number of other cucurbitaceous species,but not with M. persicae.Ther e is no evidence for seed or nematode transmission. The incubation period js 21 daysa thig htemperature s(3 0°C )bu tshorte r after inoculationb yrazorblad eslashing . The number of glasshouses with the disease has increased since 1965,bu t the number of diseased plants is usually low. The initial distribution of diseased plants in the glasshouses suggests that the pathogeni sintroduce db ya ninsect . Introduction In 1963a disease in cucumber especially attracting attention by a light green colour on the fruits, but also with affectedflowers an d young leaves, occurred in two glass­ houses in the western part of the Netherlands. The disease, now calledpal efrui t dis­ ease,ha ssinc ebee n observed indifferen t places overth ewhol e country. The number ofaffecte d plantsi na glasshous ei smostl yles stha n0.
    [Show full text]
  • Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
    Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade.
    [Show full text]
  • Cucumeropsis Mannii Naudin) for Human Nutrition
    International Journal of Nutrition and Metabolism Vol. 3(8), pp. 103 -108, 13 September, 2011 Available online http://www.academicjournals.org/ijnam ISSN 2141-2499 ©2011 Academic Journals Full Length Research Paper Evaluation of nutrient composition of African melon oilseed (Cucumeropsis mannii Naudin) for human nutrition Samuel A. Besong 1*, Michael O. Ezekwe 2, Celestine N. Fosung 1 and Zachary N. Senwo 3 1Department of Human Ecology, Delaware State University, 1200 North DuPont HWY, Baker Annex Bldg RM #101, Dover, DE 19901, Dover, Delaware, United States of America. 2Department of Agriculture, Alcorn State University, United States of America. 3Department of Biological and Environmental Sciences, Alabama Agricultural and Mechanical University, Normal, AL 35762, United States of America. Accepted 9 August, 2011 Protein deficiency is prevalent among children and even adults in developing countries, especially in African countries and contributes to immune dysfunction, opportunistic infections and mortality. The goal of this project is to search for a cheaper and sustainable plant based source of protein that can be incorporated in the diet to prevent protein deficiency and other essential nutrients. African melon oil seeds ( Cucumeropsis mannii Naudin) collected from Cameroon-West Africa were analyzed to determine their nutrient composition and whether they could serve as a sustainable source of protein, essential amino acids and polyunsaturated fatty acids for consumers in developing countries, especially in African countries. Nutrient data obtained shows that Cucumeropsis mannii Naudin has crude protein content of 31.4% and all essential amino acids. Total fat content in the seeds was 52.5% and the fatty acids that were in abundance were: linoleic (62.42%), oleic (15.90%), palmitic (10.27%), and stearic (10.26%).
    [Show full text]
  • Genetic Resources of the Genus Cucumis and Their Morphological Description (English-Czech Version)
    Genetic resources of the genus Cucumis and their morphological description (English-Czech version) E. KŘÍSTKOVÁ1, A. LEBEDA2, V. VINTER2, O. BLAHOUŠEK3 1Research Institute of Crop Production, Praha-Ruzyně, Division of Genetics and Plant Breeding, Department of Gene Bank, Workplace Olomouc, Olomouc-Holice, Czech Republic 2Palacký University, Faculty of Science, Department of Botany, Olomouc-Holice, Czech Republic 3Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Olomouc-Holice, Czech Republic ABSTRACT: Czech collections of Cucumis spp. genetic resources includes 895 accessions of cultivated C. sativus and C. melo species and 89 accessions of wild species. Knowledge of their morphological and biological features and a correct taxonomical ranging serve a base for successful use of germplasm in modern breeding. List of morphological descriptors consists of 65 descriptors and 20 of them are elucidated by figures. It provides a tool for Cucumis species determination and characterization and for a discrimination of an infraspecific variation. Obtained data can be used for description of genetic resources and also for research purposes. Keywords: Cucurbitaceae; cucumber; melon; germplasm; data; descriptors; infraspecific variation; Cucumis spp.; wild Cucumis species Collections of Cucumis genetic resources include pollen grains and ovules, there are clear relation of this not only cultivated species C. sativus (cucumbers) taxon with the order Passiflorales (NOVÁK 1961). Based and C. melo (melons) but also wild Cucumis species. on latest knowledge of cytology, cytogenetics, phyto- Knowledge of their morphological and biological fea- chemistry and molecular genetics (PERL-TREVES et al. tures and a correct taxonomical ranging serve a base for 1985; RAAMSDONK et al.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Dissertação [ ] Tese
    Universidade Federal de Goiás Instituto de Ciências Biológicas Programa de Pós-Graduação em Biodiversidade Vegetal BERYL EIRENE LUTZ DE MOURA ESTUDOS TAXONÔMICOS E MORFOPOLÍNICOS DAS CUCURBITÁCEAS DO ESTADO DE GOIÁS, BRASIL Goiânia 2017 TERMO DE CIÊNCIA E DE AUTORIZAÇÃO PARA DISPONIBILIZAR AS TESES E DISSERTAÇÕES ELETRÔNICAS NA BIBLIOTECA DIGITAL DA UFG Na qualidade de titular dos direitos de autor, autorizo a Universidade Federal de Goiás (UFG) a disponibilizar, gratuitamente, por meio da Biblioteca Digital de Teses e Dissertações (BDTD/UFG), regulamentada pela Resolução CEPEC nº 832/2007, sem ressarcimento dos direitos autorais, de acordo com a Lei nº 9610/98, o documento conforme permissões assinaladas abaixo, para fins de leitura, impressão e/ou download, a título de divulgação da produção científica brasileira, a partir desta data. 1. Identificação do material bibliográfico: [ X ] Dissertação [ ] Tese 2. Identificação da Tese ou Dissertação Nome completo do autor: BERYL EIRENE LUTZ DE MOURA Título do trabalho: ESTUDOS TAXONÔMICOS E MORFOPOLÍNICOS DAS CUCURBITÁCEAS DO ESTADO DE GOIÁS, BRASIL 3. Informações de acesso ao documento: Concorda com a liberação total do documento [ x ] SIM [ ] NÃO1 Havendo concordância com a disponibilização eletrônica, torna-se imprescindível o envio do(s) arquivo(s) em formato digital PDF da tese ou dissertação. Data: 08/ 05 / 2017 Assinatura do (a) autor (a) 1 Neste caso o documento será embargado por até um ano a partir da data de defesa. A extensão deste prazo suscita justificativa junto à coordenação do curso. Os dados do documento não serão disponibilizados durante o período de embargo. BERYL EIRENE LUTZ DE MOURA ESTUDOS TAXONÔMICOS E MORFOPOLÍNICOS DAS CUCURBITÁCEAS DO ESTADO DE GOIÁS, BRASIL Dissertação apresentada ao Programa de Pós- Graduação em Biodiversidade Vegetal da Universidade Federal de Goiás, como requisito para a obtenção do título de Mestre em Biodiversidade Vegetal Orientadora: Prof.ª Dra.
    [Show full text]