Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1). Since then, rapid advancements in animals. The evolutionary relationships of the kingdom both sequencing technologies and computational biol- have represented some of the more recalcitrant problems ogy have resulted in the sequencing of genomes for more in systematics and phylogenetics. The advent of molecular than 800 species (e.g., http://genome.jgi.doe.gov/fungi/). phylogenetics, and more recently phylogenomics, has greatly These genomes represent a windfall of data that are advanced our understanding of the patterns and processes informing evolutionary studies of fungi and the search associated with fungal evolution, however. In this article, for biological solutions to alternative fuels, bioremedi- we review the major phyla, subphyla, and classes of the kingdom Fungi and provide brief summaries of ecologies, ation, carbon sequestration, and sustainable agriculture morphologies, and exemplar taxa. We also provide examples and forestry (2). Indeed, the marriage between genomics of how molecular phylogenetics and evolutionary genomics have advanced our understanding of fungal evolution Received: 6 June 2017, Accepted: 11 June 2017, Published: 15 September 2017 within each of the phyla and some of the major classes. Editors: Joseph Heitman, Department of Molecular Genetics and In the current classification we recognize 8 phyla, 12 subphyla, Microbiology, Duke University Medical Center, Durham, NC 27710; and 46 classes within the kingdom. The ancestor of fungi Timothy Y. James, Department of Ecology and Evolutionary Biology, is inferred to be zoosporic, and zoosporic fungi comprise University of Michigan, Ann Arbor, MI 48109-1048 three lineages that are paraphyletic to the remainder of fungi. Citation: Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Fungi historically classified as zygomycetes do not form a Blackwell M. 2017. The fungal tree of life: from molecular monophyletic group and are paraphyletic to Ascomycota systematics to genome-scale phylogenies. Microbiol Spectrum 5(5): FUNK-0053-2016. doi:10.1128/microbiolspec.FUNK-0053-2016. and Basidiomycota. Ascomycota and Basidiomycota are Correspondence: Joseph W. Spatafora, [email protected] each monophyletic and collectively form the subkingdom © 2017 American Society for Microbiology. All rights reserved. Dikarya. ASMscience.org/MicrobiolSpectrum 1 Downloaded from www.asmscience.org by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora et al. and phylogenetics occurred early, both in the use of chytridiomycetes, zygomycetes, ascomycetes, and phylogenetic techniques to study genome evolution and basidiomycetes—defined by morphological traits asso- in the use of genome-scale data to infer evolutionary ciated with reproduction. (Note: The suffix “-mycetes” relationships. In this article we will review the impact is used to denote a class-level taxonomic group in fungal of genomic-scale phylogenies, along with standard mo- nomenclature, e.g., Agaricomycetes. Its use as a lower- lecular phylogenies, on our understanding of the evo- case noun, however, signifies an informal name and lution of the fungal tree of life and the classification that not an explicit taxonomic rank.) The chytridiomycetes, communicates it. or zoosporic fungi, were recognized based on their pro- Genomic data provide the maximum amount of duction of zoospores, characterized by a single posterior, discrete genetic information available for phylogenetic smooth flagellum. The zygomycetes were characterized analyses, and hundreds to thousands of genes have been by gametangial conjugation and the production of identified as useful phylogenetic markers (3). Markov zygospores, coenocytic hyphae, and typically asexual clustering algorithms have been proven powerful tools reproduction by sporangia. The ascomycetes and ba- to identify orthologous clusters of proteins that can be sidiomycetes were identified by the production of asci filtered for single-copy clusters that are useful in phylo- and basidia, respectively, possession of regularly sep- genetic analyses (4). This approach has transformed tate hyphae, and a dikaryotic nuclear phase in their phylogenetics by no longer requiring selection of an life cycle. The classification of the kingdom Fungi used a priori set of markers (e.g., rDNA, RPB2, etc.), but here recognizes eight phyla (Fig. 1, Table 1), with the rather promotes the mining of a data set of genomes zoosporic fungi comprising the first three lineages of for the largest set of appropriate markers. Furthermore, the kingdom—Cryptomycota/Microsporidia, Chytridio- hidden Markov models have proven to be valuable tools mycota, and Blastocladiomycota—since the divergence for identifying and retrieving these markers in newly from the last universal common ancestor (LUCA) of sequenced genomes and rapidly growing genome-scale Fungi. phylogenetic data sets (5). The resolution of zoosporic fungi as paraphyletic The estimation of species trees from genome-scale rejects the flagellum as a diagnostic trait (synapomor- data sets is not without challenges, however. Phylo- phy) for a monophyletic group of flagellated fungi. genetic analyses of genomic data have revealed that Rather, it is an ancestral (symplesiomorphic) trait in- different genes within a genome can have different evo- herited from the LUCA of the kingdom Fungi. Most lutionary histories, i.e., phylogenetic conflict (6). Sources extant species of fungi are nonflagellated and are the of conflict include incomplete lineage sorting (or deep result of multiple losses of the flagellum during fungal coalescence), hybridization, and horizontal gene trans- evolution. Two losses of the flagellum have occurred, fer, and the detection and characterization of this con- giving rise to the Microsporidia and the most recent flict in the context of phylogenetic inference are still in common ancestor (MRCA) of the remaining phyla of their infancy (7). The application of standard measures zygomycetes, ascomycetes, and basidiomycetes. Infer- of topological support, such as the bootstrap partition, ences of additional losses of the flagellum are required can also be difficult to interpret, due to the observation for the placement of nonflagellated species among the that nodes that resolve differently in different gene data Chytridiomycota (11) and possibly for the placement sets can have high or maximum bootstrap partition of the enigmatic zoosporic genus Olpidium among values in a subset of analyses (e.g., 8, 9). At the time of zygomycetes (12), but the absolute number of losses the writing of this manuscript the majority of genome- is unclear. The zygomycetes are also paraphyletic and scale phylogenetic analyses focus on the analysis of are classified in two phyla: Zoopagomycota and Mu- concatenated superalignments, but development and use coromycota (13). This classification rejects the zygo- of supertree methods, gene tree-species tree reconcilia- spore as a synapomorphy for the zygomycetes; rather, tions, and alternative measures of nodal support are it was inherited from the MRCA of terrestrial fungi increasing (e.g., 8, 10) and will be developed further over and lost in the MRCA of ascomycetes and basidio- the coming years. mycetes. The monophyly of ascomycetes and basidio- Despite the challenges mentioned above, phylo- mycetes has been confirmed, and they are classified as genetic analyses of genome-scale data sets, and more the phyla Ascomycota and Basidiomycota, respectively, traditional multigene data sets, have greatly advanced of the subkingdom Dikarya (14). More information our understanding
Recommended publications
  • Checklist of Calicioid Lichens and Fungi for Genera with Members in Temperate Western North America Draft: 2012-03-13
    Draft: 2012-03-13 Checklist of Calicioids – E. B. Peterson Checklist of Calicioid Lichens and Fungi For Genera with Members in Temperate Western North America Draft: 2012-03-13 by E. B. Peterson Calicium abietinum, EBP#4640 1 Draft: 2012-03-13 Checklist of Calicioids – E. B. Peterson Genera Acroscyphus Lév. Brucea Rikkinen Calicium Pers. Chaenotheca Th. Fr. Chaenothecopsis Vainio Coniocybe Ach. = Chaenotheca "Cryptocalicium" – potentially undescribed genus; taxonomic placement is not known but there are resemblances both to Mycocaliciales and Onygenales Cybebe Tibell = Chaenotheca Cyphelium Ach. Microcalicium Vainio Mycocalicium Vainio Phaeocalicium A.F.W. Schmidt Sclerophora Chevall. Sphinctrina Fr. Stenocybe (Nyl.) Körber Texosporium Nádv. ex Tibell & Hofsten Thelomma A. Massal. Tholurna Norman Additional genera are primarily tropical, such as Pyrgillus, Tylophoron About the Species lists Names in bold are believed to be currently valid names. Old synonyms are indented and listed with the current name following (additional synonyms can be found in Esslinger (2011). Names in quotes are nicknames for undescribed species. Names given within tildes (~) are published, but may not be validly published. Underlined species are included in the checklist for North America north of Mexico (Esslinger 2011). Names are given with authorities and original citation date where possible, followed by a colon. Additional citations are given after the colon, followed by a series of abbreviations for states and regions where known. States and provinces use the standard two-letter abbreviation. Regions include: NAm = North America; WNA = western North America (west of the continental divide); Klam = Klamath Region (my home territory). For those not known from North America, continental distribution may be given: SAm = South America; EUR = Europe; ASIA = Asia; Afr = Africa; Aus = Australia.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • The Obligate Endobacteria of Arbuscular Mycorrhizal Fungi Are Ancient Heritable Components Related to the Mollicutes
    The ISME Journal (2010) 4, 862–871 & 2010 International Society for Microbial Ecology All rights reserved 1751-7362/10 $32.00 www.nature.com/ismej ORIGINAL ARTICLE The obligate endobacteria of arbuscular mycorrhizal fungi are ancient heritable components related to the Mollicutes Maria Naumann1,2, Arthur Schu¨ ler2 and Paola Bonfante1 1Department of Plant Biology, University of Turin and IPP-CNR, Turin, Italy and 2Department of Biology, Inst. Genetics, University of Munich (LMU), Planegg-Martinsried, Germany Arbuscular mycorrhizal fungi (AMF) have been symbionts of land plants for at least 450 Myr. It is known that some AMF host in their cytoplasm Gram-positive endobacteria called bacterium-like organisms (BLOs), of unknown phylogenetic origin. In this study, an extensive inventory of 28 cultured AMF, from diverse evolutionary lineages and four continents, indicated that most of the AMF species investigated possess BLOs. Analyzing the 16S ribosomal DNA (rDNA) as a phylogenetic marker revealed that BLO sequences from divergent lineages all clustered in a well- supported monophyletic clade. Unexpectedly, the cell-walled BLOs were shown to likely represent a sister clade of the Mycoplasmatales and Entomoplasmatales, within the Mollicutes, whose members are lacking cell walls and show symbiotic or parasitic lifestyles. Perhaps BLOs maintained the Gram-positive trait whereas the sister groups lost it. The intracellular location of BLOs was revealed by fluorescent in situ hybridization (FISH), and confirmed by pyrosequencing. BLO DNA could only be amplified from AMF spores and not from spore washings. As highly divergent BLO sequences were found within individual fungal spores, amplicon libraries derived from Glomus etunicatum isolates from different geographic regions were pyrosequenced; they revealed distinct sequence compositions in different isolates.
    [Show full text]
  • Fungi-Insect Symbiosis Laboulbeniomycetes
    Important Dates zDecember 6th – Last lecture. zDecember 12th – Study session at 2:30? Where? Fungi-Insect zDecember 13th – Final Exam: 12:00-2:00 Symbiosis Fungi-Insect Symbiosis Fungi-Insect Symbiosis zMany examples of fungi-insect zMany examples of fungi-insect symbiosis. symbiosis (continue). zCover the following examples zInsects that cultivate fungi: Laboulbeniomycetes – Class of Attine Ants Ascomycota. Mostly on insects. Septobasidium –Genus of Mound Building Termites Basidiomycota Ambrosia Beetles Laboulbeniomycetes Laboulbeniomycetes zAscocarps occur on very specific zVery poorly known example. localities in some species: zRelationship between fungi and insects unclear. One species parasitic? Species of this fungus probably occurs on all insects Fungus is a member of Ascomycota zRickia dendroiuli Only found on forelegs of millipedes 1 Rickia dendroiuli Rickia dendroiuli Mature ascocarp zLow magnification showing three ascocarps zHigh magnification showing two ascocarps, as seen through the microscope. left is mature Laboulbeniomycetes Laboulbeniomycetes zIn some species specific localities zVariations were based on mating habit misleading. For example: of insects involved. In some insects, “species A” may have ascocarps arising only on front, upper pair of legs of males However, “Species A” have ascocarps arising only on the back, lower pair of legs of females of same insect species. Peyritschiella protea Peyritschiella protea zAscocarps not zHigh magnification always in specific of ascocarps and localities. ascospores. ascocarps and ascospores 2 Stigmatomyces majewski Stigmatomyces majewskii zLow and high z Ascocarps occur magnification mostly on of ascocarps. segment. zNote one on wing. Laboulbenia cristata Laboulbenia cristata zAscocarps occur on zHigh magnification middle segment of ascocarp with legs. ascospores. SeptobasidiuSeptobasidiumm SeptobasidiuSeptobasidiumm zGenus of Basidiomycota that forms a zMore examples: symbiotic relationship with scale insects.
    [Show full text]
  • Fossil Fungi with Suggested Affinities to the Endogonaceae from the Middle Triassic of Antarctica
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica by Michael Krings. Thomas N. Taylor, Nora Dotzler, and Gianna Persichini 2012 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. [Citation] Published version: http://www.dx.doi.org/10.3852/11-384 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. Mycologia, 104(4), 2012, pp. 835–844. DOI: 10.3852/11-384 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica Michael Krings1 INTRODUCTION Department fu¨ r Geo- und Umweltwissenschaften, Pala¨ontologie und Geobiologie, Ludwig-Maximilians- Documenting the evolutionary history of fungi based Universita¨t, and Bayerische Staatssammlung fu¨r on fossils is generally hampered by the incompleteness Pala¨ontologie und Geologie, Richard-Wagner-Straße 10, of the fungal fossil record (Taylor et al. 2011). Only a 80333 Munich, Germany, and Department of Ecology few geologic deposits have yielded fungal fossils and Evolutionary Biology, and Natural History preserved in sufficient detail to permit assignment to Museum and Biodiversity Research Institute, University of Kansas, Lawrence, Kansas 66045 any one of the major lineages of fungi with any degree of confidence. Perhaps the most famous of these Thomas N.
    [Show full text]
  • Cronicon OPEN ACCESS MICROBIOLOGY Editorial from Head to Toe: Mapping Fungi Across Human Skin
    Cronicon OPEN ACCESS MICROBIOLOGY Editorial From Head to Toe: Mapping Fungi across Human Skin Tim Sandle* Head of Microbiology, Bio Products Laboratory Limited, United Kingdom *Corresponding Author: Tim Sandle, Head of Microbiology, Bio Products Laboratory Limited, 68 Alexander Road, London Colony, St. Albans, Hertfordshire, United Kingdom. Received: July 09, 2015; Published: July 14, 2015 Introduction The human microbiota refers to the complex aggregate of fungi, bacteria and archaea, found on the surface of the skin, within saliva and oral mucosa, the conjunctiva, the gastrointestinal. When microbial genomes are accounted for, the term mirobiome is deployed. In recent years the first in-depth analysis, using sophisticated DNA sequencing, of the human microbiome has taken place through the U.S. National Institutes of Health led Human Microbiome Project [1]. This required sophisticated analysis and representative sampling, given thatThe a single collected square of centimeter data from theof human Human skin Microbiome can contain Project up to hasone enabledbillion microorganisms. microbiologists to develop an ecological map of the human relationship between humans and microorganisms. One of the most interesting areas related to fungi, especially in advancing our under body, both inside and outside. Many of the findings have extended, or even turned upside down, what was previously known about the - not correlate; some parts of the body have a greater prevalence of bacteria (such as the arms) whereas fungi are found in closer associa standing about fungal types, locations and numbers and how this affects health and disease [2]. With this fungal and bacteria diversity do tion with feet. This article reviews some of the more recent literature.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • Bodenmikrobiologie (Version: 07/2019)
    Langzeitmonitoring von Ökosystemprozessen - Methoden-Handbuch Modul 04: Bodenmikrobiologie (Version: 07/2019) www.hohetauern.at Impressum Impressum Für den Inhalt verantwortlich: Dr. Fernando Fernández Mendoza & Prof. Mag Dr. Martin Grube Institut für Biologie, Bereich Pflanzenwissenschaften, Universität Graz, Holteigasse 6, 8010 Graz Nationalparkrat Hohe Tauern, Kirchplatz 2, 9971 Matrei i.O. Titelbild: Ein Transekt im Untersuchungsgebiet Innergschlöss (2350 m üNN) wird im Jahr 2017 beprobt. © Newesely Zitiervorschlag: Fernández Mendoza F, Grube M (2019) Langzeitmonitoring von Ökosystemprozessen im Nationalpark Hohe Tauern. Modul 04: Mikrobiologie. Methoden-Handbuch. Verlag der Österreichischen Akademie der Wissenschaften, Wien. ISBN-Online: 978-3-7001-8752-3, doi: 10.1553/GCP_LZM_NPHT_Modul04 Weblink: https://verlag.oeaw.ac.at und http://www.parcs.at/npht/mmd_fullentry.php?docu_id=38612 Inhaltsverzeichnis Zielsetzung ...................................................................................................................................................... 1 Inhalt Vorbereitungsarbeit und benötigtes Material ................................................................................................... 2 a. Materialien für die Probenahme und Probenaufbewahrung ................................................................ 2 b. Materialien und Geräte für die Laboranalyse ...................................................................................... 2 Arbeitsablauf ...................................................................................................................................................
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • The Flora Mycologica Iberica Project Fungi Occurrence Dataset
    A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF).
    [Show full text]
  • For Review Only 377 Algomyces Stechlinensis Clustered Together with Environmental Clones from a Eutrophic 378 Lake in France (Jobard Et Al
    Journal of Eukaryotic Microbiology Page 18 of 43 1 Running head: Parasitic chytrids of volvocacean algae. 2 3 Title: Diversity and Hidden Host Specificity of Chytrids infecting Colonial 4 Volvocacean Algae. 5 Authors: Silke Van den Wyngaerta, Keilor Rojas-Jimeneza,b, Kensuke Setoc, Maiko Kagamic, 6 Hans-Peter Grossarta,d 7 a Department of ExperimentalFor Limnology, Review Leibniz-Institute Only of Freshwater Ecology and Inland 8 Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany 9 b Universidad Latina de Costa Rica, Campus San Pedro, Apdo. 10138-1000, San Jose, Costa Rica 10 c Department of Environmental Sciences, Faculty of Science, Toho University, Funabashi, Chiba, 11 Japan 12 d Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14476 Potsdam, 13 Germany 14 15 Corresponding Author: 16 Silke Van den Wyngaert, Department of Experimental Limnology, Leibniz-Institute of 17 Freshwater Ecology and Inland Fisheries, Alte Fischerhuette 2, D-16775 Stechlin, Germany 18 Telephone number: +49 33082 69972; Fax number: +49 33082 69917; e-mail: [email protected], 19 [email protected] 20 21 22 23 1 Page 19 of 43 Journal of Eukaryotic Microbiology 24 ABSTRACT 25 Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in 26 aquatic ecosystems. Many chytrid species have been morphologically described as parasites on 27 phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence 28 data. In this study we isolated and cultivated three parasitic chytrids, infecting a common 29 volvocacean host species, Yamagishiella unicocca. In order to identify the chytrids, we 30 characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S 31 and 28S rDNA genes.
    [Show full text]