An Ethanobotanical Investigation Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Resources of the Genus Cucumis and Their Morphological Description (English-Czech Version)
Genetic resources of the genus Cucumis and their morphological description (English-Czech version) E. KŘÍSTKOVÁ1, A. LEBEDA2, V. VINTER2, O. BLAHOUŠEK3 1Research Institute of Crop Production, Praha-Ruzyně, Division of Genetics and Plant Breeding, Department of Gene Bank, Workplace Olomouc, Olomouc-Holice, Czech Republic 2Palacký University, Faculty of Science, Department of Botany, Olomouc-Holice, Czech Republic 3Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Olomouc-Holice, Czech Republic ABSTRACT: Czech collections of Cucumis spp. genetic resources includes 895 accessions of cultivated C. sativus and C. melo species and 89 accessions of wild species. Knowledge of their morphological and biological features and a correct taxonomical ranging serve a base for successful use of germplasm in modern breeding. List of morphological descriptors consists of 65 descriptors and 20 of them are elucidated by figures. It provides a tool for Cucumis species determination and characterization and for a discrimination of an infraspecific variation. Obtained data can be used for description of genetic resources and also for research purposes. Keywords: Cucurbitaceae; cucumber; melon; germplasm; data; descriptors; infraspecific variation; Cucumis spp.; wild Cucumis species Collections of Cucumis genetic resources include pollen grains and ovules, there are clear relation of this not only cultivated species C. sativus (cucumbers) taxon with the order Passiflorales (NOVÁK 1961). Based and C. melo (melons) but also wild Cucumis species. on latest knowledge of cytology, cytogenetics, phyto- Knowledge of their morphological and biological fea- chemistry and molecular genetics (PERL-TREVES et al. tures and a correct taxonomical ranging serve a base for 1985; RAAMSDONK et al. -
Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax). -
Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models
Plant Genetics and Genomics: Crops and Models 20 Rebecca Grumet Nurit Katzir Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Plant Genetics and Genomics: Crops and Models Volume 20 Series Editor Richard A. Jorgensen More information about this series at http://www.springer.com/series/7397 Rebecca Grumet • Nurit Katzir • Jordi Garcia-Mas Editors Genetics and Genomics of Cucurbitaceae Editors Rebecca Grumet Nurit Katzir Michigan State University Agricultural Research Organization East Lansing, Michigan Newe Ya’ar Research Center USA Ramat Yishay Israel Jordi Garcia-Mas Institut de Recerca i Tecnologia Agroalimentàries (IRTA) Bellaterra, Barcelona Spain ISSN 2363-9601 ISSN 2363-961X (electronic) Plant Genetics and Genomics: Crops and Models ISBN 978-3-319-49330-5 ISBN 978-3-319-49332-9 (eBook) DOI 10.1007/978-3-319-49332-9 Library of Congress Control Number: 2017950169 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Seed Coat Diversity in Some Tribes of Cucurbitaceae: Implications for Taxonomy and Species Identification
Acta Botanica Brasilica 29(1): 129-142. 2015. doi: 10.1590/0102-33062014abb3705 Seed coat diversity in some tribes of Cucurbitaceae: implications for taxonomy and species identification Samia Heneidak1 and Kadry Abdel Khalik2,3,* Received: August 2, 2014. Accepted: October 8, 2014 Abstract: To evaluate their diagnostic value in systematic studies, seed coat morphology for 16 taxa from 11 genera of Cucurbitaceae were examined using stereomicroscopy and scanning electron microscopy. The taxa included representatives of the tribes Benincaseae, Bryonieae, Coniandreae, and Luffeae in order to evaluate their diagnostic value in systematic studies. Macro- and micromorphological characters of their seeds are presented, including shape, color, size, surface, epidermal cell shape, anticlinal boundaries, and periclinal cell wall. The taxonomic and phylo- genetic implications of seed coat micromorphology were compared with those of the available gross morphological and molecular data. Seed character analysis offered useful data for evaluating the taxonomy of Cucurbitaceae on both intrageneric and tribal levels. Monophyly of the tribes Bryonieae, Coniandreae, and Luffeae was supported. Moreover, these analyses supported previous biochemical and phylogenetic data, indicating that distinct lineages are present within the tribe Benincaseae, that this tribe is not monophyletic, and that the subtribe Benincasinae is highly polyphyletic. A key is provided for identifying the investigated taxa based on seed characters. Keywords: Cluster analysis, PCO, scanning electron microscopy, seed coat, tribal classification, UPGMA Introduction 1990), Cucurbitaceae is subdivided into two well-defined subfamilies, Zanonioideae and Cucurbitoideae, and eight Cucurbitaceae is a widespread family of 118–122 genera tribes represent various degrees of circumscriptive co- and 900 species (Simpson 2010) of monoecious or dioecious hesiveness. -
Dispersal Events the Gourd Family (Cucurbitaceae) and Numerous Oversea Gourds Afloat: a Dated Phylogeny Reveals an Asian Origin
Downloaded from rspb.royalsocietypublishing.org on 8 March 2009 Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events Hanno Schaefer, Christoph Heibl and Susanne S Renner Proc. R. Soc. B 2009 276, 843-851 doi: 10.1098/rspb.2008.1447 Supplementary data "Data Supplement" http://rspb.royalsocietypublishing.org/content/suppl/2009/02/20/276.1658.843.DC1.ht ml References This article cites 35 articles, 9 of which can be accessed free http://rspb.royalsocietypublishing.org/content/276/1658/843.full.html#ref-list-1 Subject collections Articles on similar topics can be found in the following collections taxonomy and systematics (58 articles) ecology (380 articles) evolution (450 articles) Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here To subscribe to Proc. R. Soc. B go to: http://rspb.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rspb.royalsocietypublishing.org on 8 March 2009 Proc. R. Soc. B (2009) 276, 843–851 doi:10.1098/rspb.2008.1447 Published online 25 November 2008 Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events Hanno Schaefer*, Christoph Heibl and Susanne S. Renner Systematic Botany, University of Munich, Menzinger Strasse 67, 80638 Munich, Germany Knowing the geographical origin of economically important plants is important for genetic improvement and conservation, but has been slowed by uneven geographical sampling where relatives occur in remote areas of difficult access. -
Khmeriosicyos, a New Monotypic Genus of Cucurbitaceae from Cambodia
BLUMEA 49: 441– 446 Published on 10 December 2004 doi: 10.3767/000651904X484360 KHMERIOSICYOS, A NEW MONOTYPIC GENUS OF CUCURBITACEAE FROM CAMBODIA W.J.J.O. DE WILDE1, B.E.E. DUYFJES & R.W.J.M. VAN DER HAM2 Nationaal Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands SUMMARY A new monotypic genus from Cambodia is described. The genus is defined by a unique combination of characters and has distinct pollen features. The only species is Khmeriosicyos harmandii W.J. de Wilde & Duyfjes. Key words: Cucurbitaceae, Khmeriosicyos, new genus, pollen, SE Asia. INTRODUCTION Two sheets of an unidentified collection referred to Cucurbitaceae in the Paris Herbarium appeared to represent an undescribed genus in the family. The material, Harmand in herbarium Pierre 4350, is rather inadequate, but contains at close inspection sufficient details on the habit of the plant, the male and female inflorescences, the male flowers, fruit and seeds, and pollen to reveal its identity. Khmeriosicyos W.J. de Wilde & Duyfjes, gen. nov. A generis monotypicis similibus e.g. Borneosicyo, Papuasicyo, Nothoalsomitra foliis et cirrhis simplicibus, probractea distincta, floribus monoeciis, floribus masculinis in racemo pedunculato, receptaculi tubo vadoso staminibus ad medium insertis, duabus antheribus bithecis una monotheca, thecis sigmoideis connectivo lato membranaceo differt. — Typus: Khmeriosicyos harmandii W.J. de Wilde & Duyfjes. Small climber, monoecious. Leaves simple, deeply lobed, scabrous. Tendrils simple. Probract obvious, glandular. Male inflorescences peduncled, racemose. Male flowers: receptacle-tube bowl-shaped, shallow; expanded corolla c. 15 mm in diameter; petals entire, imbricate, free; stamens 3, free, inserted about halfway in the receptacle-tube; filaments short, anthers two 2-thecous, one 1-thecous, thecae sigmoid, connective broad, membranous; disc absent. -
10 Family Cucurbitaceae
10 Family Cucurbitaceae Origin and History years (Zeven and Zhukovsky, 1975). The ancient Egyptians also cultivated cucumbers. Cucumis The cucurbits are largely tropical in origin with sativus var. hardwickii, a wild taxon native to different genera originating in Africa, tropical India, has been proposed as the wild progenitor of America, and Southeast Asia. Commercial cucur- the domesticated forms of C. sativus. Cucumbers bits are primarily herbaceous annuals that produce spread to China and Greece from India about distinctive tendril-bearing vines and are commonly 2,000 years ago (Whitaker and Davis, 1962; grown in temperate regions with long growing sea- Robinson and Decker-Walters, 1997). The Sikkim sons. Some are adapted to humid conditions while cucumber has been grown in the Himalayas as others are found in arid regions. Most are frost- food for centuries. intolerant although some species are more tolerant The cucumber also spread to Italy, and was a of low temperature than others. significant crop during the Roman Empire. In classical Rome, Pliny reported greenhouse pro- Taxonomy duction of cucumbers by the 1st century, and the Emperor Tiberius was said to have eaten them The Cucurbitaceae family is well defined but taxo- throughout the year (Sauer, 1993). Cucumbers nomically isolated from other plant families. The were probably spread to the rest of Europe by the family Cucurbitaceae consists of about 120 genera Romans. The earliest records of cucumber culti- and more than 800 species. Two subfamilies, vation appear in France by the 9th century, Great Zanonioideae and Cucurbitoideae, are well charac- Britain by the 14th century and the Caribbean at terized: the former by small, striate pollen grains and the end of the 15th century. -
IVY GOURD: NUTRITION and PHARMALOGICAL VALUES Satbir Singh Saini
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 4 April 2021 | ISSN: 2320-2882 IVY GOURD: NUTRITION AND PHARMALOGICAL VALUES Satbir singh saini Department of food science & nutrition Lovely Professional University- 144411 Abstract Ivy Gourd, Coccinia grandis (L), also known as little gourd or baby watermelon plant, that is a member of the family of Cucurmbitaceae. It is one of the most beneficial medicinal herbs in traditional and ayurvedic medicine. The fruits of Coccinia Grandis are recognized to have active constituents similar to amyran, lupeol, taraxerone, taxerol and glycoside cucurbitacan B. The subsistence of secondary metabolites like alkaloids, flavonoids, saponins, glycosides etc. in the plant may give to their medicinal value. The tender green fruits are nutritious and are a good source of calcium, protein, calcium, fiber and beta carotene, Vitamin-A. It has been used in traditional medicine as a domestic remedy for a variety of diseases. The entire plant of Coccinia grandis having pharmacological actions such as analgesic, antipyretic, anti- inflammatory, antimicrobial, antiulcer, antidiabetic, antioxidant, hypoglycemic, hepatoprotective, antimalarial, antidyslipidemic, anticancer, antitussive, mutagenic. Therefore, the final note emphasizes this plant broadly being used for treatment of diabetes, jaundice, hypertension, fever and gastrointestinal exertion and to relieve pain. The Coccinia grandis has good likely of medicinal values and chemical constituents. Keywords: Ivy gourd, pharmalogical activities, Coccinia grandis, antidiabetic I. Introduction Ivy gourd also known as Coccinia grandis is a member of Cucurmbitaceae family in the order Violales. The coccinia grandis (L) voigt family comprises more than 900 species. It is also known as baby melon or little gourd or sometimes tam lueng. -
Mashaer Goda
International Master Programme at the Swedish Biodiversity Centre Master theses No. 35 Uppsala 2007 ISSN: 1653-834X Diversity of local genetic resources of watermelon Citrullus lanatus (Thunb.) Matsum and Nakai, in Sudan Mashaer Goda Supervisors Jens Weibull El Tahir Ibrahim MASTER SERIES THESES MASTER SERIES THESES MASTER SERIES THESES MASTER SERIES THESES CBM CBM CBM CBM Mashaer Goda /Diversity of watermelon genetic resources in Sudan Abstract Morphological and molecular characterization were carried out in this study to estimate genetic diversity within the genus Citrullus collected from Sudan, with assistance of passport data to examine if the site of collection has any effect on the diversity of the species. Number of 30 accessions was chosen for this study. These accessions were collected from six different regions of the country representing North, West and Central Sudan. The experiment was carried out in the field of the Agricultural Research and Technology Corporation (ARTC) in Sudan. A descriptor list locally developed by the Plant Genetic Resources (PGR) unit of the (ARTC) was used for morphological characterization. Morphological data approved high variability for fruit and seed characters and referred to characters which may be considered valuable for plant breeders. The cluster obtained from morphological characterization separates the studied accession into four different morphotypes. Accessions from the western part of the country grouped together regardless of the specific site of collection inside the western region. SSR markers and RAPD markers were used for molecular characterization. The cluster obtained from molecular characterization separates the accessions into four groups with 71% similarity coefficient. Some of the accessions were appear to have high level of similarity which may facilitate findings of duplication. -
Genetic Resources of Cucumber
Genetic Resources of Cucumber Rachel P. Naegele and Todd C. Wehner Abstract The Cucurbitaceae is a monophyletic family without any close relatives. It includes important vegetables such as cucumber, melon, watermelon, squash, pumpkin, and gourd. Within Cucurbitaceae, the genus Cucumis includes cultivated species C. sativus (cucumber) and C. melo (melon), as well as wild species includ- ing C. hystrix, C. callosus, and C. sativus L. var. hardwickii. More than 50 species have been identified in Cucumis with high levels of phenotypic and genetic diversity found in centers of diversity in Africa, Asia, and India. Primary and secondary cen- ters of diversity can serve as useful sources of variation, and have been widely used to incorporate traits such as disease resistance into cultivated materials. During domestication, cucumber and melon underwent severe bottlenecks, which resulted in low genetic variation despite high phenotypic diversity. Since its domestication, approximately 3000 years ago, cucumber has undergone significant morphological changes from its small-fruited, black spined, seedy progenitor. More than 150 sin- gle gene traits have been described in C. sativus, including powdery mildew and virus resistance, sex expression, leaf morphology, and parthenocarpy, and molecu- lar markers continue to be rapidly developed. Keywords Cucumber • Cucumis sativus • Gene • Germplasm resources • Plant breeding Introduction The Cucurbitaceae or vine crop family is a distinct family without any close rela- tives (Sikdar et al. 2010). It includes important vegetables such as cucumber, melon, watermelon, squash and pumpkin. Cucumber (Cucumis sativus var. sativus), grown for fresh and processing markets, is one of the most important cultivated cucurbits with a global production of 70 million tonnes in 2013 (FAOSTAT). -
Papuasicyos, a New Genus of Cucurbitaceae
BLUMEA 48: 123 –128 Published on 7 April 2003 doi: 10.3767/000651903X686088 PAPUASICYOS, A NEW GENUS OF CUCURBITACEAE B.E.E. DUYFJES1, R.W.J.M VAN DER HAM & W.J.J.O. DE WILDE National Herbarium Nederland, Universiteit Leiden branch, P.O. Box 9514, 2300 RA Leiden, The Netherlands SUMMARY A new monotypic genus from New Guinea is described. Its pollen matches that of the Cucurbitoi- deae–Melothrieae, except for its small size. Key words: Cucurbitaceae, Papuasicyos, new genus, pollen, SE Asia. INTRODUCTION Detailed examination of the isotype specimen (the holotype is lost) of Melothria papuana, described from just the type, and the discovery of a few recently collected additional specimens, resulted in the discovery of a new genus, here named Papua sicyos. Its relatively small, striate-reticulate pollen is quite distinctive. Papuasicyos is a monotypic genus, endemic to New Guinea. The variation in the limited number of specimens available, especially in the size and shape of the sepals, suggests the pos- sibility of two species. More collections of this widespread but obviously overlooked plant are needed to clarify the number of species. POLLEN MORPHOLOGY — Fig. 1a, b The pollen of Papuasicyos papuana (Docters van Leeuwen 9873) is small (31 by 32 µm, P/E = 0.97), 3-colporate, with long colpi and small elliptic endopores, and stri- ate-reticulate. The subdivision of the Cucurbitaceae into subfamilies Cucurbitoideae and Zano- nioideae is well-supported by pollen morphology (Marticorena, 1963; Jeffrey, 1964; Khunwasi, 1998). Pollen of the Zanonioideae is uniform: 3-colpor(oid)ate, usually small (up to 40 µm) and striate, sometimes (Alsomitra, Bolbostemma, and Gerradanthus) larger (up to 52 µm) and/or perforate or reticulate (Alyoshina, 1971; Van der Ham, 1999). -
Phytochemicals of Cucurbitaceae Family – a Review
Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2016; 8(1); 113-123 ISSN: 0975-4873 Review Article Phytochemicals of Cucurbitaceae Family – A Review Rajasree R S1*, Sibi P I2, Femi Francis1, Helen William1 1College of Pharmaceutical Sciences, Govt. Medical College, Kottayam, Kerala, India 2College of Pharmaceutical Sciences, Puthupally, Kottayam, Kerala, India Available Online: 22nd December, 2015 ABSTRACT The family cucurbitaceae includes a large group of crops like cucumbers, and melon which are medicinally essential. The plants of the family are collectively known as cucurbits. It is a distinct family without any close relatives. Plants of this family have many medicinal and nutritional benefits. So it is important to find out the active agents possessing pharmacological activity in plants coming under the family. The major elements present are the phytochemicals like Glycosides, Terpenoids, Saponins, Tannins, Steroids, Carotenoids, and Resins etc. and most commonly the terpenoid substance called Cucurbitacins Keywords: Cucurbita, Momordica, Cucumis, Citrullus, Trichosanthes, Cucurbitacins INTRODUCTION fact that they are rich source of proteins, with many Plants were used to cure diseases and infections during biological activities like anti-fungal, anti-bacterial, anti- ancient time. Medicinal plants are cheap, easily available viral, anti-diabetic, anti-tumor and anti-AIDS. It is also and affordable. The medicinal importance of plants lies in known to contain several bioactive compounds such as some chemical substances that produce a specific cucurbitacins, triterpenes, sterols and alkaloids5. The physiological action on the human body. The most present study is to review the pharmacologically essential of these bioactive constituents of plants are important plants and phytochemicals present in cucurbits alkaloids, saponins, tannins, flavonoids and phenolic and to understand their pharmacological activity.