Cytoskeletal Linkers: New Maps for Old Destinations Megan K

Total Page:16

File Type:pdf, Size:1020Kb

Cytoskeletal Linkers: New Maps for Old Destinations Megan K R864 Dispatch Cytoskeletal linkers: New MAPs for old destinations Megan K. Houseweart*† and Don W. Cleveland*†‡§ A new isoform of the actin–neurofilament linker protein as ‘bullous pemphigoid antigen’ (BPAG). These proteins BPAG has been found that binds to and stabilizes are large α-helical coiled-coil molecules which have axonal microtubules. This and other newly identified binding domains for one or more of the three cytoskele- microtubule-associated proteins are likely to be just the tal components (Figure 1). For example, the widely tip of an iceberg of multifunctional proteins that expressed, > 500 kD protein plectin has been shown to stabilize and crosslink cytoskeletal filament networks. associate with microtubules, intermediate filaments (glial fibrillary acidic protein, vimentin, keratins, all Addresses: *Ludwig Institute for Cancer Research, †Program in Biomedical Sciences, ‡Division of Cellular and Molecular Medicine and three neurofilament subunit proteins), actin, myosin and §Department of Neuroscience, University of California at San Diego, itself [3]. Given the widespread distribution and multi- La Jolla, California 92093, USA. ple interactions that are characteristic of these proteins, E-mail: [email protected] it is not surprising that a number of human and mouse Current Biology 1999, 9:R864–R866 diseases have been attributed to aberrant or missing cross-linking proteins [4]. 0960-9822/99/$ – see front matter © 1999 Elsevier Science Ltd. All rights reserved. This is the case for mice lacking the locus encoding the numerous isoforms of the essential ~280 kDa linker The cytoplasm of most eukaryotic cells contains a dynamic protein BPAG. Two neuronal isoforms of BPAG both have filamentous protein scaffold composed of 25 nm micro- a carboxy-terminal intermediate-filament-binding domain tubules, 4 nm actin filaments and 10 nm intermediate fila- and also an amino-terminal actin-binding region (Figure 1). ments. Together, this network of proteins is responsible for Both of these neuronal forms of BPAG can functionally the structural integrity of the cell, as well as for cell motility link actin filaments and neuronal intermediate filaments and adhesion and the intracellular transport of specific — neurofilaments — in vivo (although some evidence cargoes. Although these three components of the cytoskele- has questioned the universality of this interaction [5]). ton are often thought of and studied as distinct systems, a What is not in doubt is that without the neuronal forms growing body of evidence demonstrates that they are not of BPAG [6,7], mice develop a fatal sensory neuron disease only physically interconnected by cross-linking proteins, with a pathology consisting of abnormal axonal myelination but that the properties of these filamentous networks can and large accumulations of disordered neurofilaments and be modulated by linker proteins, perhaps explaining their organelles within axonal swellings. often coordinated actions in cells [1,2]. But there is more to this linker story. Subsequent This emerging family of sequence-related cross-linker pro- examination of the large sensory neurons in the BPAG- teins, named plakins, includes plectin, ACF7, envoplakin, deficient mice revealed a disorganized axonal micro- the desmoplakins and the many forms of a protein known tubule array [8]. In normal axons, neurofilaments, Figure 1 Current members of the family of axonal 31 251 1561 2195 3290 cytoskeletal linker proteins. Protein binding ABD MT HeadRod IF binding BPAG1n1 domains and structural elements are shown: ABD, actin-binding domain; MT, microtubule- binding domain; IF binding, intermediate ABD MT HeadRod IF binding BPAG1n2 filament-binding domain. Cross hatched regions indicate possible masked or 32 145 965 13292237 2870 incomplete binding domains. The numbers ABD MT HeadRod IF binding BPAG1n3 indicate protein residue count. Structures of BPAG1n1 and BPAG1n2 are from [7]; that of 77 307 BPAG1n3 is from [1]; that of ACF71–3 is from [13]; and that of plectin is from [14]. ABDHeadRod IF binding ACF71-3 282 947 2070 4140 ABD Head Rod IF binding Plectin Current Biology Dispatch R865 Figure 2 The crossbridging of microtubules, actin filaments and intermediate filaments by linker proteins such as BPAG and plectin creates a three-dimensional cytoplasmic scaffold that structures the neuronal axoplasm in a parallel array. Actin Intermediate filament Microtubule BPAG 1n3 Microtubule-binding domain BPAG 1n1/BPAG 1n2 Actin-binding domain Plectin Intermediate-filament-binding domain Current Biology organelles and other cargoes from the nerve cell body are for the disorganization of microtubules observed in transported along microtubule tracks by motor proteins BPAG-deficient animals. to and from the nerve terminal. In the affected axons of the BPAG-deficient mice, it seemed likely that disrup- Instead, the answer apparently lies with yet another tion of the microtubule network had impeded axonal BPAG isoform, BPAG1n3, encoded by an alternatively transport, causing axonal accumulations of cargoes and spliced RNA transcript of the same BPAG gene. In this eventually neuronal death by strangulation. A plausible newly found isoform, the amino-terminal actin-binding hypothesis, perhaps, but why would the removal of a domain is replaced by a microtubule-binding domain cross-linker protein responsible for bridging actin fila- (Figure 1). Not only can this molecule crosslink — and ments and neuronal intermediate filaments result in a thereby align — intermediate filaments along micro- disrupted microtubule network? tubules, it is an authentic microtubule-associated protein (MAP) which strongly stabilizes microtubules against Fuchs and colleagues [1] have recently provided a drug-induced or low-temperature-induced disassembly (as convincing solution to this dilemma. To determine seen using in vitro microtubule binding assays and in whether the neurofilaments left untethered in the primary sensory neuronal cultures). absence of BPAG directly contribute to the disrupted- microtubule phenotype of BPAG-deficient axons, this All of this evidence combines to highlight two lessons. group examined the microtubule arrays of sensory axons First, proteins that link cytoskeletal elements are impor- in the absence of both BPAG and neurofilaments. tant components with essential structural roles in organiz- Although the microtubule networks of neurofilament- ing cytoplasm (highlighted for axoplasm in Figure 2). deficient mice were found to be aligned normally, the Each crossbridge is probably weak and reversible, but the mice lacking both neurofilaments and the BPAG linker combination of many weak links between filaments with proteins displayed disorganized microtubules and markedly different viscoelastic properties yields a compos- sensory neuron degeneration indistinguishable from the ite network with mechanical properties able to withstand BPAG-deficient mice. This finding strongly argues that large internal or external stresses. Second, crosslinking per neither untethered neurofilaments nor the absence of se may not be the most important functional property of at linkage between neurofilaments and actin is to blame least some of these linkers. In the case of BPAG1n3, what R866 Current Biology Vol 9 No 22 may come as a surprise to many is that, although it was dis- expected as well; for example, yeast genetics has recently covered in an unconventional manner, this MAP is one of identified coronin, for which homologues are known in the only known microtubule-binding proteins capable of Caenorhabditis elegans, mice and humans, as a potential conferring both drug and temperature stability on micro- cross-linker of actin and microtubule networks [12]. tubule networks in vivo. The two most widely studied Coronin was originally identified as a binding protein neuronal MAPs, tau and MAP2, cannot do this. capable of promoting the assembly and bundling of actin, but the most recent studies have demonstrated micro- Indeed, it should now be painfully obvious to the tubule defects in yeast with mutant, missing or over- microtubule mafia — including the senior author of this expressed coronin [12]. On the basis of what we know, it dispatch — that the method used for 25 years to identify seems safe to predict that these newly discovered proteins neuronal MAPs relied on contorted logic, to say the least. are revealing but the tip of the iceberg. In time, this Despite the long known stability of a large percentage of emerging family of cytoskeletal linkers and stabilizers will neuronal microtubules, all of the early MAPs were identi- certainly grow in number and importance. fied as non-tubulin components of microtubules purified after discarding the cold stable ones! Thus, the widely References expressed neuronal MAPs, such as tau and MAP2, were at 1. Yang Y, Bauer C, Strasser G, Wollmann R, Julien J-P, Fuchs E: Integrators of the cytoskeleton that stabilize microtubules. Cell the outset unlikely to represent the repertoire of impor- 1999, 98:229-238. tant MAPs. Indeed, the early mortality of the BPAG- 2. Andra K, Nikolic B, Stocher M, Drenckhahn D, Wiche G: Not just scaffolding: plectin regulates actin dynamics in cultured cells. deficient mouse shows that removing factors that confer Genes Dev 1998, 12:3442-3451. extreme microtubule stability can have more detrimental 3. Svitkina T, Verkhovsky A, Borisy G: Plectin sidearms mediate effects than eliminating proteins such as tau (the absence interaction of intermediate filaments with microtubules and other
Recommended publications
  • Desmin Interacts Directly with Mitochondria
    International Journal of Molecular Sciences Article Desmin Interacts Directly with Mitochondria Alexander A. Dayal 1, Natalia V. Medvedeva 1, Tatiana M. Nekrasova 1, Sergey D. Duhalin 1, Alexey K. Surin 1,2 and Alexander A. Minin 1,* 1 Institute of Protein Research of Russian Academy of Sciences, Vavilova st., 34, 119334 Moscow, Russia; [email protected] (A.A.D.); [email protected] (N.V.M.); [email protected] (T.M.N.); [email protected] (S.D.D.); [email protected] (A.K.S.) 2 Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected] Received: 14 October 2020; Accepted: 26 October 2020; Published: 30 October 2020 Abstract: Desmin intermediate filaments (IFs) play an important role in maintaining the structural and functional integrity of muscle cells. They connect contractile myofibrils to plasma membrane, nuclei, and mitochondria. Disturbance of their network due to desmin mutations or deficiency leads to an infringement of myofibril organization and to a deterioration of mitochondrial distribution, morphology, and functions. The nature of the interaction of desmin IFs with mitochondria is not clear. To elucidate the possibility that desmin can directly bind to mitochondria, we have undertaken the study of their interaction in vitro. Using desmin mutant Des(Y122L) that forms unit-length filaments (ULFs) but is incapable of forming long filaments and, therefore, could be effectively separated from mitochondria by centrifugation through sucrose gradient, we probed the interaction of recombinant human desmin with mitochondria isolated from rat liver. Our data show that desmin can directly bind to mitochondria, and this binding depends on its N-terminal domain.
    [Show full text]
  • PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility
    1 Supplementary information 2 PSPC1 potentiates IGF1R expression to augment cell 3 adhesion and motility 4 Hsin-Wei Jen1,2 , De-Leung Gu 2, Yaw-Dong Lang 2 and Yuh-Shan Jou 1,2,* 5 1 Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 6 2 Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan 7 * Author to whom correspondence should be addressed 8 Cells 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/cells Cells 2020, 9, x FOR PEER REVIEW 2 of 10 9 10 11 Supplementary Figure S1: Expression of IGF1R and integrin in PSPC1-expressing or PSPC1-depleted 12 HCC cells by Western blotting analysis 13 (A) Detection of IGF1R protein levels in three PSPC1-knockdown cells Huh7, HepG2 and Mahlavu. (B) 14 Detection of selected integrin expression in PSPC1-overexpressing or PSPC1-depleted HCC cells by using 15 their total cell lysates immunoblotted with specific integrin antibodies as shown. 16 17 18 Supplementary Figure S2: PSPC1-modulated IGF1R downstream signaling in HCC cells. Cells 2020, 9, x FOR PEER REVIEW 3 of 10 19 (A, B) Immunoblotting of IGF1R expression in PSPC1-overexpressing SK-Hep1 and PLC5 cells 20 treated with IGF1R shRNAs. (C, D) Cell migration and adhesion were measured in PSPC1- 21 knockdown Hep3B cells rescued with exogenous expression of IGF1R. Exogenous expression of 22 IGF1R in PSPC1-knockdown Hep3B cells were then applied for detection of altered AKT/ERK 23 signaling including (E) total PSPC1, IGF1R, AKT, ERK, p-IGF1R, p-AKT(S473), and 24 p-ERK(T202/Y204) as well as altered FAK/Src signaling including (F) total FAK, Src, p-FAK(Y397) 25 and p-Src(Y416) by immunoblotting assay.
    [Show full text]
  • Human Plectin: Organization of the Gene, Sequence Analysis, and Chromosome Localization (8Q24) CHANG-GONG LIU*, CHRISTIAN MAERCKER*, MARIA J
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 4278-4283, April 1996 Biochemistry Human plectin: Organization of the gene, sequence analysis, and chromosome localization (8q24) CHANG-GONG LIU*, CHRISTIAN MAERCKER*, MARIA J. CASTANONt, RUDOLF HAUPTMANNt, AND GERHARD WICHE* *Institute of Biochemistry and Molecular Cell Biology, University of Vienna-Biocenter, 1030 Vienna, Austria; and tErnst Boehringer Institut, 1121 Vienna, Austria Communicated by Gottfried Schatz, Biozentrum der Universitat Basel, Basel, Switzerland, January 2, 1996 (received for review August 28, 1995) ABSTRACT Plectin, a 500-kDa intermediate filament C-terminal globular domain of the molecule (9). The overex- binding protein, has been proposed to provide mechanical pression of plectin mutant proteins containing this site(s) has strength to cells and tissues by acting as a cross-linking a dramatic dominant negative effect on cells, causing the total element of the cytoskeleton. To set the basis for future studies collapse of cytoplasmic IF networks. Based on the combined on gene regulation, tissue-specific expression, and patholog- information available to date, plectin has been proposed to ical conditions involving this protein, we have cloned the play a key role as a versatile cross-linking element of the human plectin gene, determined its coding sequence, and cytoskeleton. Particularly, because of its strategic localization established its genomic organization. The coding sequence at the cytoskeleton-plasma membrane interface, such as in all contains 32 exons that extend
    [Show full text]
  • Crosstalk Between Mitochondria and Cytoskeleton in Cardiac Cells
    cells Review Crosstalk between Mitochondria and Cytoskeleton in Cardiac Cells Andrey V. Kuznetsov 1,2,*, Sabzali Javadov 3 , Michael Grimm 1, Raimund Margreiter 4, Michael J. Ausserlechner 2 and Judith Hagenbuchner 5,* 1 Cardiac Surgery Research Laboratory, Department of Cardiac Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria; [email protected] 2 Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 3 Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA; [email protected] 4 Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 5 Department of Paediatrics II, Medical University of Innsbruck, 6020 Innsbruck, Austria * Correspondence: [email protected] (A.V.K.); [email protected] (J.H.); Tel.: +43-512-504-27815 (A.V.K.); +43-512-504-81578 (J.H.) Received: 3 December 2019; Accepted: 13 January 2020; Published: 16 January 2020 Abstract: Elucidation of the mitochondrial regulatory mechanisms for the understanding of muscle bioenergetics and the role of mitochondria is a fundamental problem in cellular physiology and pathophysiology. The cytoskeleton (microtubules, intermediate filaments, microfilaments) plays a central role in the maintenance of mitochondrial shape, location, and motility. In addition, numerous interactions between cytoskeletal proteins and mitochondria can actively participate in the regulation of mitochondrial respiration and oxidative phosphorylation. In cardiac and skeletal muscles, mitochondrial positions are tightly fixed, providing their regular arrangement and numerous interactions with other cellular structures such as sarcoplasmic reticulum and cytoskeleton.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D
    ORIGINAL ARTICLE Plakoglobin Is Required for Effective Intermediate Filament Anchorage to Desmosomes Devrim Acehan1, Christopher Petzold1, Iwona Gumper2, David D. Sabatini2, Eliane J. Mu¨ller3, Pamela Cowin2,4 and David L. Stokes1,2,5 Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, b-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength. Journal of Investigative Dermatology (2008) 128, 2665–2675; doi:10.1038/jid.2008.141; published online 22 May 2008 INTRODUCTION dense plaque that is further from the membrane and that Desmosomes are large macromolecular complexes that mediates the binding of intermediate filaments.
    [Show full text]
  • Transiently Structured Head Domains Control Intermediate Filament Assembly
    Transiently structured head domains control intermediate filament assembly Xiaoming Zhoua, Yi Lina,1, Masato Katoa,b,c, Eiichiro Morid, Glen Liszczaka, Lillian Sutherlanda, Vasiliy O. Sysoeva, Dylan T. Murraye, Robert Tyckoc, and Steven L. McKnighta,2 aDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; bInstitute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555 Chiba, Japan; cLaboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520; dDepartment of Future Basic Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan; and eDepartment of Chemistry, University of California, Davis, CA 95616 Contributed by Steven L. McKnight, January 2, 2021 (sent for review October 30, 2020; reviewed by Lynette Cegelski, Tatyana Polenova, and Natasha Snider) Low complexity (LC) head domains 92 and 108 residues in length are, IF head domains might facilitate filament assembly in a manner respectively, required for assembly of neurofilament light (NFL) and analogous to LC domain function by RNA-binding proteins in the desmin intermediate filaments (IFs). As studied in isolation, these IF assembly of RNA granules. head domains interconvert between states of conformational disor- IFs are defined by centrally located α-helical segments 300 to der and labile, β-strand–enriched polymers. Solid-state NMR (ss-NMR) 350 residues in length. These central, α-helical segments are spectroscopic studies of NFL and desmin head domain polymers re- flanked on either end by head and tail domains thought to be veal spectral patterns consistent with structural order.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]
  • Method of Prognosing Cancers Verfahren Zur Prognose Von Krebsarten Procédé De Prognostic Des Cancers
    (19) TZZ Z _T (11) EP 2 295 602 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/574 (2006.01) C12Q 1/68 (2006.01) 11.07.2012 Bulletin 2012/28 (21) Application number: 10178350.4 (22) Date of filing: 26.07.2006 (54) Method of prognosing cancers Verfahren zur Prognose von Krebsarten Procédé de prognostic des cancers (84) Designated Contracting States: • KIHARA C ET AL: "Prediction of sensitivity of AT BE BG CH CY CZ DE DK EE ES FI FR GB GR esophageal tumors to adjuvant chemotherapy by HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI cDNA microarray analysis of gene-expression SK TR profiles", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, (30) Priority: 27.07.2005 US 703263 P BALTIMORE, MD, US, vol. 61, no. 17, September 2001 (2001-09), pages 6474-6479, XP002960719, (43) Date of publication of application: ISSN: 0008-5472 16.03.2011 Bulletin 2011/11 • PORTE H ET AL: "Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in (62) Document number(s) of the earlier application(s) in human esophageal carcinoma: implications for accordance with Art. 76 EPC: prognosis.", CLINICAL CANCER RESEARCH : 06782211.4 / 1 907 582 AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH. JUN (73) Proprietor: Oncotherapy Science, Inc. 1998, vol. 4, no. 6, June 1998 (1998-06), pages Kawasaki-shi 1375-1382, XP002407525, ISSN: 1078-0432 Kanagawa 213-0012 (JP) • "Affimetrix GeneChip Human Genome U133 Array Set HG-U133A", GEO, 11 March 2002 (72) Inventors: (2002-03-11), XP002254749, • Nakamura, Yusuke • WIGLE DENNIS A ET AL: "Molecular profiling of Tokyo 1138654 (JP) non-small cell lung cancer and correlation with • Daigo, Yataro disease-free survival", CANCER RESEARCH, Tokyo 1138654 (JP) AMERICAN ASSOCIATION FOR CANCER • Nakatsuru, Shuichi REREARCH, US, vol.
    [Show full text]
  • Microtubule-Actin Crosslinking Factor 1 and Plakins As Therapeutic Drug Targets
    Tennessee State University Digital Scholarship @ Tennessee State University Biology Faculty Research Department of Biological Sciences 1-26-2018 Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets Quincy A. Quick Tennessee State University Follow this and additional works at: https://digitalscholarship.tnstate.edu/biology_fac Part of the Pharmacology Commons Recommended Citation Quick, Q.A. Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets. Int. J. Mol. Sci. 2018, 19, 368. https://doi.org/10.3390/ijms19020368 This Article is brought to you for free and open access by the Department of Biological Sciences at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Biology Faculty Research by an authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact [email protected]. International Journal of Molecular Sciences Review Microtubule-Actin Crosslinking Factor 1 and Plakins as Therapeutic Drug Targets Quincy A. Quick Department of Biological Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN 37209, USA; [email protected]; Tel.: +1-(615) 963-5768 Received: 11 December 2017; Accepted: 23 January 2018; Published: 26 January 2018 Abstract: Plakins are a family of seven cytoskeletal cross-linker proteins (microtubule-actin crosslinking factor 1 (MACF), bullous pemphigoid antigen (BPAG1) desmoplakin, envoplakin, periplakin, plectin, epiplakin) that network the three major filaments that comprise the cytoskeleton. Plakins have been found to be involved in disorders and diseases of the skin, heart, nervous system, and cancer that are attributed to autoimmune responses and genetic alterations of these macromolecules. Despite their role and involvement across a spectrum of several diseases, there are no current drugs or pharmacological agents that specifically target the members of this protein family.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]