Volume 25 Number 4 • November 2014

Total Page:16

File Type:pdf, Size:1020Kb

Volume 25 Number 4 • November 2014 Volume 25 Number 4 • November 2014 CONTENTS 2 The sensitivity of the South African industrial sector’s electricity consumption to electricity price fluctuations Roula Inglesi-Lotz 11 ANN-based evaluation of wind power generation: A case study in Kutahya, Turkey Mustafa Arif Özgür 23 Performance analysis of a vapour compression-absorption cascaded refrigeration system with undersized evaporator and condenser Vaibhav Jain, Gulshan Sachdeva and Surendra S Kachhwaha 37 Mapping wind power density for Zimbabwe: a suitable Weibull-parameter calculation method Tawanda Hove, Luxmore Madiye and Downmore Musademba 48 Application of multiple regression analysis to forecasting South Africa’s electricity demand Renee Koen and Jennifer Holloway 59 A systems approach to urban water services in the context of integrated energy and water planning: A City of Cape Town case study Fadiel Ahjum and Theodor J Stewart 71 Improving stability of utility-tied wind generators using dynamic voltage restorer G Sivasankar and V Suresh Kumar 80 Renewable energy choices and their water requirements in South Africa Debbie Sparks, Amos Madhlopa, Samantha Keen, Mascha Moorlach, Anthony Dane, Pieter Krog and Thuli Dlamini 93 Energy consumption and economic growth nexus: Panel co-integration and causality tests for Sub-Saharan Africa Basiru Oyeniran Fatai 101 Energy models: Methods and characteristics Najmeh Neshat, Mohammad Reza Amin-Naseri and Farzaneh Danesh 112 Hybrid electromechanical-electromagnetic simulation to SVC controller based on ADPSS platform Lin Xu, Yong-Hong Tang, Wei Pu and Yang Han 123 Investigations on the absorption spectrum of TiO2 nanofluid A L Subramaniyan, Sukumaran Lakshmi Priya, M Kottaisamy and R Ilangovan 128 Dynamic performance improvement of wind farms equipped with three SCIG generators using STATCOM Othman Hasnaoui and Mehdi Allagui 136 Details of authors 142 Index to Volume 25: February–November 2014 The sensitivity of the South African industrial sector’s electricity consumption to electricity price fluctuations Roula Inglesi-Lotz Department of Economics, University of Pretoria, Pretoria, South Africa Abstract argues that the current prices are not cost-reflective, Numerous studies assume that the price elasticity of and second, its capacity expansion plans include electricity demand remains constant through the investing in two new power plants that will increase years. This, in turn, means that these studies the company’s operating costs. Before the next assume that industrial consumers react in the same electricity price restructure, it is imperative for poli- way to price fluctuations regardless of the actual cy-makers to understand, and in a way, ‘predict’ the price level. This paper proposes that the price elas- reactions of consumers to price changes. Even more ticity of industrial electricity demand varies over important, the national electricity consumption time. The Kalman filter methodology is employed in trends do not necessarily represent each sector’s an effort to provide policy-makers with more infor- individual behaviour. Different price structures as mation on the behaviour of the industrial sector well as different electricity profiles are the main rea- with regards to electricity price changes, focusing on sons why different economic sectors should be the period 1970 to 2007. Other factors affecting examined separately and treated accordingly. electricity consumption, such as real output and Energy (and more specifically electricity) plays employment, are also captured. The findings of this an essential role in the production capacity of a paper show that price sensitivity has changed since country. It is a crucial role, specifically for the man- the 1970s. It has decreased in absolute values from ufacturing sector where energy is considered an -1 in 1980 to -0.953 in 1990 and then stabilised at irreplaceable input. In South Africa, the industrial approximately -0.95 which indicates that the indus- sector is responsible for an average of 47% of the trial sector has experienced an inelastic demand. In total electricity consumption (DoE, 2009), which other words, the behaviour of industrial consumers makes this sector one of the most important ones did not vary significantly during the 2000s. In the from an energy consumption point of view. long run and as the prices increase, probably reach- Ziramba (2009) studied the energy consumption of ing the levels of the 1970s or even before, the the industrial sector in South Africa and its interac- industrial sector’s behaviour might change and the tion with other variables such as industrial output elasticity might end up at levels higher than one and employment (but not electricity prices). More (elastic). recently, Inglesi-Lotz and Blignaut (2011a) found that, among various economic sectors such as agri- Keywords: electricity consumption; Kalman filter; culture and transport, the industrial sector was the price elasticity; industrial sector only one whose electricity consumption behaviour is sensitive to price fluctuations during the period 1993 to 2006. Following Inglesi-Lotz (2011), this paper propos- 1. Introduction es that the sensitivity of the industrial sector’s elec- In South Africa, choosing the correct and appropri- tricity consumption to price fluctuations (price elas- ate electricity price regime has been under discus- ticity) has been changing through the years. As sion during the last decade. During March 2012, the Inglesi-Lotz (2011) also points out, ‘focus on varia- National Energy Regulator South Africa (NERSA) tion is more important than only examining the re-evaluated and reduced the agreed rate of level of change’ – especially for the South African increase of the electricity price for 2012. Eskom has case after the price restructuring of 2009/10. The also expressed its intentions for further application fluctuations are so drastic that one has to take into on price rises for two main reasons: first, Eskom account changes in behaviour. Thus, the purpose of 2 Journal of Energy in Southern Africa • Vol 25 No 4 • November 2014 this paper is to estimate the time-varying sensitivity Many studies have been conducted on the ener- of the industrial sector’s electricity consumption to gy (electricity) demand of the industrial sectors in price changes, using the Kalman filter econometric various countries within different geographical methodology for the period 1970 to 2007. (See regions and with different economic backgrounds. Section 3 for a discussion on the reasons for the These studies also use numerous methods. selection of the time period). Different variables are used as factors other than This paper combines and extends the results by prices affecting the demand depending on the spe- Inglesi-Lotz (2011) and Inglesi-Lotz and Blignaut cific region and the time period. But all-in-all, the (2011a) in an effort to provide policy-makers with major determinants of the industrial sector’s energy more information on the behaviour of the industri- (electricity) demand in the majority of the studies al sector with regards to electricity price changes. are output, price of electricity and employment (Al- The findings will assist regulators and policy-makers Ghandoor et al., 2008; Jamil & Ahmad, 2011). in future decisions on price changes, a topic Table 1 presents a summary of international and extremely relevant and crucial to the current South local studies and their findings (in chronological African case. order) that deal with the industrial energy (electrici- This paper is structured as follows: Section 2 ty) demand. This collection of studies, although by provides a brief overview of studies that deal with no means exhaustive of the literature, is indicative the industrial sector’s energy or electricity consump- of the focus on a variety of countries (developed tion, as well as a summary of the South African and developing) for different time periods. A variety studies that deal with electricity prices and their of numerical estimations of the price elasticity, effect on the economy either in its entirety or spe- depending on the country and more importantly cific sectors. Section 3 presents the methodology the period of the sample, is also observed. and the data used. Section 4 presents the empirical For South Africa, only one study that sheds results, and Section 5 summarises the findings and some light on the reaction of the industrial sector concludes by discussing some possible policy impli- (among others) to the changes of prices is identified cations. (Inglesi-Lotz & Blignaut, 2011a). Ziramba (2009) also studies the industrial sector’s electricity 2. Literature review demand reactions but excluded price from the fac- During the last few decades, literature has paid spe- tors affecting it. Another recent study by Inglesi-Lotz cial attention to price elasticities of energy demand. and Blignaut (2011b) looks at the different eco- A possible reason for this is concerns regarding the nomic sectors and the factors that affect their environmental effects of the rising energy demand increasing electricity consumption. However, due internationally, and the ever-increasing need to find the nature of the method used (decomposition tech- appropriate instruments (if existing) to control it. niques), the effects of price fluctuations were not The industrial sector, specifically, attracted more studied. Other studies also look at electricity attention since it currently consumes approximately demand trends in South Africa (Odhiambo, 2009; 37% of the world’s
Recommended publications
  • Spatial Transformation: Are Intermediate Cities Different? South African Cities Network: Johannesburg
    CENTRE FOR DEVELOPMENT SUPPORT SENTRUM VIR ONTWIKKELINGSTEUN ACKNOWLEDGEMENTS Lead authors: Lochner Marais (University of the Free State) Danie Du Plessis (Stellenbosch University) Case study authors: Drakenstein: Ronnie Donaldson (Stellenbosch University) King Sabata Dalindyebo: Esethu Ndzamela (Nelson Mandela University) and Anton De Wit (Nelson Mandela University Lephalale: Kgosi Mocwagae (University of the Free State) Matjhabeng: Stuart Denoon-Stevens (University of the Free State) Mahikeng: Verna Nel (University of the Free State) and James Drummond (North West University) Mbombela: Maléne Campbell (University of the Free State) Msunduzi: Thuli Mphambukeli (University of the Free State) Polokwane: Gemey Abrahams (independent consultant) Rustenburg: John Ntema (University of South Africa) Sol Plaatje: Thomas Stewart (University of the Free State) Stellenbosch: Danie Du Plessis (Stellenbosch University) Manager: Geci Karuri-Sebina Editing by Write to the Point Design by Ink Design Photo Credits: Page 2: JDA/SACN Page 16: Edna Peres/SACN Pages 18, 45, 47, 57, 58: Steve Karallis/JDA/SACN Page 44: JDA/SACN Page 48: Tanya Zack/SACN Page 64: JDA/SACN Suggested citation: SACN. 2017. Spatial Transformation: Are Intermediate Cities Different? South African Cities Network: Johannesburg. Available online at www.sacities.net ISBN: 978-0-6399131-0-0 © 2017 by South African Cities Network. Spatial Transformation: Are Intermediate Cities Different? is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. 2 SPATIAL TRANSFORMATION: ARE INTERMEDIATE CITIES DIFFERENT? Foreword As a network whose primary stakeholders are the largest cities, the South African Cities Network (SACN) typically focuses its activities on the “big” end of the urban spectrum (essentially, mainly the metropolitan municipalities).
    [Show full text]
  • Written Statement of Mxolisi Mgojo, the Chief Executive Officer Of
    1 PUBLIC ENTERPRISES PORTFOLIO COMMITTEE INQUIRY INTO ESKOM, TRANSNET AND DENEL WRITTEN STATEMENT OF MXOLISI MGOJO, THE CHIEF EXECUTIVE OFFICER OF EXXARO RESOURCES LIMITED INTRODUCTION ...................................................................................................... 2 COST-PLUS MINES VERSUS COMMERCIAL MINES .......................................... 5 THE SO-CALLED “PRE-PAYMENT” FOR COAL ................................................. 9 PREJUDICE TO EXXARO’S COST-PLUS MINES AND MAFUBE ..................... 11 Introduction ........................................................................................................... 11 Arnot mine ............................................................................................................. 12 Eskom’s failure to fund land acquisition ................................................................. 12 Non-funding of operational capital at Arnot ............................................................ 14 The termination of Arnot’s CSA .............................................................................. 15 Conclusion of the Arnot matters ............................................................................. 19 Mafube mine.......................................................................................................... 19 Matla mine ............................................................................................................. 21 Non-funding of capital of R1.8 billion for mine 1 ...................................................
    [Show full text]
  • 2. DESCRIPTION of the PROPOSED PROJECT In
    Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province 2. DESCRIPTION OF THE PROPOSED PROJECT In order to be able to adequately provide for the growing electricity demand, Eskom propose to construct a new power station with a maximum capacity of 4 800 MegaWatts (MW) in the Lephalale area in the vicinity of the existing Matimba Power Station. Currently the project name for the new proposed power station is Matimba B, but the name will be changed should the project be approved. The power station will be coal-fired, and source coal from local coalfields. 2.1 The Proposed Matimba B Power Station Matimba B Power Station is proposed to ultimately have a maximum installed capacity of up to 4800 MW, but the first phase to be constructed and operated will be approximately half that installed capacity. The exact output will depend on the specification of the equipment installed and the ambient operating conditions. The footprint of the proposed new power station is still to be determined through final engineering and design, but has been indicated by Eskom that the new facility will be similar in size (ground footprint) to the existing Matimba Power Station. The power plant and associated plant (terrace area) would require an area of approximately 700 ha, and an additional approximate 500 - 1000 ha would be required for ancillary services, including ashing facilities (alternate ash disposal options are, however, currently being investigated). It is envisaged that the proposed power station will utilise a range of technologies pertaining to cooling, combustion and pollution abatement.
    [Show full text]
  • Literature Review: Public Health and Ecological Effects of Substances Emitted to Air from Power Plants Documents Published 2013-2020
    REPORT Literature Review: Public Health and Ecological Effects of Substances Emitted to Air from Power Plants Documents Published 2013-2020 Submitted to: Katie Duffett, Project Manager, Clean Air Strategic Alliance 9915-108 Street NW, 1400 Edmonton, Alberta T5K 2G8 Submitted by: Golder Associates Ltd. Suite 200 - 2920 Virtual Way, Vancouver, British Columbia, V5M 0C4, Canada +1 604 296 4200 20397046-001-R-Rev0 18 March 2021 Classification: Protected A 18 March 2021 20397046-001-R-Rev0 Distribution List 1 e-copy Clean Air Strategic Alliance - Health and Environmental Assessment Task Group (HEAT Group) 1 e-copy Golder Associates Ltd. i Classification: Protected A 18 March 2021 20397046-001-R-Rev0 Executive Summary Golder Associates Ltd. (Golder) was retained by the Clean Air Strategic Alliance (CASA) to conduct a literature review on the public health and ecological effects of substances known to be emitted into the air from electricity generation using various resource types (e.g., coal, biomass, fuel oil, waste) from power plants (not limited to stack emissions). The objective of the literature review was to identify new information published from 2013 to 2020 to aid the 2018 Five-Year Review of the 2003 Emissions Management Framework for Alberta Electricity Sector. Golder conducted a search of white and grey literature for the literature review. White literature included primary peer-reviewed journal articles while grey literature included literature published by provincial, federal, and international organizations. Relevant articles were scored using the ‘Checklist for assessing the quality of quantitative studies' (herein referred to as the “Checklist”) developed at the Alberta Heritage Foundation for Medical Research1.
    [Show full text]
  • Renewable Energy Choices and Their Water Requirements in South Africa
    Journal of Energy in Southern Africa 26(4): 80–92 DOI: http://dx.doi.org/10.17159/2413-3051/2014/v25i4a2241 Renewable energy choices and their water requirements in South Africa Debbie Sparks Amos Madhlopa Samantha Keen Mascha Moorlach Anthony Dane Pieter Krog Thuli Dlamini Energy Research Centre, University of Cape Town, Cape Town, South Africa Abstract tive of this study was to investigate and review South Africa is an arid country, where water supply renewable energy choices and water requirements is often obtained from a distant source. There is in South Africa. Data were acquired through a com- increasing pressure on the limited water resources bination of a desktop study and expert interviews. due to economic and population growth, with a Water withdrawal and consumption levels at a given concomitant increase in the energy requirement for stage of energy production were investigated. Most water production. This problem will be exacerbated of the data was collected from secondary sources. by the onset of climate change. Recently, there have Results show that there is limited data on all aspects been concerns about negative impacts arising from of water usage in the production chain of energy, the exploitation of energy resources. In particular, accounting in part for the significant variations in the burning of fossil fuels is significantly contributing the values of water intensity that are reported in the to climate change through the emission of carbon literature. It is vital to take into account all aspects of dioxide, a major greenhouse gas. In addition, fossil the energy life cycle to enable isolation of stages fuels are being depleted, and contributing to where significant amounts of water are used.
    [Show full text]
  • Mercury Emissions from South Africa's Coal-Fired Power Stations
    Mercury emissions from South Africa’s coal-fired power stations Belinda L. Garnham*1 and Kristy E. Langerman1 1Eskom Holdings SOC Limited, Megawatt Park, 1Maxwell Drive, Sunninghill, Sandton, [email protected], [email protected] Received: 8 August 2016 - Reviewed: 3 October 2016 - Accepted: 2 November 2016 http://dx.doi.org/10.17159/2410-972X/2016/v26n2a8 Abstract Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources con- tribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016). Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mer- cury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s) from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations.
    [Show full text]
  • Viability Assessment of Enhancing Dry Cooling Systems Using Thermal Storage Ponds
    Viability Assessment of Enhancing Dry Cooling Systems using Thermal Storage Ponds By: Priyesh Gosai Thesis presented in fulfilment of the requirements for the degree of Master of Science in Engineering in the Faculty ofUniversity Engineering and the Built of Environment Cape at The Town University of Cape Town Supervisor: A/Prof. A. G. Malan Co-supervisor: Dr. J.P. Pretorius June 2014 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration By submitting this, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof ( unless to the extent explicitly otherwise stated) and that I have not, previously in its entirety or in part submitted it for obtaining any qualification. Copyright @2014 University of Cape Town All rights reserved Abstract Dry cooled systems are employed to reject heat in modern power plants. Unfortunately, these cooling systems become less effective under windy con- ditions and when ambient temperatures are high. One proposed solution to this problem is to augment the cooling capacity of the dry cooled system by means of utilizing evaporative cooling ponds which can be operated in paral- lel during adverse ambient conditions. This study investigates a concept for a South African power station.
    [Show full text]
  • Cenyu Scoping Report
    EASTERN CAPE DEPARTMENT OF HOUSING Cenyu/ Cenyulands Housing Dev elopment Scoping Report December 2011 J29034A Arcus GIBB (Pty) Ltd Reg. 1992/007139/07 East London Office: 9 Pearce St reet , Berea , East London PROPOSED CENYU/ CENYULANDS HOUSING DEVELOPMENT DRAFT SCOPING REPORT CONTENTS Chapter Description Page 1 INTRODUCTION 1 1.1 Purpose of Report 1 1.2 EIA Process 1 2 PROPOSED ACTIVITY 5 2.1 Location of the proposed activity 5 2.2 Description of Proposed Activity 7 2.3 Roads 9 2.4 Stormwater Drainage 9 2.5 Bulk Water Supply and Reticulation 12 2.6 Sanitation 13 2.7 Motivation for Proposed Activity 13 2.8 Alternatives 13 3 LEGISLATION AND POLICY GUIDELINES CONSIDERED 15 3.1 The Constitution of South Africa (Act No. 108 of 1996) 15 3.2 The National Environmental Management Act (Act 107 of 1998) 15 3.3 Legislation for the Conservation of Natural Resources 17 3.4 Summary of Relevant Legislation 22 4 DESCRIPTION OF THE RECEIVING ENVIRONMENT 24 4.1 Introduction 24 4.2 Physical Environment 24 4.3 Biological Environment 27 4.4 Socio-Economic Environment 31 4.5 Cultural/ Historical sites 32 i 5 DESCRIPTION OF ENVIRONMENTAL ISSUES AND IMPACTS IDENTIFIED 33 5.1 Project activities affecting the environment 33 5.2 Need and Desirability of Project 34 5.3 Biophysical Impacts 35 5.4 Ecological Impacts 36 5.5 Socio-economic Impacts 37 5.6 Cumulative Impacts 37 5.7 Key Issues to be addressed in the EIA Phase 38 6 METHODOLOGY IN ASSESSING IMPACTS 39 6.1 Introduction 39 7 PLAN OF STUDY FOR EIA 42 7.1 Introduction 42 7.2 Key Issues to be addressed in the
    [Show full text]
  • Spare Parts Management in South African Power Stations
    An Investigation on Inefficiencies in Spare Part Management Processes in South African Power Plants Roṋewa E. Goliada (BSc.Eng - Wits; BEngHons – U.P.) Student Number: 14353777 Research Supervisor: Professor J.L. Coetzee Dissertation submitted in fulfilment of the requirements of the degree MEng (Mechanical Engineering) at the University of Pretoria February 2018 i ABSTRACT ABSTRACT Inefficiencies in spare parts management can, and do, have great repercussions for the execution of maintenance in Eskom power stations. Despite this, the sub-processes of spare parts management in power stations had not yet been subjected to rigorous analysis to identify inefficiencies. Consequently, the purpose of this research was to establish the inefficiencies that exist in the management of spare parts in South African power stations, and also to determine the causes of the inefficiencies. All this was done with the intent of recommending a solution to improve spare parts management. It was for this reason that this research was conducted in 13 Eskom coal-fired power stations in South Africa. The first phase of the research was concerned with uncovering and documenting the spare parts management model presently used in Eskom. The second phase included the use of a modified process failure mode and effect analysis (PFMEA) and the Delphi method to identify inefficiencies, their sources, and their significance. The research found that the inefficiencies included unsuitable maintenance and inventory management strategies, as a result of inadequate analysis of plant history. Furthermore, the study established that inadequate analysis of history was a result of poor maintenance records, incompetence, and the lack of access to computerised maintenance management systems (CMMSs).
    [Show full text]
  • Company Profile
    Access & Support Scaffolding Marine Scaffolding & Offshore Personnel Supply Entertainment & Event Platforms & Seating Thermal & Sound Insulation & Cladding Corrosion Protection & Industrial Coatings Asbestos Removal Corporate Profile Committed to Performance Excellence www.sgbcape.co.za We are Who We Are History SGB Scaffolding Systems (SGB), a division of Waco Africa in South Africa was formed in 1948 and has operated in the scaffolding business for over half a century. In February 2005, Waco Africa acquired Cape Contracts, who offered insulation, scaffolding and corrosion protection services to its customers for more than fifty years. As part of Waco Africa’s strategy to provide sustainable stakeholder value and meet our customers ever increasing needs for an integrated service, it was decided to combine these insulation and scaffolding offerings. SGB and Cape Contracts integrated into a brand new division of Waco Africa called SGB-Cape. Waco Africa is owned by Waco International and well respected black empowerment partner Bopa Moruo. We are Waco International SGB-Cape is part of Waco International, a focused equipment rental and industrial services business with operations in Africa (South Africa and other sub-Saharan African countries), Australasia (Australia and New Zealand), the United Kingdom and Chile. The Group provides services in the areas of formwork, shoring and scaffolding, insulation, painting and blasting, hydraulic and suspended access platforms, relocatable modular buildings, portable sanitation products and integrated hygiene services. Africa Africa Africa Africa Africa New Zealand New Zealand UK Australia Australia Front cover: Kusile Power Station A1 Grand Prix seating, Durban We offer a one stop service to our clients Access to arches over Moses Mabida Stadium, Durban, for 2010 World Cup What We Do Core Services SGB-Cape is well positioned to offer four lines of business namely; Access Scaffolding, Thermal Insulation and Cladding, Industrial Corrosion Protection and Asbestos Abatement.
    [Show full text]
  • Environmental Impact Assessment for the Two Proposed Coal-Fired Power Stations in the Waterberg Area, Limpopo DEAT Ref No
    ESKOM Environmental Impact Assessment for the two proposed coal-fired power stations in the Waterberg area, Limpopo DEAT Ref No. 12/12/20/1255 Draft minutes of the Authority Focus Group Meeting Friday, 3 October 2008 at 11:00, Machauka Lodge, Lephalale 1. INTRODUCTION The facilitator, Ms Anelle Odendaal, Zitholele Consulting welcomed all participants. The meeting was attended by local, district, provincial and national authorities relevant to this project. The contact details of those who attended are attached (See Appendix 1). 2. OBJECTIVES OF THE MEETING The objectives of this focus group meeting were to: · Provide stakeholders with an overview of the proposed project; · For stakeholders to raise issues of concern and suggestions for enhanced benefits; · For stakeholders to comment on the technical and public participation processes of the Environmental Impact Assessment (EIA) process; and · For members of the EIA team to gather first-hand insight into stakeholders’ issues of concern and suggestions for enhanced benefits. 1 3. OVERVIEW OF THE PROPOSED PROJECT Mr Leonard van der Walt, Eskom Holdings Pty (Ltd) gave a comprehensive overview, not only of the proposed power stations, but of Eskom’s national power grid and the significant role that the proposed power stations will play in providing energy (see Appendix 2 for his presentation). 4. APPROACH TO ENVIRONMENTAL IMPACT ASSESSMENT – TECHNICAL COMPONENT Mr Ashwin West, Ninham Shand Consulting Services, the project manager of this EIA, gave a brief overview of the EIA process, concentrating on: · Legislation; · Description of the process; · Activities involved; · Selection of alternative sites; and · Scheduling. (See Appendix 2 for his presentation).
    [Show full text]
  • United Nations Environment Programme
    UNITED NATIONS ENVIRONMENT PROGRAMME _____________________________________________________________________________ REDUCING MERCURY EMISSIONS FROM COAL COMBUSTION IN THE ENERGY SECTOR IN SOUTH AFRICA FINAL PROJECT REPORT Report prepared by: Dr Gregory Scott - Special Advisor: Industrial Process Engineering, Department of Environmental Affairs, Republic of South Africa, October 2011 Disclaimer Based on the agreement between the United Nations Environment Programme (UNEP) and the South African Department of Environmental Affairs (DEA), the UNEP agreed to co-operate with the DEA with respect to the project entitled: “Reducing mercury emissions from coal combustion in the energy sector in South Africa”. The information provided in this report is based primarily on published data derived from the participating companies and institutions. This report has been prepared as part of the above mentioned project for the UNEP Chemicals Branch, Division of Technology, Industry and Economics. Material in this report can be freely quoted or reprinted. However, acknowledgement is requested together with a reference to the report. The work was funded by the European Union with in-kind support from the United States - Environmental Protection Agency (US-EPA). The electronic version of the report can be found on UNEP website: www.unep.org/ or it can be requested from: United Nations Environment Programme UNEP Chemicals International Environment House 11-13 Chemin des Anémones CH-1219 Châtelaine Geneva, Switzerland Phone: +41 22 917 1234 E-mail: [email protected] Acknowledgements The technical support of the United Nations Environment Programme, specifically the Coal Partnership of the Global Mercury Partnership is acknowledged. The financial support of the European Union, through the UNEP Global Mercury Partnership is acknowledged.
    [Show full text]