Mycologic Disorders of the Skin Catherine A

Total Page:16

File Type:pdf, Size:1020Kb

Mycologic Disorders of the Skin Catherine A Mycologic Disorders of the Skin Catherine A. Outerbridge, DVM, MVSc, DACVIM, DACVD Cutaneous tissue can become infected when fungal organisms contaminate or colonize the epidermal surface or hair follicles. The skin can be a portal of entry for fungal infection when the epithelial barrier is breached or it can be a site for disseminated, systemic fungal disease. The two most common cutaneous fungal infections in small animals are dermato- phytosis and Malassezia dermatitis. Dermatophytosis is a superficial cutaneous infection with one or more of the fungal species in the keratinophilic genera Microsporum, Tricho- phyton,orEpidermophyton. Malassezia pachydermatis is a nonlipid dependent fungal species that is a normal commensal inhabitant of the skin and external ear canal in dogs and cats. Malassezia pachydermatis is the most common cause of Malassezia dermatitis. The diagnosis and treatment of these cutaneous fungal infections will be discussed. Clin Tech Small Anim Pract 21:128-134 © 2006 Elsevier Inc. All rights reserved. KEYWORDS dermatophytosis, Malassezia dermatitis, dogs, cats, Microsporum, Trichophyton, Malassezia pachydermatis ver 300 species of fungi have been reported toDermatophytosis be animal O pathogens.1 Cutaneous tissue can become infected when fungal organisms contaminate or colonize the epider- Etiology mal surface or hair follicles. The skin can be a portal of entry Dermatophytosis is a superficial cutaneous infection with for fungal infection when the epithelial barrier is breached or one or more of the fungal species in the keratinophilic genera it can be a site for disseminated, systemic fungal disease. Microsporum, Trichophyton,orEpidermophyton. Dermato- Canine and feline skin and hair coats can be transiently con- phyte genera that infect animals are divided into 3 or 4 taminated with a large variety of saprophytic fungi from the groups based on their natural habitat. Geophilic dermato- environment some of which can cause opportunistic infec- phytes are normally soil inhabitants. The most common geo- tions.1,2 The diagnosis of a fungal infection must bephilic made dermatophyte to infect dogs or cats is Microsporum based on isolation of the organism from affected tissues and gypseum. Zoophilic dermatophytes are adapted to living on visualization of tissue invasion by organisms with compatible animals and are rarely found in the soil. The most common 3 morphology. Actual mycologic pathogens of the skin canzoophilic be dermatophyte to infect dogs and cats is Microspo- divided based on what layers of the skin, hair coat or claws rum canis. Sylvatic dermatophytes are zoophilic dermato- they infect. Superficial mycoses include dermatophytosis phytes adapted to living on rodents or hedgehogs. The most (predominantly Microsporum and Trichophyton species), common sylvatic dermatophytes are Trichophyon mentagro- Malassezia spp., Candida, and Trichosporon (piedra). Subcuta- phytes, Trichophyton mentagrophytes erinacei (hedgehogs), and neous mycotic infections include sporotrichosis, dermato- in EuropeM. persicolor(does not infect hair 1,2shafts). An- phytic mycetoma, oomycosis (pythiosis and lagenidiosis), throphilic dermatophytes are adapted to living on humans zygomycosis (mucormycosis and entomophthoromycosis), and do not survive in the soil and can be a cause of reverse hyalohyphomycosis, and phaeohyphomycosis. The deep sys- zoonosis when dogs or cats acquire the infection from in- temic mycoses (blastomycosis, histoplasmosis, cryptococco- fected humans. T. tonsurans was the most commonly isolated sis, and coccidiodomycosis) can also cause subcutaneous le- dermatophyte from human patients in the United States in sions of the skin. This paper will review the etiology, the mid 1990s.4 prevalence, clinical presentation, diagnosis, and treatment The most common fungal organisms identified in the dog for the two most common cutaneous fungal infections in or cat with dermatophytosis are M. canis, M. gypseum, and T. small animals; dermatophytosis and Malassezia dermatitis. mentagrophytes. These fungal organisms are adapted to colo- nize hair and the cornified layers of the skin where they can Department of Medicine and Epidemiology, School of Veterinary Medicine, digest keratin protein for their nutrition. Most animals must University of California, Davis, CA. contact a minimum infective dose of dermatophyte spores to Address reprint requests to Catherine A. Outerbridge, DVM, MVSc, DACVIM, Department of Medicine and Epidemiology, School of Veter- have an infection establish. This dose will vary with each inary Medicine, University of California, Davis, CA 95616. E-mail: individual animal’s overall health status. Some animals may [email protected] have predisposing factors for developing a dermatophyte in- 128 1096-2867/06/$-see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1053/j.ctsap.2006.05.005 Mycologic disorders of the skin 129 fection. These predisposing factors include stress, poor nu- trition, debilitating disease, compromised immune status, or young age.1 Prevalence Dermatophytosis is more common in cats than in dogs but the reported prevalence in a population varies considerably with geographic location, particularly between different con- tinents. Several studies have cited the prevalence of dermato- phytosis in dogs and cats, presenting to North American veterinary clinics for skin disease, to be 10.26 The to 5.6%. reported prevalence of dermatophytosis is higher in areas with a warm, humid climate. When healthy pet cats in North America were microbiologically sampled the prevalence of dermatophytosis was very 5 rare.North American studies in which shelter cats were similarly sampled (using a tooth- Figure 2 Dermatophytosis caused by T. mentagrophytes. There is brush technique) found a higher prevalence of dermato- marked alopecia, erythema, scaling, and crusting involving the head phytes within a shelter population of cats. Pathogenic der- and extremities. Scarring is also evident. The dog had been treated matophytes were cultured in 5.5 to 19% of all shelter cats with systemic glucocorticoids before the diagnosis of dermatophyt- 6,7 depending on the geographical region.M. canis, specifi- osis with resultant temporal muscle atrophy. (Color version of fig- cally, was found in 4 and 5% of cats but only in those geo- ure is available online.) graphical areas with a humid and warm climate. Of particular note is that 90 to 100% of the shelter cats that cultured positive in these studies were lesion6,7 Cats free.infected with FeLV or FIV did not have an increased incidence of isolation localized inflammatory lesion that results from the host’s in- of M. caniscompared with noninfected 8 incats one study butflammatory response to a dermatophyte. It is a well-circum- immunosuppression is a risk factor for the development of scribed, boggy, nodular lesion of furunculosis with draining dermatophytosis. Cats positive for these retroviruses did fistulae often on the face or a distal extremity. M. gypseum and have more diverse fungal organisms isolated from their hair T. mentagrophytes are the most common organisms to result 1 coats.8 Persian and Himalayan cats and Yorkshire terriersin kerions. appear to be predisposedM. canisto dermatophytosis. 1 Dermatophytosis lesions in cats are more pleomorphic. Classic lesions include one or more areas of partial alopecia Clinical with scaling and crusting most commonly on the head or forelimbs. Lesions may be hyperpigmented.2,9 Dermatophyt- Dermatophytosis in dogs often results in localized lesions osis can also result in lesions that resemble miliary dermatitis most commonly on the face, feet, or tail. Dogs are more likely or focal, pruritic lesions that resemble eosinophilic to present with the classical circular alopecia with scale and plaques.1,9 Long haired cats may present with a complaint of crust and follicular papules and pustulesT. (Fig.menta- 1). a poor hair coat or excessive shedding as infected hairs are grophytes infection often results in much more dramatic clin- prone to breakage.9 Kerions are uncommon in cats - but Per ical scaling, crusting and even scarring (Fig. 2). A kerion is a sian and Himalayan cats can develop subcutaneous nodular lesions caused by dermatophyes called dermatophytic pseudomycetomas. These lesions are often exudative or draining and coalescing nodules (Fig. 3). Visible tissue grains may be associated with these lesions. Systemic lesions of dermatophytic pseudomycetomas have also been reported in a Persian 10cat. Diagnosis Dermatophytosis in dogs and cats is common but is often misdiagnosed, particularly in dogs. Occasionally the diagno- sis is never considered but more frequently animals are in- correctly given the presumptive diagnosis based solely on the appearance of visible, circular skin lesions. This can result in some animals receiving unnecessary therapy with antifungal drugs. This is concerning when the drugs being prescribed are expensive or capable of causing serious side effects and when the misdiagnosis results in delays in determining the Figure 1 Multifocal, well demarcated areas of alopecia because of M. actual cause of the animal’s skin lesions. canis dermatophytosis in a terrier cross dog. Scaling and follicular The clinical appearance of skin lesions is unreliable as the papules are present along the lesional borders. (Color version of sole criteria to diagnose dermatophytosis. A Wood’s lamp figure is available online.) examination can be helpful in some cases but it is also not a 130 C.A. Outerbridge
Recommended publications
  • Fungal Infections from Human and Animal Contact
    Journal of Patient-Centered Research and Reviews Volume 4 Issue 2 Article 4 4-25-2017 Fungal Infections From Human and Animal Contact Dennis J. Baumgardner Follow this and additional works at: https://aurora.org/jpcrr Part of the Bacterial Infections and Mycoses Commons, Infectious Disease Commons, and the Skin and Connective Tissue Diseases Commons Recommended Citation Baumgardner DJ. Fungal infections from human and animal contact. J Patient Cent Res Rev. 2017;4:78-89. doi: 10.17294/2330-0698.1418 Published quarterly by Midwest-based health system Advocate Aurora Health and indexed in PubMed Central, the Journal of Patient-Centered Research and Reviews (JPCRR) is an open access, peer-reviewed medical journal focused on disseminating scholarly works devoted to improving patient-centered care practices, health outcomes, and the patient experience. REVIEW Fungal Infections From Human and Animal Contact Dennis J. Baumgardner, MD Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, WI; Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison, WI; Center for Urban Population Health, Milwaukee, WI Abstract Fungal infections in humans resulting from human or animal contact are relatively uncommon, but they include a significant proportion of dermatophyte infections. Some of the most commonly encountered diseases of the integument are dermatomycoses. Human or animal contact may be the source of all types of tinea infections, occasional candidal infections, and some other types of superficial or deep fungal infections. This narrative review focuses on the epidemiology, clinical features, diagnosis and treatment of anthropophilic dermatophyte infections primarily found in North America.
    [Show full text]
  • Introduction to Mycology
    INTRODUCTION TO MYCOLOGY The term "mycology" is derived from Greek word "mykes" meaning mushroom. Therefore mycology is the study of fungi. The ability of fungi to invade plant and animal tissue was observed in early 19th century but the first documented animal infection by any fungus was made by Bassi, who in 1835 studied the muscardine disease of silkworm and proved the that the infection was caused by a fungus Beauveria bassiana. In 1910 Raymond Sabouraud published his book Les Teignes, which was a comprehensive study of dermatophytic fungi. He is also regarded as father of medical mycology. Importance of fungi: Fungi inhabit almost every niche in the environment and humans are exposed to these organisms in various fields of life. Beneficial Effects of Fungi: 1. Decomposition - nutrient and carbon recycling. 2. Biosynthetic factories. The fermentation property is used for the industrial production of alcohols, fats, citric, oxalic and gluconic acids. 3. Important sources of antibiotics, such as Penicillin. 4. Model organisms for biochemical and genetic studies. Eg: Neurospora crassa 5. Saccharomyces cerviciae is extensively used in recombinant DNA technology, which includes the Hepatitis B Vaccine. 6. Some fungi are edible (mushrooms). 7. Yeasts provide nutritional supplements such as vitamins and cofactors. 8. Penicillium is used to flavour Roquefort and Camembert cheeses. 9. Ergot produced by Claviceps purpurea contains medically important alkaloids that help in inducing uterine contractions, controlling bleeding and treating migraine. 10. Fungi (Leptolegnia caudate and Aphanomyces laevis) are used to trap mosquito larvae in paddy fields and thus help in malaria control. Harmful Effects of Fungi: 1.
    [Show full text]
  • Oral Candidiasis: a Review
    International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 2, Issue 4, 2010 Review Article ORAL CANDIDIASIS: A REVIEW YUVRAJ SINGH DANGI1, MURARI LAL SONI1, KAMTA PRASAD NAMDEO1 Institute of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur (C.G.) – 49500 Email: [email protected] Received: 13 Jun 2010, Revised and Accepted: 16 July 2010 ABSTRACT Candidiasis, a common opportunistic fungal infection of the oral cavity, may be a cause of discomfort in dental patients. The article reviews common clinical types of candidiasis, its diagnosis current treatment modalities with emphasis on the role of prevention of recurrence in the susceptible dental patient. The dental hygienist can play an important role in education of patients to prevent recurrence. The frequency of invasive fungal infections (IFIs) has increased over the last decade with the rise in at‐risk populations of patients. The morbidity and mortality of IFIs are high and management of these conditions is a great challenge. With the widespread adoption of antifungal prophylaxis, the epidemiology of invasive fungal pathogens has changed. Non‐albicans Candida, non‐fumigatus Aspergillus and moulds other than Aspergillus have become increasingly recognised causes of invasive diseases. These emerging fungi are characterised by resistance or lower susceptibility to standard antifungal agents. Oral candidiasis is a common fungal infection in patients with an impaired immune system, such as those undergoing chemotherapy for cancer and patients with AIDS. It has a high morbidity amongst the latter group with approximately 85% of patients being infected at some point during the course of their illness. A major predisposing factor in HIV‐infected patients is a decreased CD4 T‐cell count.
    [Show full text]
  • Cronicon OPEN ACCESS MICROBIOLOGY Editorial from Head to Toe: Mapping Fungi Across Human Skin
    Cronicon OPEN ACCESS MICROBIOLOGY Editorial From Head to Toe: Mapping Fungi across Human Skin Tim Sandle* Head of Microbiology, Bio Products Laboratory Limited, United Kingdom *Corresponding Author: Tim Sandle, Head of Microbiology, Bio Products Laboratory Limited, 68 Alexander Road, London Colony, St. Albans, Hertfordshire, United Kingdom. Received: July 09, 2015; Published: July 14, 2015 Introduction The human microbiota refers to the complex aggregate of fungi, bacteria and archaea, found on the surface of the skin, within saliva and oral mucosa, the conjunctiva, the gastrointestinal. When microbial genomes are accounted for, the term mirobiome is deployed. In recent years the first in-depth analysis, using sophisticated DNA sequencing, of the human microbiome has taken place through the U.S. National Institutes of Health led Human Microbiome Project [1]. This required sophisticated analysis and representative sampling, given thatThe a single collected square of centimeter data from theof human Human skin Microbiome can contain Project up to hasone enabledbillion microorganisms. microbiologists to develop an ecological map of the human relationship between humans and microorganisms. One of the most interesting areas related to fungi, especially in advancing our under body, both inside and outside. Many of the findings have extended, or even turned upside down, what was previously known about the - not correlate; some parts of the body have a greater prevalence of bacteria (such as the arms) whereas fungi are found in closer associa standing about fungal types, locations and numbers and how this affects health and disease [2]. With this fungal and bacteria diversity do tion with feet. This article reviews some of the more recent literature.
    [Show full text]
  • Utility of Miconazole Therapy for Trichosporon Fungemia in Patients with Acute Leukemia
    Advances in Microbiology, 2013, 3, 47-51 Published Online December 2013 (http://www.scirp.org/journal/aim) http://dx.doi.org/10.4236/aim.2013.38A008 Utility of Miconazole Therapy for Trichosporon Fungemia in Patients with Acute Leukemia Kazunori Nakase1,2*, Kei Suzuki2, Taiichi Kyo3, Yumiko Sugawara2, Shinichi Kageyama2, Naoyuki Katayama2 1Cancer Center, Mie University Hospital, Tsu, Japan 2Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan 3Fourth Department of Internal Medicine, Hiroshima Red Cross and Atomic-Bomb Survivors Hospital, Hiroshima, Japan Email: [email protected] Received October 15, 2013; revised November 15, 2013; accepted November 21, 2013 Copyright © 2013 Kazunori Nakase et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Invasive trichosporonosis is an extremely rare mycosis, but Trichosporon fungemia (TF) in patients with hematologic malignancies has been increasingly recognized to be a fulminant and highly lethal infection. Although the utility of az- ole therapy has been demonstrated in several observations, little is known about the efficacy of one of azoles, micona- zole (MCZ). To assess its therapeutic role, we retrospectively investigated 6 cases of TF in patients with acute leukemia receiving MCZ containing regimens. Successful outcome was obtained in 4 patients [MCZ + amphotericin B (AmB) in 2, MCZ only and MCZ + fluconazole (FLCZ) + AmB in one each], but not in 2 (MCZ + FLCZ + AmB and MCZ + FLCZ in one each). Although MCZ and AmB exhibited good in vitro activities against isolates from all patients, FLCZ had such finding from only one patient.
    [Show full text]
  • Use of Propolis for Topical Treatment of Dermatophytosis in Dog
    Open Journal of Veterinary Medicine, 2014, 4, 239-245 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ojvm http://dx.doi.org/10.4236/ojvm.2014.410028 Use of Propolis for Topical Treatment of Dermatophytosis in Dog Tonatiuh Alejandro Cruz Sánchez1, Perla Alejandra Estrada García1, Cristian Ismael López Zamora1, Marcela Autran Martínez2, Víctor Pérez Valencia2, Amparo Londoño Orozco1 1Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México 2Belén Veterinary Hospital, Tultitlan, México Email: [email protected] Received 12 July 2014; revised 10 August 2014; accepted 16 September 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Here we present three clinical cases of canine dermatophytosis resolved with topical propolis treatment that involved alopecia and well-demarcated erythematous lesions. These cases were positively identified by direct observation of samples from the affected zones with 10% KOH. Each sample was cultured, leading to the isolation of Microsporum gypseum in one case and Microspo- rum canis in the other two cases. The animals’ subsequent treatment included bathing using a commercial soap with propolis every seven days for 3 to 8 weeks, as well as the use of a propolis- containing ointment elaborated in our laboratory, which was applied to the lesions once a day for three weeks. From the second week of treatment, all cultures were negative. At the end of treat- ment, all cases displayed full recovery of the injuries and hair growth in these areas.
    [Show full text]
  • Malassezia Species Associated with Dermatitis in Dogs and Their Antifungal Susceptibility
    Int.J.Curr.Microbiol.App.Sci (2018) 7(6): 1994-2007 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 06 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.706.236 Malassezia Species Associated With Dermatitis in Dogs and Their Antifungal Susceptibility Uday Seetha, Sumanth Kumar, Raghavan Madhusoodanan Pillai, Mouttou Vivek Srinivas*, Prabhakar Xavier Antony and Hirak Kumar Mukhopadhyay Department of Veterinary Microbiology, Rajiv Gandhi Institute of Veterinary Education and Research, Pondicherry-605 009, India *Corresponding author ABSTRACT The present study was taken with the objective of isolation, characterization, molecular detection and antifungal sensitivity of Malassezia species from dermatitis cases from dogs in and around Pondicherry state. A total of 100 skin swabs were collected from the dogs K e yw or ds showing dermatological problems suggestive of Malassezia. Out of 100 swabs, 41 Malassezia isolates were successfully isolated and had good growth on Sabouraud’s Malassezia pachydermatis, Dextrose Agar (SDA) during the primary isolation from the skin swabs. Biochemical tests Sabouraud’s dextrose agar, Modified Dixon’s agar, for catalase, β- glucosidase activities and the capability to grow with three water soluble Polymerase chain reaction, lipid supplements, namely Tween 20, Tween 80 and Cremophor EL concluded that the M. Antifungal Susceptibility testing pachydermatis was the sole species isolated from the cases of canine dermatitis in Pondicherry state. Cytological examination revealed that direct skin swab smear was more Article Info sensitive than adhesive tape technique and impression smear. The frequency of isolation of Accepted: M. pachydermatis was higher in neck region (8) followed by other regions in canine.
    [Show full text]
  • Review Article Sporotrichosis: an Overview and Therapeutic Options
    Hindawi Publishing Corporation Dermatology Research and Practice Volume 2014, Article ID 272376, 13 pages http://dx.doi.org/10.1155/2014/272376 Review Article Sporotrichosis: An Overview and Therapeutic Options Vikram K. Mahajan Department of Dermatology, Venereology & Leprosy, Dr. R. P. Govt. Medical College, Kangra, Tanda, Himachal Pradesh 176001, India Correspondence should be addressed to Vikram K. Mahajan; [email protected] Received 30 July 2014; Accepted 12 December 2014; Published 29 December 2014 Academic Editor: Craig G. Burkhart Copyright © 2014 Vikram K. Mahajan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sporotrichosis is a chronic granulomatous mycotic infection caused by Sporothrix schenckii, a common saprophyte of soil, decaying wood, hay, and sphagnum moss, that is endemic in tropical/subtropical areas. The recent phylogenetic studies have delineated the geographic distribution of multiple distinct Sporothrix species causing sporotrichosis. It characteristically involves the skin and subcutaneous tissue following traumatic inoculation of the pathogen. After a variable incubation period, progressively enlarging papulo-nodule at the inoculation site develops that may ulcerate (fixed cutaneous sporotrichosis) or multiple nodules appear proximally along lymphatics (lymphocutaneous sporotrichosis). Osteoarticular sporotrichosis or primary pulmonary sporotrichosis are rare and occur from direct inoculation or inhalation of conidia, respectively. Disseminated cutaneous sporotrichosis or involvement of multiple visceral organs, particularly the central nervous system, occurs most commonly in persons with immunosuppression. Saturated solution of potassium iodide remains a first line treatment choice for uncomplicated cutaneous sporotrichosis in resource poor countries but itraconazole is currently used/recommended for the treatment of all forms of sporotrichosis.
    [Show full text]
  • Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ
    REVIEWS Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ Institute for Lung Health, Department of Infection, Immunity & Inflammation, University of Leicester and Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK J Investig Allergol Clin Immunol 2016; Vol. 26(6): 344-354 doi: 10.18176/jiaci.0122 Abstract Fungi are ubiquitous and form their own kingdom. Up to 80 genera of fungi have been linked to type I allergic disease, and yet, commercial reagents to test for sensitization are available for relatively few species. In terms of asthma, it is important to distinguish between species unable to grow at body temperature and those that can (thermotolerant) and thereby have the potential to colonize the respiratory tract. The former, which include the commonly studied Alternaria and Cladosporium genera, can act as aeroallergens whose clinical effects are predictably related to exposure levels. In contrast, thermotolerant species, which include fungi from the Candida, Aspergillus, and Penicillium genera, can cause a persistent allergenic stimulus independent of their airborne concentrations. Moreover, their ability to germinate in the airways provides a more diverse allergenic stimulus, and may result in noninvasive infection, which enhances inflammation. The close association between IgE sensitization to thermotolerant filamentous fungi and fixed airflow obstruction, bronchiectasis, and lung fibrosis suggests a much more tissue-damaging process than that seen with aeroallergens. This review provides an overview of fungal allergens and the patterns of clinical disease associated with exposure. It clarifies the various terminologies associated with fungal allergy in asthma and makes the case for a new term (allergic fungal airway disease) to include all people with asthma at risk of developing lung damage as a result of their fungal allergy.
    [Show full text]
  • Managing Athlete's Foot
    South African Family Practice 2018; 60(5):37-41 S Afr Fam Pract Open Access article distributed under the terms of the ISSN 2078-6190 EISSN 2078-6204 Creative Commons License [CC BY-NC-ND 4.0] © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0 REVIEW Managing athlete’s foot Nkatoko Freddy Makola,1 Nicholus Malesela Magongwa,1 Boikgantsho Matsaung,1 Gustav Schellack,2 Natalie Schellack3 1 Academic interns, School of Pharmacy, Sefako Makgatho Health Sciences University 2 Clinical research professional, pharmaceutical industry 3 Professor, School of Pharmacy, Sefako Makgatho Health Sciences University *Corresponding author, email: [email protected] Abstract This article is aimed at providing a succinct overview of the condition tinea pedis, commonly referred to as athlete’s foot. Tinea pedis is a very common fungal infection that affects a significantly large number of people globally. The presentation of tinea pedis can vary based on the different clinical forms of the condition. The symptoms of tinea pedis may range from asymptomatic, to mild- to-severe forms of pain, itchiness, difficulty walking and other debilitating symptoms. There is a range of precautionary measures available to prevent infection, and both oral and topical drugs can be used for treating tinea pedis. This article briefly highlights what athlete’s foot is, the different causes and how they present, the prevalence of the condition, the variety of diagnostic methods available, and the pharmacological and non-pharmacological management of the
    [Show full text]
  • Trichosporon Beigelii Infection Presenting As White Piedra and Onychomycosis in the Same Patient
    Trichosporon beigelii Infection Presenting as White Piedra and Onychomycosis in the Same Patient Lt Col Kathleen B. Elmer, USAF; COL Dirk M. Elston, MC, USA; COL Lester F. Libow, MC, USA Trichosporon beigelii is a fungal organism that causes white piedra and has occasionally been implicated as a nail pathogen. We describe a patient with both hair and nail changes associated with T beigelii. richosporon beigelii is a basidiomycetous yeast, phylogenetically similar to Cryptococcus.1 T T beigelii has been found on a variety of mammals and is present in soil, water, decaying plants, and animals.2 T beigelii is known to colonize normal human skin, as well as the respiratory, gas- trointestinal, and urinary tracts.3 It is the causative agent of white piedra, a superficial fungal infection of the hair shaft and also has been described as a rare cause of onychomycosis.4 T beigelii can cause endo- carditis and septicemia in immunocompromised hosts.5 We describe a healthy patient with both white piedra and T beigelii–induced onychomycosis. Case Report A 62-year-old healthy man who worked as a pool maintenance employee was evaluated for thickened, discolored thumb nails (Figure 1). He had been aware of progressive brown-to-black discoloration of the involved nails for 8 months. In addition, soft, light yellow-brown nodules were noted along the shafts of several axillary hairs (Figure 2). Microscopic analysis of the hairs revealed nodal concretions along the shafts (Figure 3). No pubic, scalp, eyebrow, eyelash, Figure 1. Onychomycotic thumb nail. or beard hair involvement was present. Cultures of thumb nail clippings on Sabouraud dextrose agar grew T beigelii and Candida parapsilosis.
    [Show full text]
  • Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast
    Journal of Fungi Communication Comparison of Three Skin Sampling Methods and Two Media for Culturing Malassezia Yeast Abdourahim Abdillah 1,2, Saber Khelaifia 2, Didier Raoult 2,3, Fadi Bittar 2,3 and Stéphane Ranque 1,2,* 1 Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, VITROME: Vecteurs—Infections Tropicales et Méditerranéennes, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; [email protected] 2 IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005 Marseille, France; khelaifi[email protected] (S.K.); [email protected] (D.R.); [email protected] (F.B.) 3 Institut de Recherche pour le Développement, Aix Marseille Université, Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, MEPHI: Microbes, Evolution, Phylogénie et Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France * Correspondence: [email protected] Received: 5 October 2020; Accepted: 27 November 2020; Published: 9 December 2020 Abstract: Malassezia is a lipid-dependent commensal yeast of the human skin. The different culture media and skin sampling methods used to grow these fastidious yeasts are a source of heterogeneity in culture-based epidemiological study results. This study aimed to compare the performances of three methods of skin sampling, and two culture media for the detection of Malassezia yeasts by culture from the human skin. Three skin sampling methods, namely sterile gauze, dry swab, and TranswabTM with transport medium, were applied on 10 healthy volunteers at 5 distinct body sites. Each sample was further inoculated onto either the novel FastFung medium or the reference Dixon agar for the detection of Malassezia spp.
    [Show full text]