MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test

Total Page:16

File Type:pdf, Size:1020Kb

MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0 ACP2 Lysosomal acid phosphatase precursor IPI00003807 48 kDa 48 49 56 48 26 20 48 52 23 0.0318 0.0145 0.5 0.5 ACPP ACPP protein IPI00289983 48 kDa 85 101 136 143 46 36 93 139 41 0.0038 0.0309 0.3 0.4 ACSL4 Isoform Long of Long-chain-fatty-acid--CoA ligase 4 IPI00029737 79 kDa 1 3 0 1 1 1 2 1 1 0.3863 0.3777 2.1 0.5 ACTG1 Actin, cytoplasmic 2 IPI00021440 42 kDa 126 129 161 112 75 77 127 136 76 0.1338 0.0015 0.6 0.6 ACTN4 Alpha-actinin-4 IPI00013808 105 kDa 20 31 36 29 1 5 26 32 3 0.0191 0.0592 0.1 0.1 ACTR2 Actin-related protein 2 IPI00005159 45 kDa 2 3 0 3 0 0 3 2 0 0.4226 0.0122 0.0 0.0 ACTR3 Actin-related protein 3 IPI00028091 47 kDa 4 2 2 4 0 0 3 3 0 0.0905 0.0727 0.0 0.0 ACVR1B Isoform 1 of Activin receptor type-1B precursor IPI00005732 57 kDa 22 19 15 20 12 13 20 17 12 0.1922 0.0286 0.7 0.6 ACY1 Aminoacylase-1 IPI00009268 46 kDa 22 13 22 19 3 2 17 20 3 0.0112 0.0781 0.1 0.2 ACY3 Aspartoacylase-2 IPI00063025 35 kDa 1 2 4 3 0 0 2 4 0 0.0229 0.0574 0.0 0.0 ADAMTSL2 ADAMTS-like protein 2 precursor IPI00644346 105 kDa 7 9 5 7 0 0 8 6 0 0.0234 0.0122 0.0 0.0 ADH5 Alcohol dehydrogenase class-3 IPI00746777 40 kDa 2 0 3 2 0 1 1 3 1 0.1136 0.6642 0.2 0.4 ADM ADM precursor IPI00017968 20 kDa 2 0 0 0 0 0 1 0 0 - 0.4226 - 0.0 AFM Afamin precursor IPI00019943 69 kDa 36 43 26 27 86 69 39 27 77 0.0275 0.0551 2.9 2.0 AGA N IPI00026259 37 kDa 12 17 3 3 10 6 14 3 8 0.1008 0.1735 2.6 0.6 AGRN Agrin precursor IPI00374563 215 kDa 129 111 50 49 39 62 120 49 50 0.9305 0.0434 1.0 0.4 AGT Angiotensinogen precursor IPI00032220 53 kDa 17 11 28 34 26 16 14 31 21 0.2579 0.3390 0.7 1.5 AHCY Adenosylhomocysteinase IPI00012007 48 kDa 11 10 8 11 1 1 10 10 1 0.0261 0.0018 0.1 0.1 AHSG Alpha-2-HS-glycoprotein precursor IPI00022431 39 kDa 121 115 143 146 224 244 118 144 234 0.0116 0.0075 1.6 2.0 AKR1A1 Alcohol dehydrogenase IPI00220271 37 kDa 14 11 13 21 8 5 13 17 7 0.1347 0.0958 0.4 0.5 AKR1B1 Aldose reductase IPI00413641 36 kDa 13 10 12 11 6 6 12 12 6 0.0076 0.0774 0.5 0.5 AKR1C3 Aldo-keto reductase family 1 member C3 IPI00291483 37 kDa 1 2 1 1 0 0 2 1 0 0.0001 0.0574 0.0 0.0 AKR7A2 Aflatoxin B1 aldehyde reductase member 2 IPI00305978 40 kDa 2 1 2 0 0 0 2 1 0 0.4226 0.1357 0.0 0.0 ALAD delta-aminolevulinic acid dehydratase isoform a IPI00442121 39 kDa 2 3 1 1 0 0 3 1 0 0.0001 0.0122 0.0 0.0 ALB Isoform 1 of Serum albumin precursor IPI00745872 69 kDa 2741 3015 2844 2517 4574 3838 2878 2681 4206 0.0632 0.0775 1.6 1.5 ALDH1A1 Retinal dehydrogenase 1 IPI00218914 55 kDa 8 11 10 18 7 11 10 14 9 0.3930 0.7148 0.6 0.9 ALDH1L1 10-formyltetrahydrofolate dehydrogenase IPI00290553 99 kDa 2 6 0 0 0 0 4 0 0 - 0.1450 - 0.0 ALDH7A1 aldehyde dehydrogenase 7 family, member A1 IPI00221234 58 kDa 5 3 0 0 0 0 4 0 0 - 0.0492 - 0.0 ALDH9A1 aldehyde dehydrogenase 9A1 IPI00479877 56 kDa 2 2 0 4 0 1 2 2 1 0.5478 0.1010 0.3 0.2 ALDOA Fructose-bisphosphate aldolase A IPI00465439 39 kDa 13 14 13 14 4 0 14 14 2 0.0408 0.0365 0.2 0.2 ALDOB Fructose-bisphosphate aldolase B IPI00218407 39 kDa 48 54 36 55 24 19 51 45 22 0.1358 0.0172 0.5 0.4 AMBP AMBP protein precursor IPI00022426 39 kDa 1303 1189 1154 1360 2204 2385 1246 1257 2295 0.0171 0.0103 1.8 1.8 AMICA1 Isoform 2 of Junctional adhesion molecule-like precursorIPI00183703 43 kDa 0 1 0 3 0 0 1 2 0 0.4226 0.4226 0.0 0.0 AMY1A;AMY1B;AMY1C;AMY2A Alpha-amylase 1 precursor IPI00300786 58 kDa 378 404 179 202 162 181 391 190 172 0.3384 0.0056 0.9 0.4 AMY1A;AMY1B;AMY1C;AMY2A Pancreatic alpha-amylase precursorIPI00025476 58 kDa 441 475 188 204 188 203 458 196 196 0.9534 0.0049 1.0 0.4 AMY2B Alpha-amylase 2B precursor IPI00021447 58 kDa 378 406 178 194 157 176 392 186 167 0.2590 0.0056 0.9 0.4 ANG Angiogenin precursor IPI00008554 17 kDa 5 4 4 9 1 0 4 7 1 0.1389 0.0298 0.1 0.1 ANGPTL2 Angiopoietin-related protein 2 precursor IPI00007800 57 kDa 41 39 42 39 9 4 40 41 7 0.0062 0.0052 0.2 0.2 ANPEP Aminopeptidase N IPI00221224 110 kDa 360 373 323 391 275 291 366 357 283 0.1688 0.0151 0.8 0.8 ANTXR1 Isoform 1 of Anthrax toxin receptor 1 precursor IPI00030431 63 kDa 12 10 12 18 7 11 11 15 9 0.2419 0.4172 0.6 0.8 ANXA1 Annexin A1 IPI00218918 39 kDa 6 3 17 19 1 1 4 18 1 0.0026 0.1505 0.1 0.2 ANXA11 Annexin A11 IPI00414320 54 kDa 16 17 29 29 19 20 16 29 20 0.0087 0.0979 0.7 1.2 ANXA2 Annexin A2 IPI00455315 39 kDa 25 16 32 25 22 19 21 28 21 0.1757 0.9889 0.7 1.0 ANXA3 Annexin A3 IPI00024095 36 kDa 4 2 7 2 0 0 3 5 0 0.2179 0.0727 0.0 0.0 ANXA4 annexin IV IPI00793199 36 kDa 8 13 3 4 4 1 11 4 3 0.6479 0.1073 0.7 0.3 ANXA5 Annexin A5 IPI00329801 36 kDa 8 9 2 1 6 1 9 2 3 0.5312 0.1366 2.1 0.4 ANXA6 annexin VI isoform 2 IPI00002459 75 kDa 17 12 2 2 1 0 14 2 1 0.1071 0.0300 0.3 0.0 ANXA7 Isoform 1 of Annexin A7 IPI00002460 53 kDa 5 5 1 9 4 5 5 5 5 0.9484 0.9805 0.9 1.0 AOX1 aldehyde oxidase 1 IPI00872655 148 kDa 14 19 16 20 0 0 17 18 0 0.0112 0.0186 0.0 0.0 APCS Serum amyloid P-component precursor IPI00022391 25 kDa 5 4 4 5 2 3 4 5 3 0.1026 0.1209 0.6 0.6 APEH Acylamino-acid-releasing enzyme IPI00337741 81 kDa 1 4 2 2 0 0 3 2 0 0.0001 0.2046 0.0 0.0 APLP2 Isoform 1 of Amyloid-like protein 2 precursor IPI00031030 87 kDa 16 24 3 2 3 4 20 3 4 0.2551 0.0635 1.4 0.2 APOA1 Apolipoprotein A-I precursor IPI00021841 31 kDa 52 43 58 67 9 3 47 63 6 0.0087 0.0150 0.1 0.1 APOA2 Apolipoprotein A-II precursor IPI00021854 11 kDa 4 14 19 11 8 3 9 15 5 0.1591 0.6154 0.4 0.6 APOA4 Apolipoprotein A-IV precursor IPI00304273 45 kDa 19 19 30 34 4 0 19 32 2 0.0111 0.0166 0.1 0.1 APOD Apolipoprotein D precursor IPI00006662 21 kDa 331 294 383 345 256 253 312 364 255 0.0300 0.0897 0.7 0.8 APOE Apolipoprotein E precursor IPI00021842 36 kDa 56 57 19 28 8 12 57 24 10 0.1069 0.0020 0.4 0.2 APOH Beta-2-glycoprotein 1 precursor IPI00298828 38 kDa 74 58 55 59 81 94 66 57 88 0.0453 0.1726 1.5 1.3 APOM Apolipoprotein M IPI00030739 21 kDa 7 3 1 2 6 1 5 2 3 0.5273 0.6131 2.1 0.6 APP Isoform APP770 of Amyloid beta A4 protein precursor (Fragment)IPI00006608 87 kDa 53 54 24 31 34 31 53 28 33 0.3123 0.0060 1.2 0.6 AQP1 Aquaporin-1 IPI00024689 29 kDa 4 4 3 7 0 0 4 5 0 0.1246 0.0028 0.0 0.0 AQP2 Aquaporin-2 IPI00012818 29 kDa 1 1 2 9 21 18 1 6 20 0.0688 0.0052 3.4 17.8 ARF1 ADP-ribosylation factor 1 IPI00215914 21 kDa 12 8 6 8 3 2 10 7 3 0.0549 0.0728 0.4 0.3 ARF6 ADP-ribosylation factor 6 IPI00215920 20 kDa 4 7 2 4 3 2 5 3 3 0.7609 0.2883 0.9 0.5 ARG1 Isoform 1 of Arginase-1 IPI00291560 35 kDa 0 0 0 3 0 0 0 2 0 0.4226 - 0.0 - ARHGDIA Rho GDP-dissociation inhibitor 1 IPI00003815 23 kDa 2 3 1 2 0 0 3 2 0 0.0905 0.0122 0.0 0.0 ARHGDIB Rho GDP-dissociation inhibitor 2 IPI00003817 23 kDa 0 1 2 1 0 0 1 2 0 0.1004 0.4226 0.0 0.0 ARHGEF10L Isoform 2 of Rho guanine nucleotide exchange IPI00478817factor 10-like protein136 kDa 0 4 0 0 0 0 2 0 0 - 0.4226 - 0.0 ARL8B ADP-ribosylation factor-like protein 8B IPI00018871 22 kDa 1 2 0 1 0 0 2 1 0 0.4226 0.0574 0.0 0.0 ARPC3 Actin-related protein 2/3 complex subunit 3 IPI00005162 21 kDa 4 1 3 5 0 0 2 4 0 0.0528 0.2187 0.0 0.0 ARRDC1 Arrestin domain-containing protein 1 IPI00166858 46 kDa 1 1 0 1 2 2 1 1 2 0.0856 0.0091 4.2 2.0 ARSA Putative uncharacterized protein DKFZp686G12235 IPI00329685 54 kDa 37 37 42 40 15 20 37 41 18 0.0128 0.0165 0.4 0.5 ARSB Arylsulfatase B precursor IPI00306576 60 kDa 2 7 2 4 2 2 5 3 2 0.4446 0.3870 0.7 0.5 ARSF Arylsulfatase F precursor IPI00008405 66 kDa 1 2 0 0 0 0 2 0 0 - 0.0574 - 0.0 ART1 GPI-linked NAD IPI00006067 36 kDa 0 0 2 3 0 0 0 3 0 0.0340 - 0.0 - ART3 Isoform 3 of Ecto-ADP-ribosyltransferase 3 precursor IPI00013682 44 kDa 0 0 0 0 2 0 0 0 1 0.4226 0.4226 - - ASAH1 Acid ceramidase precursor IPI00013698 45 kDa 42 44 33 27 43 30 43 30 36 0.4486 0.4232 1.2 0.8 ASAM Adipocyte adhesion molecule precursor IPI00024929 41 kDa 0 2 2 2 0 0 1 2 0 0.0001 0.4226 0.0 0.0 ASL Argininosuccinate lyase IPI00220267 52 kDa 0 1 2 0 0 0 1 1 0 0.4226 0.4226 0.0 0.0 ASS1 Argininosuccinate synthase IPI00020632 51 kDa 16 16 6 9 0 2 16 8 1 0.0661 0.0055 0.1 0.1 ATP1A1 Isoform Long of Sodium/potassium-transporting ATPaseIPI00006482 subunit alpha-1113 precursorkDa 7 12 0 0 1 2 10 0 2 0.0901 0.0834 - 0.2 ATP1B1 Isoform 1 of Sodium/potassium-transporting
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • CHL1 and Nrcam Are Primarily Expressed in Low Grade Pediatric
    Open Med. 2019; 14: 920-927 Research Article Robin Wachowiak, Steffi Mayer, Anne Suttkus, Illya Martynov, Martin Lacher, Nathaniel Melling, Jakob R. Izbicki, Michael Tachezy CHL1 and NrCAM are primarily expressed in low grade pediatric neuroblastoma https://doi.org/10.1515/med-2019-0109 Keywords: CHL1; NrCAM; Neuroblastoma; Immunohisto- received November 7, 2018; accepted October 19, 2019 chemistry; Tumor markers; Neuropathology Abstract: Background. Neural cell adhesion molecules like close homolog of L1 protein (CHL1) and neuronal glia related cell adhesion molecule (NrCAM) play an impor- tant role in development and regeneration of the central 1 Introduction nervous system. However, they are also associated with Neuroblastoma is an embryonic malignancy deriving cancerogenesis and progression in adult malignancies, from neural crest cells that undergo rapid differentia- thus gain increasing importance in cancer research. We tion during fetal development. As the transition from therefore studied the expression of CHL1 and NrCAM normal to malignant tissue can occur in multiple steps, according to the course of disease in children with neu- its phenotype is highly heterogeneous [1]. Although pro- roblastoma. gress has been made in the treatment of neuroblastoma, Methods. CHL1 and NrCAM expression levels were histo- the outcome of children at high risk remains poor with a logically assessed by tissue microarrays from surgically long-term survival as low as 50 % [2]. Different parameters resected neuroblastoma specimens of 56 children. Expres- such as age, stage and chromosomal aberrations have an sion of both markers was correlated to demographics as impact on prognosis. Still, there is an ongoing need for well as clinical data including metastatic dissemination tumor markers, which allow a better determination of the and survival.
    [Show full text]
  • Epithelial Delamination Is Protective During Pharmaceutical-Induced Enteropathy
    Epithelial delamination is protective during pharmaceutical-induced enteropathy Scott T. Espenschieda, Mark R. Cronana, Molly A. Mattya, Olaf Muellera, Matthew R. Redinbob,c,d, David M. Tobina,e,f, and John F. Rawlsa,e,1 aDepartment of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710; bDepartment of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; cDepartment of Biochemistry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; dDepartment of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599; eDepartment of Medicine, Duke University School of Medicine, Durham, NC 27710; and fDepartment of Immunology, Duke University School of Medicine, Durham, NC 27710 Edited by Dennis L. Kasper, Harvard Medical School, Boston, MA, and approved July 15, 2019 (received for review February 12, 2019) Intestinal epithelial cell (IEC) shedding is a fundamental response to in mediating intestinal responses to injury remains poorly un- intestinal damage, yet underlying mechanisms and functions have derstood for most xenobiotics. been difficult to define. Here we model chronic intestinal damage in Gastrointestinal pathology is common in people using phar- zebrafish larvae using the nonsteroidal antiinflammatory drug maceuticals, including nonsteroidal antiinflammatory drugs (NSAID) Glafenine. Glafenine induced the unfolded protein response (NSAIDs) (11). While gastric ulceration has historically been a (UPR) and inflammatory pathways in IECs, leading to delamination. defining clinical presentation of NSAID-induced enteropathy, Glafenine-induced inflammation was augmented by microbial colo- small intestinal pathology has also been observed, although the nizationandassociatedwithchanges in intestinal and environmental incidence may be underreported due to diagnostic limitations microbiotas.
    [Show full text]
  • Upregulation of NETO2 Gene in Colorectal Cancer Maria S
    Fedorova et al. BMC Genetics 2017, 18(Suppl 1):117 DOI 10.1186/s12863-017-0581-8 RESEARCH Open Access Upregulation of NETO2 gene in colorectal cancer Maria S. Fedorova1†, Anastasiya V. Snezhkina1†, Elena A. Pudova1, Ivan S. Abramov1, Anastasiya V. Lipatova1, Sergey L. Kharitonov1, Asiya F. Sadritdinova1, Kirill M. Nyushko2, Kseniya M. Klimina3, Mikhail M. Belyakov2, Elena N. Slavnova2, Nataliya V. Melnikova1, Maria A. Chernichenko2, Dmitry V. Sidorov2, Marina V. Kiseleva2, Andrey D. Kaprin2, Boris Y. Alekseev2, Alexey A. Dmitriev1 and Anna V. Kudryavtseva1,2* From Belyaev Conference Novosibirsk, Russia. 07-10 August 2017 Abstract Background: Neuropilin and tolloid-like 2 (NETO2) is a single-pass transmembrane protein that has been shown primarily implicated in neuron-specific processes. Upregulation of NETO2 gene was also detected in several cancer types. In colorectal cancer (CRC), it was associated with tumor progression, invasion, and metastasis, and seems to be involved in epithelial-mesenchymal transition (EMT). However, the mechanism of NETO2 action is still poorly understood. Results: We have revealed significant increase in the expression of NETO2 gene and deregulation of eight EMT-related genes in CRC. Four of them were upregulated (TWIST1, SNAIL1, LEF1,andFOXA2); the mRNA levels of other genes (FOXA1, BMP2, BMP5,andSMAD7) were decreased. Expression of NETO2 gene was weakly correlated with that of genes involved in the EMT process. Conclusions: We found considerable NETO2 upregulation, but no significant correlation between the expression of NETO2 and EMT-related genes in CRC. Thus, NETO2 may be involved in CRC progression, but is not directly associated with EMT. Keywords: Colorectal cancer, NETO2, Epithelial-mesenchymal transition, Gene expression, QPCR Background and signaling pathways [3–6].
    [Show full text]
  • Global Analysis of Protein Folding Thermodynamics for Disease State Characterization
    Global Analysis of Protein Folding Thermodynamics for Disease State Characterization and Biomarker Discovery by Jagat Adhikari Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Michael C. Fitzgerald, Supervisor ___________________________ Kenneth Kreuzer ___________________________ Terrence G. Oas ___________________________ Jiyong Hong ___________________________ Seok-Yong Lee Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2015 ABSTRACT Global Analysis of Protein Folding Thermodynamics for Disease State Characterization and Biomarker Discovery by Jagat Adhikari Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Michael C. Fitzgerald, Supervisor ___________________________ Kenneth Kreuzer ___________________________ Terrence G. Oas ___________________________ Jiyong Hong ___________________________ Seok-Yong Lee An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry in the Graduate School of Duke University 2015 Copyright by Jagat Adhikari 2015 Abstract Protein biomarkers can facilitate the diagnosis of many diseases such as cancer and they can be important for the development of effective therapeutic interventions. Current large-scale biomarker discovery and disease state characterization
    [Show full text]
  • Genetic Basis of Simple and Complex Traits with Relevance to Avian Evolution
    Genetic basis of simple and complex traits with relevance to avian evolution Małgorzata Anna Gazda Doctoral Program in Biodiversity, Genetics and Evolution D Faculdade de Ciências da Universidade do Porto 2019 Supervisor Miguel Jorge Pinto Carneiro, Auxiliary Researcher, CIBIO/InBIO, Laboratório Associado, Universidade do Porto Co-supervisor Ricardo Lopes, CIBIO/InBIO Leif Andersson, Uppsala University FCUP Genetic basis of avian traits Nota Previa Na elaboração desta tese, e nos termos do número 2 do Artigo 4º do Regulamento Geral dos Terceiros Ciclos de Estudos da Universidade do Porto e do Artigo 31º do D.L.74/2006, de 24 de Março, com a nova redação introduzida pelo D.L. 230/2009, de 14 de Setembro, foi efetuado o aproveitamento total de um conjunto coerente de trabalhos de investigação já publicados ou submetidos para publicação em revistas internacionais indexadas e com arbitragem científica, os quais integram alguns dos capítulos da presente tese. Tendo em conta que os referidos trabalhos foram realizados com a colaboração de outros autores, o candidato esclarece que, em todos eles, participou ativamente na sua conceção, na obtenção, análise e discussão de resultados, bem como na elaboração da sua forma publicada. Este trabalho foi apoiado pela Fundação para a Ciência e Tecnologia (FCT) através da atribuição de uma bolsa de doutoramento (PD/BD/114042/2015) no âmbito do programa doutoral em Biodiversidade, Genética e Evolução (BIODIV). 2 FCUP Genetic basis of avian traits Acknowledgements Firstly, I would like to thank to my all supervisors Miguel Carneiro, Ricardo Lopes and Leif Andersson, for the demanding task of supervising myself last four years.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Protein Expression Analysis of an in Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets
    Journal of Personalized Medicine Article Protein Expression Analysis of an In Vitro Murine Model of Prostate Cancer Progression: Towards Identification of High-Potential Therapeutic Targets Hisham F. Bahmad 1,2,3 , Wenjing Peng 4, Rui Zhu 4, Farah Ballout 1, Alissar Monzer 1, 1,5 6, , 1, , 4, , Mohamad K. Elajami , Firas Kobeissy * y , Wassim Abou-Kheir * y and Yehia Mechref * y 1 Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; [email protected] (H.F.B.); [email protected] (F.B.); [email protected] (A.M.); [email protected] (M.K.E.) 2 Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 3 Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA 4 Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; [email protected] (W.P.); [email protected] (R.Z.) 5 Department of Internal Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA 6 Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon * Correspondence: [email protected] (F.K.); [email protected] (W.A.-K.); [email protected] (Y.M.); Tel.: +961-1-350000 (ext. 4805) (F.K.); +961-1-350000 (ext. 4778) (W.A.K.); +1-806-834-8246 (Y.M.); Fax: +1-806-742-1289 (Y.M.); 961-1-744464 (W.A.K.) These authors have contributed equally to this work as joint senior authors.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Supplementary Table S1. Prioritization of Candidate FPC Susceptibility Genes by Private Heterozygous Ptvs
    Supplementary Table S1. Prioritization of candidate FPC susceptibility genes by private heterozygous PTVs Number of private Number of private Number FPC patient heterozygous PTVs in heterozygous PTVs in tumors with somatic FPC susceptibility Hereditary cancer Hereditary Gene FPC kindred BCCS samples mutation DNA repair gene Cancer driver gene gene gene pancreatitis gene ATM 19 1 - Yes Yes Yes Yes - SSPO 12 8 1 - - - - - DNAH14 10 3 - - - - - - CD36 9 3 - - - - - - TET2 9 1 - - Yes - - - MUC16 8 14 - - - - - - DNHD1 7 4 1 - - - - - DNMT3A 7 1 - - Yes - - - PKHD1L1 7 9 - - - - - - DNAH3 6 5 - - - - - - MYH7B 6 1 - - - - - - PKD1L2 6 6 - - - - - - POLN 6 2 - Yes - - - - POLQ 6 7 - Yes - - - - RP1L1 6 6 - - - - - - TTN 6 5 4 - - - - - WDR87 6 7 - - - - - - ABCA13 5 3 1 - - - - - ASXL1 5 1 - - Yes - - - BBS10 5 0 - - - - - - BRCA2 5 6 1 Yes Yes Yes Yes - CENPJ 5 1 - - - - - - CEP290 5 5 - - - - - - CYP3A5 5 2 - - - - - - DNAH12 5 6 - - - - - - DNAH6 5 1 1 - - - - - EPPK1 5 4 - - - - - - ESYT3 5 1 - - - - - - FRAS1 5 4 - - - - - - HGC6.3 5 0 - - - - - - IGFN1 5 5 - - - - - - KCP 5 4 - - - - - - LRRC43 5 0 - - - - - - MCTP2 5 1 - - - - - - MPO 5 1 - - - - - - MUC4 5 5 - - - - - - OBSCN 5 8 2 - - - - - PALB2 5 0 - Yes - Yes Yes - SLCO1B3 5 2 - - - - - - SYT15 5 3 - - - - - - XIRP2 5 3 1 - - - - - ZNF266 5 2 - - - - - - ZNF530 5 1 - - - - - - ACACB 4 1 1 - - - - - ALS2CL 4 2 - - - - - - AMER3 4 0 2 - - - - - ANKRD35 4 4 - - - - - - ATP10B 4 1 - - - - - - ATP8B3 4 6 - - - - - - C10orf95 4 0 - - - - - - C2orf88 4 0 - - - - - - C5orf42 4 2 - - - -
    [Show full text]
  • P190a Rhogap Induces CDH1 Expression and Cooperates with E-Cadherin to Activate LATS Kinases and Suppress Tumor Cell Growth
    p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth Ouyang, Hanyue; Luong, Phi; Frödin, Morten; Hansen, Steen H. Published in: Oncogene DOI: 10.1038/s41388-020-1385-2 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Ouyang, H., Luong, P., Frödin, M., & Hansen, S. H. (2020). p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth. Oncogene, 39(33), 5570- 5587. https://doi.org/10.1038/s41388-020-1385-2 Download date: 05. okt.. 2021 Oncogene (2020) 39:5570–5587 https://doi.org/10.1038/s41388-020-1385-2 ARTICLE p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth 1 1 2 1 Hanyue Ouyang ● Phi Luong ● Morten Frödin ● Steen H. Hansen Received: 26 March 2020 / Revised: 9 June 2020 / Accepted: 29 June 2020 / Published online: 8 July 2020 © The Author(s) 2020. This article is published with open access Abstract The ARHGAP35 gene encoding p190A RhoGAP (p190A) is significantly altered by both mutation and allelic deletion in human cancer, but the functional implications of such alterations are not known. Here, we demonstrate for the first time that p190A is a tumor suppressor using a xenograft mouse model with carcinoma cells harboring defined ARHGAP35 alterations. In vitro, restoration of p190A expression in carcinoma cells promotes contact inhibition of proliferation (CIP) through activation of LATS kinases and phosphorylation of the proto-oncogenic transcriptional co-activator YAP.
    [Show full text]