The Secrets of Fossils Lesson by Tucker Hirsch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Early Tetrapod World; Laying the Foundations of the Modern Vertebrate Fauna
The Early Tetrapod World; laying the foundations of the modern vertebrate fauna. A one-day conference celebrating the career of Prof Jenny Clack FRS. 10.00 Welcome Head of Department of Zoology Session 1 Chair Per Ahlberg 10.10 Tim Smithson et al. Traquair’s lungfish from Loanhead: dipnoan diversity and tooth plate growth in the late Mississippian. 10.30 Mike Coates Same old fish: new name, new fins. 10.50 Zerina Johanson et al. Ontogenetic development of the otic region in the new model animal Leucoraja. 11.10 Coffee Session 2 Chair Tim Smithson 11.30 John Marshall Palynology – sometimes little things make a big difference. 11.50 Dave Millward Palaeogeography during Romer’s Gap and its potential influence on tetrapod terrestrialisation. 12.10 Sarah Davies et al. Early Carboniferous palaeoenvironments: uncovering the landscapes of Romer’s Gap. 12.30 Henning Blom New data from the late Devonian of East Greenland. 12.50 Lunch Session 3 Chair Marcello Ruta 2.00 Per Ahlberg New data, new insights and new problems: some thoughts about the origin of tetrapods. 2.20 Jason Anderson et al. Enigmatic tetrapod from Five Points, Ohio (Upper Carboniferous) further supports late survivorship of stem tetrapod lineages. 2.40 Angela Milner Keraterpeton, the earliest horned nectridean revisited. 3.10 Andrew Milner Two primitive trematopid amphibians from the Carboniferous of the Czech Republic 3.30 Tea Session 4 Chair 3.50 Nick Fraser et al. Restoring the flat-pack skull of the Triassic protorosaur Tanystropheus. 4.10 Sophie Sanchez The life history traits of stem tetrapods 4.30 Eva Herbst et al. -
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy. -
Fossil Invertebrates of the Phanerozoic
The Origin of Phyla and the Cambrian Explosion of Life Geology 230 Fossils and Evolution Cambrian Life • The first animals evolved about 60 my before the start of the Cambrian. These are the Ediacaran fossils of the latest Proterozoic. • None of these animals had hard parts. • Base of the Cambrian defined by first animals with hard parts. Life at the end of the Proterozoic Life at the end of the Proterozoic Cambrian Life • Early Cambrian fossils consist mostly of small little shells that are later followed by trilobites and brachiopods. Small little shells: sclerites on soft-bodied animals Cambrian trilobites cruising on Saturday night Typical Cambrian trilobites Modern horseshoe crabs look similar to trilobites, but they are not closely related. Example of a “living fossil.” Trilobites are extinct. A living Inarticulate Brachiopod. Very common in the Cambrian. Modern Inarticulate Brachiopods in their burrows Modern Inarticulate Brachiopods for dinner The Cambrian “Explosion” of Life • What is the Cambrian “Explosion”? • Is it a true explosion of phyla, or was there a “slow fuse” back into the Proterozoic? • Why did so many new phyla appear at this time? Hox genes hold the answer. • Why have no new phyla appeared since this time? MicroRNA holds the answer. The Tree of Life www.evogeneao.com/tree.html Cambrian Explosion, radiation of triploblasts (3 tissue layers) Diploblasts (2 tissue layers) Diploblastic Animals: Triploblastic Animals: Two Tissue Layers Three Tissue Layers Mesoderm in blue (jelly) Deuterostomes (mouth is second opening during development) Protostomes (mouth is first opening during development) Ecdysozoa Lophotrochozoa Protostomes (mouth is first opening during development) Deuterostomes (mouth is second opening during development) Prothero, 2007 Prothero, 2007 Hox genes determine the head to tail anatomy of animals. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
June 2, 2016 TO
June 2, 2016 TO: Members of the Board of Regents Designated Representatives to the Board of Regents FROM: Joan Goldblatt, Secretary of the Board of Regents RE: Schedule of Meetings THURSDAY, JUNE 9, 2016 8:30 to 10:05 a.m. Petersen Room ACADEMIC AND STUDENT AFFAIRS Allen Library COMMITTEE: Regents Rice (Chair), Kritzer, Riojas, Simon *10:20 to 11:20 a.m. Petersen Room FINANCE AND ASSET MANAGEMENT Allen Library COMMITTEE: Regents Jaech (Chair), Ayer, Benoliel, Blake, Harrell 11:45 a.m. Petersen Room REGULAR MEETING OF BOARD OF Allen Library REGENTS: Regents Shanahan (Chair), Ayer, Benoliel, Blake, Harrell, Jaech, Kritzer, Rice, Riojas, Simon *or upon conclusion of the previous session. Unless otherwise indicated, committee meetings of the Board of Regents will run consecutively; starting times following the first committee are estimates only. If a session ends earlier than expected, the next scheduled session may convene immediately. Committee meetings may be attended by all members of the Board of Regents and all members may participate. To request disability accommodation, contact the Disability Services Office at: 206.543.6450 (voice), 206.543.6452 (TTY), 206.685.7264 (fax), or email at [email protected]. The University of Washington makes every effort to honor disability accommodation requests. Requests can be responded to most effectively if received as far in advance of the event as possible. 1.1/206-16 6/9/16 UNIVERSITY OF WASHINGTON BOARD OF REGENTS Academic and Student Affairs Committee Regents Rice (Chair), Kritzer, Riojas, Simon June 9, 2016 8:30 to 10:05 a.m. Petersen Room, Allen Library Approval of Minutes of Committee Meeting on May 12, 2016 COMMITTEE ACTION 1. -
The Polyp and the Medusa Life on the Move
The Polyp and the Medusa Life on the Move Millions of years ago, unlikely pioneers sparked a revolution. Cnidarians set animal life in motion. So much of what we take for granted today began with Cnidarians. FROM SHAPE OF LIFE The Polyp and the Medusa Life on the Move Take a moment to follow these instructions: Raise your right hand in front of your eyes. Make a fist. Make the peace sign with your first and second fingers. Make a fist again. Open your hand. Read the next paragraph. What you just did was exhibit a trait we associate with all animals, a trait called, quite simply, movement. And not only did you just move your hand, but you moved it after passing the idea of movement through your brain and nerve cells to command the muscles in your hand to obey. To do this, your body needs muscles to move and nerves to transmit and coordinate movement, whether voluntary or involuntary. The bit of business involved in making fists and peace signs is pretty complex behavior, but it pales by comparison with the suites of thought and movement associated with throwing a curve ball, walking, swimming, dancing, breathing, landing an airplane, running down prey, or fleeing a predator. But whether by thought or instinct, you and all animals except sponges have the ability to move and to carry out complex sequences of movement called behavior. In fact, movement is such a basic part of being an animal that we tend to define animalness as having the ability to move and behave. -
Curious Creatures Using Fossil and Modern Evidence to Work out the Lifestyles of Extinct Animals
Earthlearningidea http://www.earthlearningidea.com Curious creatures Using fossil and modern evidence to work out the lifestyles of extinct animals Try comparing the features of animals today with • Of what animal(s) alive today does it remind you? those of fossils - can you predict the lifestyles of the • How did the animal move? (swim, crawl, float, extinct animals? wriggle, hop). • How did it catch its food? (predators often have Divide the pupils into groups. Give each group a copy grasping limbs for catching prey. Not all animals of the diagrams of animals shown below and a copy are herbivores or carnivores; some are filter of the reconstruction of life on page 3. Tell the pupils feeders (like mussels) or deposit feeders (like that all of these creatures lived in the sea about 515 worms). million years ago before there were any plants or • Could it see? (predators often have large eyes for animals on land. hunting). (Further background information is given for teachers • Is there evidence of other organs that could sense on page 2). the environment around? (feelers). • Look at the diagram on page 3. Where do you For each of the five animals shown in the diagram, think it lived? (swimming around, on the seabed, ask the pupils to answer the following questions and burrowing, on another animal or plant). to list the evidence they have used:- • Can you deduce anything else about the lifestyles of these five animals? Images reproduced with kind permission of The Burgess Shale Geoscience Foundation http://www.burgess-shale.bc.ca ……………………………………………………………………………………………………………………………………. The back up: Title: Curious creatures Time needed to complete activity: 20 minutes Subtitle: Using fossil and modern evidence to work Pupil learning outcomes: Pupils can: out the lifestyles of extinct animals • relate characteristics of marine animals today to similar characteristics shown by fossil evidence Topic: A snapshot of the history of life on Earth from long-extinct creatures; • realise that there are no right answers to this Age range of pupils: 10 - 18 years activity. -
Eukaryote Cell Biology - Michelle Gehringer
FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer EUKARYOTE CELL BIOLOGY Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: cell theory, cell diversity, eukaryote cell structure, nucleus, chromatin, DNA, organelles, mitochondria, chloroplasts, transcription, RNA, translation, ribosomes, cell cycle, interphase, mitosis, meiosis, signal transduction, growth regulation, cancer, oncogenesis. Contents 1. Introduction 1.1. The first cell 2. Origin of Eukaryotes 3. Cellular differentiation in multicellular organisms 3.1. Plants 3.2. Animals 4. Eukaryotic cell structure 5. Organization of eukaryotic cells 5.1. Plasma membrane 5.2. Extracellular matrices 5.3. Protein synthesis and transport 5.4. Cytoskeleton and movement 5.5. Nucleus 5.5.1 Genomes 5.5.2 Gene expression 5.5.3 Maintaining the genome 5.6. Organelles 6. The cell cycle 6.1. Mitosis 6.2. Meiosis 7. Regulation of cell growth 7.1. Signal transduction 7.2. Programmed cell death 7.3. CancerUNESCO – EOLSS 8. Experimental Models 8.1. Yeast SAMPLE CHAPTERS 8.2. Arabidopsis 8.3. Drosophila 8.4. The mouse 8.5. Cell culture 8.6. Separation of cellular contents 8.7. Tracing biochemical pathways 9. Future Investigations Glossary Bibliography ©Encyclopedia of Life Support Systems (EOLSS) FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer Biographical Sketch Summary Cells form the basic unit of life on our planet. They are well organized systems which perform all the essential tasks of eating, respiring, replicating and excreting waste products. The first cells, which are thought to have evolved about 3.8 billion years ago, much resembled present day prokaryotes. -
The Cambrian Explosion: a Big Bang in the Evolution of Animals
The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today. -
Early Tetrapod Relationships Revisited
Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria -
The Origin and Evolution of Arthropods Graham E
INSIGHT REVIEW NATURE|Vol 457|12 February 2009|doi:10.1038/nature07890 The origin and evolution of arthropods Graham E. Budd1 & Maximilian J. Telford2 The past two decades have witnessed profound changes in our understanding of the evolution of arthropods. Many of these insights derive from the adoption of molecular methods by systematists and developmental biologists, prompting a radical reordering of the relationships among extant arthropod classes and their closest non-arthropod relatives, and shedding light on the developmental basis for the origins of key characteristics. A complementary source of data is the discovery of fossils from several spectacular Cambrian faunas. These fossils form well-characterized groupings, making the broad pattern of Cambrian arthropod systematics increasingly consensual. The arthropods are one of the most familiar and ubiquitous of all ani- Arthropods are monophyletic mal groups. They have far more species than any other phylum, yet Arthropods encompass a great diversity of animal taxa known from the living species are merely the surviving branches of a much greater the Cambrian to the present day. The four living groups — myriapods, diversity of extinct forms. One group of crustacean arthropods, the chelicerates, insects and crustaceans — are known collectively as the barnacles, was studied extensively by Charles Darwin. But the origins Euarthropoda. They are united by a set of distinctive features, most and the evolution of arthropods in general, embedded in what is now notably the clear segmentation of their bodies, a sclerotized cuticle and known as the Cambrian explosion, were a source of considerable con- jointed appendages. Even so, their great diversity has led to consider- cern to him, and he devoted a substantial and anxious section of On able debate over whether they had single (monophyletic) or multiple the Origin of Species1 to discussing this subject: “For instance, I cannot (polyphyletic) origins from a soft-bodied, legless ancestor. -
Biology of Chordates Video Guide
Branches on the Tree of Life DVD – CHORDATES Written and photographed by David Denning and Bruce Russell ©2005, BioMEDIA ASSOCIATES (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE DVD PROGRAM) .. .. To many students, the phylum Chordata doesn’t seem to make much sense. It contains such apparently disparate animals as tunicates (sea squirts), lancelets, fish and humans. This program explores the evolution, structure and classification of chordates with the main goal to clarify the unity of Phylum Chordata. All chordates possess four characteristics that define the phylum, although in most species, these characteristics can only be seen during a relatively small portion of the life cycle (and this is often an embryonic or larval stage, when the animal is difficult to observe). These defining characteristics are: the notochord (dorsal stiffening rod), a hollow dorsal nerve cord; pharyngeal gills; and a post anal tail that includes the notochord and nerve cord. Subphylum Urochordata The most primitive chordates are the tunicates or sea squirts, and closely related groups such as the larvaceans (Appendicularians). In tunicates, the chordate characteristics can be observed only by examining the entire life cycle. The adult feeds using a ‘pharyngeal basket’, a type of pharyngeal gill formed into a mesh-like basket. Cilia on the gill draw water into the mouth, through the basket mesh and out the excurrent siphon. Tunicates have an unusual heart which pumps by ‘wringing out’. It also reverses direction periodically. Tunicates are usually hermaphroditic, often casting eggs and sperm directly into the sea. After fertilization, the zygote develops into a ‘tadpole larva’. This swimming larva shows the remaining three chordate characters - notochord, dorsal nerve cord and post-anal tail.