Dermatophytosis Ringworm

Total Page:16

File Type:pdf, Size:1020Kb

Dermatophytosis Ringworm Dermatophytosis Ringworm What is ringworm and what How does ringworm affect How can I protect my animal causes it? my animal? from ringworm? Ringworm is a fungal skin infection After exposure, it takes two to four Ringworm is seen most often in that can affect humans and many weeks before your animal shows animals with a poor or immature animal species. The infection is also clinical signs. There may be areas immune system. Young puppies called dermatophytosis (der-mat-O- where the hair is gone and crusts or or kittens must be kept in an area f-eye-toe-sis) and is caused by many scales may develop on the skin in that is clean to reduce the risk of types of fungi. The disease gets it the affected areas. Often the skin in fungal infections. Infected animals name from the appearance of a “ring” these areas is red and very itchy. An should be treated and separated type rash that develops on the skin appearance of a circle or ring in your from other animals. Any animals of the infected person or animal. The animal’s fur may be seen. This is where with weak immune systems from disease has nothing to do with worms. the term ringworm comes from. other conditions (e.g. cancer, kidney Some of the fungi that cause disease), should be kept away from ringworm are only found on humans Can I get ringworm? any infected animal. and very seldom found in animals. Yes. You may get the infection How can I protect myself Others are found on animals and by direct contact with an infected can be transferred to humans from animal or from an infected person. from ringworm? the animals. There are also some The most common symptom is The best way to protect yourself ringworm fungi found in the soil, and itchiness and the spots are generally from ringworm is to use good hygiene under the right conditions, may affect inflamed at the edge with redness, habits. Wash your hands frequently, either humans or animals. scaling, and occasionally blistering. especially after contact with any animal. Clean and disinfect areas What animals get Who should I contact, if I where your animal lives as well as any ringworm? suspect ringworm? equipment used for the animal. Dilute In Animals – Contact your Many species of animals can get chlorine bleach (1:10) may be used. veterinarian immediately. ringworm, including dogs, cats, cattle, If your animal becomes infected, In Humans – Contact your sheep, goats, pigs, rodents, rabbits wear gloves and protective clothing physician immediately. and birds. when contacting or treating the infected animal. Wash thoroughly How can my animal get after contact. Vacuuming also helps. If ringworm? you have a weak immune system stay The fungi that cause ringworm live away from any known infected animal as infective spores in the environment. or person. Direct contact to these spores leads to the disease. These spores may be For More Information on the hair of an infected animal or CFSPH Technical Fact Sheets. Dermatophytes even on items used on the animals at http://www.cfsph.iastate.edu/ like brushes or clippers. Your animal DiseaseInfo/ could also pick up these fungi by CDC website. Ringworm at http://www.cdc. direct contact with the soil. Ringworm gov/fungal/dermatophytes/ is a fungal skin disease that can affect many animal species and humans. Photo shows ringworm skin lesion on arm of cat and its owner. © 2013.
Recommended publications
  • Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
    Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • The Polyp and the Medusa Life on the Move
    The Polyp and the Medusa Life on the Move Millions of years ago, unlikely pioneers sparked a revolution. Cnidarians set animal life in motion. So much of what we take for granted today began with Cnidarians. FROM SHAPE OF LIFE The Polyp and the Medusa Life on the Move Take a moment to follow these instructions: Raise your right hand in front of your eyes. Make a fist. Make the peace sign with your first and second fingers. Make a fist again. Open your hand. Read the next paragraph. What you just did was exhibit a trait we associate with all animals, a trait called, quite simply, movement. And not only did you just move your hand, but you moved it after passing the idea of movement through your brain and nerve cells to command the muscles in your hand to obey. To do this, your body needs muscles to move and nerves to transmit and coordinate movement, whether voluntary or involuntary. The bit of business involved in making fists and peace signs is pretty complex behavior, but it pales by comparison with the suites of thought and movement associated with throwing a curve ball, walking, swimming, dancing, breathing, landing an airplane, running down prey, or fleeing a predator. But whether by thought or instinct, you and all animals except sponges have the ability to move and to carry out complex sequences of movement called behavior. In fact, movement is such a basic part of being an animal that we tend to define animalness as having the ability to move and behave.
    [Show full text]
  • Eukaryote Cell Biology - Michelle Gehringer
    FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer EUKARYOTE CELL BIOLOGY Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: cell theory, cell diversity, eukaryote cell structure, nucleus, chromatin, DNA, organelles, mitochondria, chloroplasts, transcription, RNA, translation, ribosomes, cell cycle, interphase, mitosis, meiosis, signal transduction, growth regulation, cancer, oncogenesis. Contents 1. Introduction 1.1. The first cell 2. Origin of Eukaryotes 3. Cellular differentiation in multicellular organisms 3.1. Plants 3.2. Animals 4. Eukaryotic cell structure 5. Organization of eukaryotic cells 5.1. Plasma membrane 5.2. Extracellular matrices 5.3. Protein synthesis and transport 5.4. Cytoskeleton and movement 5.5. Nucleus 5.5.1 Genomes 5.5.2 Gene expression 5.5.3 Maintaining the genome 5.6. Organelles 6. The cell cycle 6.1. Mitosis 6.2. Meiosis 7. Regulation of cell growth 7.1. Signal transduction 7.2. Programmed cell death 7.3. CancerUNESCO – EOLSS 8. Experimental Models 8.1. Yeast SAMPLE CHAPTERS 8.2. Arabidopsis 8.3. Drosophila 8.4. The mouse 8.5. Cell culture 8.6. Separation of cellular contents 8.7. Tracing biochemical pathways 9. Future Investigations Glossary Bibliography ©Encyclopedia of Life Support Systems (EOLSS) FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer Biographical Sketch Summary Cells form the basic unit of life on our planet. They are well organized systems which perform all the essential tasks of eating, respiring, replicating and excreting waste products. The first cells, which are thought to have evolved about 3.8 billion years ago, much resembled present day prokaryotes.
    [Show full text]
  • Managing Athlete's Foot
    South African Family Practice 2018; 60(5):37-41 S Afr Fam Pract Open Access article distributed under the terms of the ISSN 2078-6190 EISSN 2078-6204 Creative Commons License [CC BY-NC-ND 4.0] © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0 REVIEW Managing athlete’s foot Nkatoko Freddy Makola,1 Nicholus Malesela Magongwa,1 Boikgantsho Matsaung,1 Gustav Schellack,2 Natalie Schellack3 1 Academic interns, School of Pharmacy, Sefako Makgatho Health Sciences University 2 Clinical research professional, pharmaceutical industry 3 Professor, School of Pharmacy, Sefako Makgatho Health Sciences University *Corresponding author, email: [email protected] Abstract This article is aimed at providing a succinct overview of the condition tinea pedis, commonly referred to as athlete’s foot. Tinea pedis is a very common fungal infection that affects a significantly large number of people globally. The presentation of tinea pedis can vary based on the different clinical forms of the condition. The symptoms of tinea pedis may range from asymptomatic, to mild- to-severe forms of pain, itchiness, difficulty walking and other debilitating symptoms. There is a range of precautionary measures available to prevent infection, and both oral and topical drugs can be used for treating tinea pedis. This article briefly highlights what athlete’s foot is, the different causes and how they present, the prevalence of the condition, the variety of diagnostic methods available, and the pharmacological and non-pharmacological management of the
    [Show full text]
  • Learning List 1. Eukaryotic Cells (Plant and Animal Cells) Have a Cell Membrane, Cytoplasm and Genetic Material Enclosed in a Nucleus
    Learning List 1. Eukaryotic cells (plant and animal cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 2. Prokaryotic cells contain cytoplasm, cell membrane and a cell wall. The genetic material is not in a nucleus but a single loop. 3. Prokaryotic cells can contain plasmids. 4. Prokaryotic cells are much smaller than eukaryotic cells. 5. Animal cells contain nucleus, cytoplasm, cell membrane, mitochondria and ribosomes. 6. Plant cells also contain chloroplasts, a vacuole and a cell wall. 7. Plant cell walls are made of cellulose. 8. Most animal cells differentiate at an early stage (become specialised) 9. Most plant cells retain the ability to differentiate throughout their life. 10. Cells can be specialised to carry out a particular function e.g. sperm cells, nerve cells, muscle cells, root hair cells, xylem and phloem cells. Cells All living things are made of ________________. Cells can either be ____________________ or ________________________. Plants and animal cells are _________________________. Label the diagram of a plant and animal cell. Compare the structure of a plant and animal cell Bacteria are _______________________ cells. Label the diagram of a bacterial cell. Complete the Venn Diagram to compare eukaryotic and prokaryotic cells Eukaryotic Prokaryotic Function of cell organelles Learning List – Microscopes 1. Light microscopes use light and lenses to form an image of a specimen. 2. Light microscopes are used to se nuclei, chloroplasts, cell wall, cell membrane and mitochondria. Electron microscopes use electrons to form an image. 3. Stains are used to make the specimen visible. 4. Electron microscopes have a higher magnification.
    [Show full text]
  • Animal Models of Fungal Infection: Critical Systems in Development Of
    Animal Models of Fungal Infection Critical Systems in Development of New Antifungal Agents Thomas J. Walsh, MD, PhD (hon), FAAM, FIDSA, FECMM, FAAAS Founding Director, Transplantation-Oncology Infectious Diseases Program Chief, Infectious Diseases Translational Research Laboratory Professor of Medicine, Pediatrics, and Microbiology & Immunology Weill Cornell Medical Center of Cornell University Attending Physician, New York Presbyterian Hospital and Hospital for Special Surgery Adjunct Professor of Medicine, University of Maryland School of Medicine Adjunct Professor of Pathology, The Johns Hopkins University School of Medicine Disclosures/Disclaimers • Disclosures: Dr. Walsh has received grants for experimental and clinical antimicrobial pharmacology and therapeutics to his institution from Allergan, Amplyx, Astellas, Lediant, Medicines Company, Merck, Scynexis, Tetraphase, and Viosera and has served as consultant to Amplyx, Astellas, Allergan, ContraFect, Gilead, Lediant, Medicines Company, Merck, Methylgene, Pfizer, and Scynexis • Disclaimers: The views expressed in this talk represent my opinions and do not necessarily represent the views of Weill Cornell Medicine or those of the FDA. Background • Animal model systems are a critical component of the process of discovery and development of new antifungal agents for treatment and prevention of invasive fungal diseases (IFDs). • Models of IFDs in murine, rat, guinea pigs, and rabbits have been developed and studied for development of new systemic antifungal agents. • We will review the conceptual, scientific, and regulatory framework for utilizing these models, cite specific examples of their application, and discuss their predictability for clinical trials. Objectives • Review role of laboratory animal model systems in development of new antifungal agents. • Assess the predictability of these models for predicting outcome in clinical trials.
    [Show full text]
  • Detection of Histoplasma DNA from Tissue Blocks by a Specific
    Journal of Fungi Article Detection of Histoplasma DNA from Tissue Blocks by a Specific and a Broad-Range Real-Time PCR: Tools to Elucidate the Epidemiology of Histoplasmosis Dunja Wilmes 1,*, Ilka McCormick-Smith 1, Charlotte Lempp 2 , Ursula Mayer 2 , Arik Bernard Schulze 3 , Dirk Theegarten 4, Sylvia Hartmann 5 and Volker Rickerts 1 1 Reference Laboratory for Cryptococcosis and Uncommon Invasive Fungal Infections, Division for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, 13353 Berlin, Germany; [email protected] (I.M.-S.); [email protected] (V.R.) 2 Vet Med Labor GmbH, Division of IDEXX Laboratories, 71636 Ludwigsburg, Germany; [email protected] (C.L.); [email protected] (U.M.) 3 Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany; [email protected] 4 Institute of Pathology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; [email protected] 5 Senckenberg Institute for Pathology, Johann Wolfgang Goethe University Frankfurt, 60323 Frankfurt am Main, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-30-187-542-862 Received: 10 November 2020; Accepted: 25 November 2020; Published: 27 November 2020 Abstract: Lack of sensitive diagnostic tests impairs the understanding of the epidemiology of histoplasmosis, a disease whose burden is estimated to be largely underrated. Broad-range PCRs have been applied to identify fungal agents from pathology blocks, but sensitivity is variable. In this study, we compared the results of a specific Histoplasma qPCR (H. qPCR) with the results of a broad-range qPCR (28S qPCR) on formalin-fixed, paraffin-embedded (FFPE) tissue specimens from patients with proven fungal infections (n = 67), histologically suggestive of histoplasmosis (n = 36) and other mycoses (n = 31).
    [Show full text]
  • Therapies for Common Cutaneous Fungal Infections
    MedicineToday 2014; 15(6): 35-47 PEER REVIEWED FEATURE 2 CPD POINTS Therapies for common cutaneous fungal infections KENG-EE THAI MB BS(Hons), BMedSci(Hons), FACD Key points A practical approach to the diagnosis and treatment of common fungal • Fungal infection should infections of the skin and hair is provided. Topical antifungal therapies always be in the differential are effective and usually used as first-line therapy, with oral antifungals diagnosis of any scaly rash. being saved for recalcitrant infections. Treatment should be for several • Topical antifungal agents are typically adequate treatment weeks at least. for simple tinea. • Oral antifungal therapy may inea and yeast infections are among the dermatophytoses (tinea) and yeast infections be required for extensive most common diagnoses found in general and their differential diagnoses and treatments disease, fungal folliculitis and practice and dermatology. Although are then discussed (Table). tinea involving the face, hair- antifungal therapies are effective in these bearing areas, palms and T infections, an accurate diagnosis is required to ANTIFUNGAL THERAPIES soles. avoid misuse of these or other topical agents. Topical antifungal preparations are the most • Tinea should be suspected if Furthermore, subsequent active prevention is commonly prescribed agents for dermatomy- there is unilateral hand just as important as the initial treatment of the coses, with systemic agents being used for dermatitis and rash on both fungal infection. complex, widespread tinea or when topical agents feet – ‘one hand and two feet’ This article provides a practical approach fail for tinea or yeast infections. The pharmacol- involvement. to antifungal therapy for common fungal infec- ogy of the systemic agents is discussed first here.
    [Show full text]
  • Application to Add Itraconazole and Voriconazole to the Essential List of Medicines for Treatment of Fungal Diseases – Support Document
    Application to add itraconazole and voriconazole to the essential list of medicines for treatment of fungal diseases – Support document 1 | Page Contents Page number Summary 3 Centre details supporting the application 3 Information supporting the public health relevance and review of 4 benefits References 7 2 | Page 1. Summary statement of the proposal for inclusion, change or deletion As a growing trend of invasive fungal infections has been noticed worldwide, available few antifungal drugs requires to be used optimally. Invasive aspergillosis, systemic candidiasis, chronic pulmonary aspergillosis, fungal rhinosinusitis, allergic bronchopulmonary aspergillosis, phaeohyphomycosis, histoplasmosis, sporotrichosis, chromoblastomycosis, and relapsed cases of dermatophytosis are few important concern of southeast Asian regional area. Considering the high burden of fungal diseases in Asian countries and its associated high morbidity and mortality (often exceeding 50%), we support the application of including major antifungal drugs against filamentous fungi, itraconazole and voriconazole in the list of WHO Essential Medicines (both available in oral formulation). The inclusion of these oral effective antifungal drugs in the essential list of medicines (EML) would help in increased availability of these agents in this part of the world and better prompt management of patients thereby reducing mortality. The widespread availability of these drugs would also stimulate more research to facilitate the development of better combination therapies.
    [Show full text]
  • Description of the Eukaryotic Animal Cell by Kayla Underwood General
    Description of the Eukaryotic Animal Cell By Kayla Underwood General Description The animal cell is the basic unit of life in the animal body. Cells are the building blocks of more complicated structures and they are specialized to carry out specialized functions. Cells are highly organized structures and in order to be successful in carrying out its functions they must be able to separate its contents from the external environment. Eukaryotic cell size is limited and it ranges from ten to one-hundred micrometers in diameter. The eukaryotic animal cell has a plasma membrane that surrounds the cell along with internal structures that are referred to as organelles. Organelles are specialized to carry out specific functions such as converting energy to usable forms, synthesizing compounds, and manufacturing structures that are essential to function and reproduction. Major Structures As figure 1 indicates, the major structures of the eukaryotic animal cell are the plasma membrane, the Golgi complex, the nucleus, which contains the nucleolus, a nuclear envelope, and nuclear pores, the endoplasmic reticulum (rough and smooth), lysosomes, mitochondria, peroxizomes, microfilaments, microtubules, cilia, and the centrioles. Each structure is described below. Figure 1: Anatomy of the Animal Cell Source: © 1995-2005 by Michael W. Davidson and the Florida State University. Retrieved May 4, 2005 from http://micro.magnet.fsu.edu/cells/animalcell.html Plasma Membrane A structure that surrounds all cells with the function of separating the cells contents from the outside environment. The plasma membrane serves as a selective barrier in that it only allows certain exchanges to take place between the internal area of the cell and the outside environment.
    [Show full text]
  • The Secrets of Fossils Lesson by Tucker Hirsch
    The Secrets of Fossils Lesson by Tucker Hirsch Video Titles: Introduction: A New view of the Evolution of Animals Cambrian Explosion Jenny Clack, Paleontologist: The First Vertebrate Walks on Land Des Collins, Paleontologist: The Burgess Shale Activity Subject: Assessing evolutionary links NEXT GENERATION SCIENCE STANDARDS and evidence from comparative analysis of the fossil MS-LS4-1 Analyze and interpret data for patterns record and modern day organisms. in the fossil record that document the existence, diversity, extinction, and change of life forms Grade Level: 6 – 8 grades throughout the history of life on Earth under the Introduction assumptions that natural laws operate today as In this lesson students make connections between in the past. [Clarification Statement: Emphasis fossils and modern day organisms. Using the is on finding patterns of changes in the level of information about the Cambrian Explosion, they complexity of anatomical structures in organisms explore theories about how and why organisms diversified. Students hypothesize what evidence and the chronological order of fossil appearance might be helpful to connect fossil organisms to in the rock layers.] [Assessment Boundary: modern organisms to show evolutionary connections. Assessment does not include the names of Students use three videos from shapeoflife.org. individual species or geological eras in the fossil record.] Assessments Written MS-LS4-2 Apply scientific ideas to construct an Time 100-120 minutes (2 class periods) explanation for the anatomical similarities and Group Size Varies; single student, student pairs, differences among modern organisms and between entire class modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis Materials and Preparation is on explanations of the evolutionary relationships • Access to the Internet to watch 4 Shape of Life videos among organisms in terms of similarity or • Video Worksheet differences of the gross appearance of anatomical • “Ancient-Modern” Activity.
    [Show full text]