Maintenance Management for Effective Operations Management at Matimba Power Station

Total Page:16

File Type:pdf, Size:1020Kb

Maintenance Management for Effective Operations Management at Matimba Power Station Maintenance management for effective operations management at Matimba Power Station by Oufa Ernest Mutloane 20391765 Mini-dissertation submitted in partial fulfilment of the requirements for the degree of Master in Business Administration at the Potchefstroom Campus of the North-West University Supervisor: Mr Henry Lotz November 2009 ABSTRACT Effective and efficient operations management is the cornerstone of any company's success. Presently, because of cost-cutting pressures, all investors look out for companies' operations before making any investment commitment. The South African Government (through the Department of Public Enterprises), as an owner and investor in Eskom, is looking at optimising operational excellence within state-owned enterprises like Eskom. Eskom is presently experiencing problems with increased electricity consumption which it cannot meet due to the limited plant capacity it presently has. These challenges are forcing Eskom to be more efficient and effective in management of the present plant assets (like Matimba Power Station) it presently operates. Matimba Power Station has consistently shown improvement in the areas of plant, financial and operations performance over the last three years. It is presently the standard bearer for the whole Eskom in terms of plant and operational performance. Asset management (through maintenance and management thereof), especially preventative management with in a power utility like Eskom, is a critical factor because supply (generation of electricity) has to meet demand (consumption of electricity) instantaneously as electricity cannot be saved . The planning, scheduling and execution of maintenance (through a work management process) to ensure success of business operations are very critical. An Eskom document titled Routine Work Management Manual emphasised the criticality of preventative management and included a six-step process of work management within the power generation business. The Japanese success in ensuring that operations costs are limited by implementing total productive maintenance (which includes work management) is suggested in the study as a way to go for operational success at Matimba Power Station. Many of the research studies done at Eskom in regard to maintenance were based on and confined to a sampling population of senior staff members like managers, engineers and supervisors. Experience has shown that progress of implementing change (whether in systems or structures) is slow if there was no proactive involvement of all participants and stakeholders, especially employees at lower levels involved in operations. A work management process, which is one of the pillars of total productive maintenance , was ii recently implemented at Matimba and is currently experiencing teething problems which are being attended to. Employee involvement in making sure of the success of work management is critical. The study investigates the implementation of work management from the employees' perspective in order to address problems for possible full implementation of total productive maintenance. Key words: Operations management; maintenance management; power station; work management; total productive maintenance; preventative maintenance Ill ACKNOWLEDGEMENTS I would like to acknowledge the following persons for making th is study a reality: • My deepest gratitude is to my Heavenly Father, who took me from nothing to great heights. • I would like to thank my supervisor, Mr Henry Lotz, for his guidance throughout the research . • I am grateful to the staff at Potchefstroom especially Wilma Pretorius for the passion for her work and assistance to all MBA students throughout the years of our studies. She is a real example to us. • My deep appreciation is to my children, Mpho, Katlego and Tshiu, for their support through the most stressful period. • My wife, Pinky, who has been a rock for the foundation we are laying. • To my mother, who fought for 42 years of being a widow to make sure that her children go through life's challenges. • Mrs Antoinette Bisschoff, for editing the text. iv TABLE OF CONTENTS Abstract ii Acknowledgements iii List of figures ix List of tables X List of abbreviations XI CHAPTER 1: NATURE AND SCOPE OF THE STUDY 1 1.1 INTRODUCTION 1 1.2 PROBLEM STATEMENT 3 1.3 OBJECTIVES OF THE STUDY 3 1.3.1 Primary objectives 3 1.3.2 Secondary objectives 4 1.4 SCOPE OF THE STUDY 4 1.5 RESEARCH METHODOLOGY 4 1.5.1 Literature study 4 1.5.2 Empirical study 5 1.6 LIMITATION OF THE STUDY 5 1.7 LAYOUT AND STRUCTURE OF THE STUDY 6 1.8 SUMMARY 7 CHAPTER 2: LITERATURE REVIEW 8 2.1 INTRODUCTION 8 2.2 DEFINING OPERATIONS MANAGEMENT 9 2.3 BRIEF OVERVIEW OF MATIMBA OPERATIONS 9 2.3.1 Structures and responsibilities at Matimba 10 2.3.2 Processes at Matimba 13 2.3.3 Operations challenges at Matimba 15 2.4 OPERATIONS MANAGEMENT 17 2.4.1 Quality controls in operations 18 2.4.2 Production and productivity within operations 19 2.4.3 Departments' integration within operations 20 2.4.4 Maintenance management within operations 22 v Table of Contents (continued) 2.4.5 Operations performance 22 2.4.6 Employees' involvement in operations change initiatives 23 2.5 MAINTENANCE MANAGEMENT 26 2.5.1 Defining maintenance 26 2.5.2 ~ypes of maintenance 27 2.5.3 Tools and systems used for maintenance management 29 2.5.4 Current state of maintenance at Matimba 31 2.6 TOTAL PRODUCTIVE MAINTENANCE (TPM) 32 2.6.1 Defining TPM 32 2.6.2 Background information on TPM 32 2.6.3 Pillars of TPM 34 2.6.3.1 Autonomous maintenance pillar 34 2.6.3.2 Preventative maintenance (work management) pillar 35 2.6.3.3 Focused improvement (reliability optimisation) pillar 36 2.6.3.4 Quality pillar 38 2.6.3.5 Training and skills development pillar 38 2.6.3.6 Five-S pillar 38 2.6.3.7 Work management pillar and its implementation at Matimba 40 2.7 SUMMARY 42 CHAPTER 3 EMPIRICAL ANALYSIS 41 3.1 INTRODUCTION 41 3.2 SAMPLE SELECTION 44 3.3 MEASURING INSTRUMENTS 44 3.4 DESIGN OF RESEARCH AND QUESTIONNAIRE 45 3.5 STATISTICAL ANALYSIS AND RESULTS 46 3.5.1 Mean values 46 3.5.2 Standard deviation results 48 3.5.3 Test of significance 49 3.6 QUESTIONNAIRE ANALYSIS AND RESULTS 51 3.6.1 Communication and employee involvement in work management 51 3.6.2 Performance and effectiveness of work management 52 3.6.3 Team integration 52 VI Table of Contents (continued) 3.6.4 Sharing of responsibilities 52 3.6.5 Training 52 3.6.6 Work practices within Matimba 52 3.6.7 Experience and expertise on equipment and plant 53 3.6.8 Interference of work management on existing processes 53 3.6.9 Support for change 53 3.6.10 Implementation of TPM 53 3.7 SUMMARY 54 CHAPTER4 CONCLUSION AND RECOMMENDATIONS 54 4.1 INTRODUCTION 54 4.2 CONCLUSION 56 4.3 ACHIEVEMENT OF THE STUDY'S OBJECTIVES 56 4.4 RECOMMENDATIONS 57 4.4.1 Structures and responsibilities 57 4.4.2 Challenges facing Matimba 58 4.4.3 Quality management 58 4.4.4 Integration between departments 58 4.4.5 Employee involvement in change initiatives 58 4.4.6 State of Maintenance at Matimba 59 4.4.7 Total productive maintenance 59 4.5 SUMMARY 60 REFERENCES 61 APPENDIX A: QUESTIONNAIRE 65 VI I LIST OF FIGURES FIGURE 1.1 : STUDY PROCESS LAYOUT 6 FIGURE 2.1: DEPARTMENTAL STRUCTURES AT MATIMBA POWER STATION 10 FIGURE 2.2: MATIMBA OPERATIONS STRATEGY 10 FIGURE 2.3: A PRODUCTION SYSTEM MODEL 13 FIGURE 2.4: MATIMBA OPERATIONS STRATEGY 15 FIGURE 2.5: PROCESS CONTROL AT MATIMBA 15 FIGURE 2.6: QUALITY CONTROL THROUGHOUT PRODUCTION SYSTEM 18 FIGURE 2.7: EFFECTS OF SEPARATING FUNCTIONS IN PRODUCTION ENVIRONMENTS 20 FIGURE 2.8: INTEGRATING MAINTENANCE WITH PRODUCTION 21 FIGURE 2.9: COMPARISON OF ESKOM POWER STATIONS' OPERATING COSTS IN RIMWH 22 FIGURE 2.10: BEHAVIOUR/PERFORMANCE MATRIX 24 FIGURE 2.11: DIFFERENT TYPES OF MAINTENANCE STRATEGIES 28 FIGURE 2.12: ASSET MANAGEMENT PROCESS 35 FIGURE 2.13: SIX-STEP PROCESS FOR ROUTINE WORK MANAGEMENT 36 FIGURE 2.14: ASSET MANAGEMENT PROCESS (WITHIN ESKOM GENERATION) 37 FIGURE 3.1: VIEWS OF OPERATING AND MAINTENANCE EMPLOYEES (MEANS) 48 FIGURE 3.2: VIEWS OF OPERATING AND MAINTENANCE EMPLOYEES (STANDARD DEVIATIONS) 48 viii LIST OF TABLES TABLE2.1: IMPROVING MEAN TIME BETWEEN FAILURES 25 TABLE 2.2: PRIORITY TABLE 39 TABLE3.1: MEAN VALUES OF THE EMPLOYEES' VIEWS ON WORK MANAGEMENT 47 TABLE 3.2 STANDARD DEVIATION VALUES OF THE EMPLOYEES' VIEWS ON WORK MANAGEMENT 49 TABLE 3.3: MATIMBA EMPLOYEES' VIEWS ON WORK MANAGEMENT (TEST OF SIGNIFICANCE) 50 ix LIST OF ABBREVIATIONS BTL Boiler Tube Leaks BU Business Unit CBM Conditioned Based Maintenance CM Corrective Maintenance CMMS Computerised Maintenance Management System ERA Electricity Regulation Act ERP Enterprise Resource Planning (system like SAP) ERP Enterprise Resource Program EPRI Electricity Power Research Institute GO General Overhaul HMI Human Machine Interface JIPM Japanese Institute of Plant Management JIT Just in Time KPA Key Performance Area KPI Key Performance Indicator LOPP Life of Plant Plan MW Megawatt MTBF Mean Time between Failures OEE Overall Equipment Effectiveness OEM Original Equipment Manufacturer OHS Occupational Health and Safety Act OMS Occurrence Management System OPSLOG System used by Operating Department to log in daily Plant incidents OTS Operating Technical Specification PCLF Planned Capability Loss Factor PM Preventative Maintenance POP Process Quality Plan QCP Quality Control Procedure RCM Re liability Centred Maintenance RFID Radio Frequency Identification RPL Recognition of Prior Learning X SAP PM Module ERP sub-module used in Eskom generation for maintenance management SAP System Application ERP System used by most companies in South Africa TPM Total Productive Maintenance TPS Toyota Production System TPS Toyota Production System UCF Unit Capability Factor UCLF Unplanned Capability Loss Factor WM Work Management xi CHAPTER 1 NATURE AND SCOPE OF THE STUDY 1.1 INTRODUCTION It is the first time in Eskom's 80 years' history as a public services utility to attain such media scrutiny regarding operational performance of its power stations.
Recommended publications
  • Spatial Transformation: Are Intermediate Cities Different? South African Cities Network: Johannesburg
    CENTRE FOR DEVELOPMENT SUPPORT SENTRUM VIR ONTWIKKELINGSTEUN ACKNOWLEDGEMENTS Lead authors: Lochner Marais (University of the Free State) Danie Du Plessis (Stellenbosch University) Case study authors: Drakenstein: Ronnie Donaldson (Stellenbosch University) King Sabata Dalindyebo: Esethu Ndzamela (Nelson Mandela University) and Anton De Wit (Nelson Mandela University Lephalale: Kgosi Mocwagae (University of the Free State) Matjhabeng: Stuart Denoon-Stevens (University of the Free State) Mahikeng: Verna Nel (University of the Free State) and James Drummond (North West University) Mbombela: Maléne Campbell (University of the Free State) Msunduzi: Thuli Mphambukeli (University of the Free State) Polokwane: Gemey Abrahams (independent consultant) Rustenburg: John Ntema (University of South Africa) Sol Plaatje: Thomas Stewart (University of the Free State) Stellenbosch: Danie Du Plessis (Stellenbosch University) Manager: Geci Karuri-Sebina Editing by Write to the Point Design by Ink Design Photo Credits: Page 2: JDA/SACN Page 16: Edna Peres/SACN Pages 18, 45, 47, 57, 58: Steve Karallis/JDA/SACN Page 44: JDA/SACN Page 48: Tanya Zack/SACN Page 64: JDA/SACN Suggested citation: SACN. 2017. Spatial Transformation: Are Intermediate Cities Different? South African Cities Network: Johannesburg. Available online at www.sacities.net ISBN: 978-0-6399131-0-0 © 2017 by South African Cities Network. Spatial Transformation: Are Intermediate Cities Different? is made available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. 2 SPATIAL TRANSFORMATION: ARE INTERMEDIATE CITIES DIFFERENT? Foreword As a network whose primary stakeholders are the largest cities, the South African Cities Network (SACN) typically focuses its activities on the “big” end of the urban spectrum (essentially, mainly the metropolitan municipalities).
    [Show full text]
  • Written Statement of Mxolisi Mgojo, the Chief Executive Officer Of
    1 PUBLIC ENTERPRISES PORTFOLIO COMMITTEE INQUIRY INTO ESKOM, TRANSNET AND DENEL WRITTEN STATEMENT OF MXOLISI MGOJO, THE CHIEF EXECUTIVE OFFICER OF EXXARO RESOURCES LIMITED INTRODUCTION ...................................................................................................... 2 COST-PLUS MINES VERSUS COMMERCIAL MINES .......................................... 5 THE SO-CALLED “PRE-PAYMENT” FOR COAL ................................................. 9 PREJUDICE TO EXXARO’S COST-PLUS MINES AND MAFUBE ..................... 11 Introduction ........................................................................................................... 11 Arnot mine ............................................................................................................. 12 Eskom’s failure to fund land acquisition ................................................................. 12 Non-funding of operational capital at Arnot ............................................................ 14 The termination of Arnot’s CSA .............................................................................. 15 Conclusion of the Arnot matters ............................................................................. 19 Mafube mine.......................................................................................................... 19 Matla mine ............................................................................................................. 21 Non-funding of capital of R1.8 billion for mine 1 ...................................................
    [Show full text]
  • 2. DESCRIPTION of the PROPOSED PROJECT In
    Environmental Scoping Report for the proposed establishment of a New Coal-Fired Power Station in the Lephalale Area, Limpopo Province 2. DESCRIPTION OF THE PROPOSED PROJECT In order to be able to adequately provide for the growing electricity demand, Eskom propose to construct a new power station with a maximum capacity of 4 800 MegaWatts (MW) in the Lephalale area in the vicinity of the existing Matimba Power Station. Currently the project name for the new proposed power station is Matimba B, but the name will be changed should the project be approved. The power station will be coal-fired, and source coal from local coalfields. 2.1 The Proposed Matimba B Power Station Matimba B Power Station is proposed to ultimately have a maximum installed capacity of up to 4800 MW, but the first phase to be constructed and operated will be approximately half that installed capacity. The exact output will depend on the specification of the equipment installed and the ambient operating conditions. The footprint of the proposed new power station is still to be determined through final engineering and design, but has been indicated by Eskom that the new facility will be similar in size (ground footprint) to the existing Matimba Power Station. The power plant and associated plant (terrace area) would require an area of approximately 700 ha, and an additional approximate 500 - 1000 ha would be required for ancillary services, including ashing facilities (alternate ash disposal options are, however, currently being investigated). It is envisaged that the proposed power station will utilise a range of technologies pertaining to cooling, combustion and pollution abatement.
    [Show full text]
  • Literature Review: Public Health and Ecological Effects of Substances Emitted to Air from Power Plants Documents Published 2013-2020
    REPORT Literature Review: Public Health and Ecological Effects of Substances Emitted to Air from Power Plants Documents Published 2013-2020 Submitted to: Katie Duffett, Project Manager, Clean Air Strategic Alliance 9915-108 Street NW, 1400 Edmonton, Alberta T5K 2G8 Submitted by: Golder Associates Ltd. Suite 200 - 2920 Virtual Way, Vancouver, British Columbia, V5M 0C4, Canada +1 604 296 4200 20397046-001-R-Rev0 18 March 2021 Classification: Protected A 18 March 2021 20397046-001-R-Rev0 Distribution List 1 e-copy Clean Air Strategic Alliance - Health and Environmental Assessment Task Group (HEAT Group) 1 e-copy Golder Associates Ltd. i Classification: Protected A 18 March 2021 20397046-001-R-Rev0 Executive Summary Golder Associates Ltd. (Golder) was retained by the Clean Air Strategic Alliance (CASA) to conduct a literature review on the public health and ecological effects of substances known to be emitted into the air from electricity generation using various resource types (e.g., coal, biomass, fuel oil, waste) from power plants (not limited to stack emissions). The objective of the literature review was to identify new information published from 2013 to 2020 to aid the 2018 Five-Year Review of the 2003 Emissions Management Framework for Alberta Electricity Sector. Golder conducted a search of white and grey literature for the literature review. White literature included primary peer-reviewed journal articles while grey literature included literature published by provincial, federal, and international organizations. Relevant articles were scored using the ‘Checklist for assessing the quality of quantitative studies' (herein referred to as the “Checklist”) developed at the Alberta Heritage Foundation for Medical Research1.
    [Show full text]
  • Renewable Energy Choices and Their Water Requirements in South Africa
    Journal of Energy in Southern Africa 26(4): 80–92 DOI: http://dx.doi.org/10.17159/2413-3051/2014/v25i4a2241 Renewable energy choices and their water requirements in South Africa Debbie Sparks Amos Madhlopa Samantha Keen Mascha Moorlach Anthony Dane Pieter Krog Thuli Dlamini Energy Research Centre, University of Cape Town, Cape Town, South Africa Abstract tive of this study was to investigate and review South Africa is an arid country, where water supply renewable energy choices and water requirements is often obtained from a distant source. There is in South Africa. Data were acquired through a com- increasing pressure on the limited water resources bination of a desktop study and expert interviews. due to economic and population growth, with a Water withdrawal and consumption levels at a given concomitant increase in the energy requirement for stage of energy production were investigated. Most water production. This problem will be exacerbated of the data was collected from secondary sources. by the onset of climate change. Recently, there have Results show that there is limited data on all aspects been concerns about negative impacts arising from of water usage in the production chain of energy, the exploitation of energy resources. In particular, accounting in part for the significant variations in the burning of fossil fuels is significantly contributing the values of water intensity that are reported in the to climate change through the emission of carbon literature. It is vital to take into account all aspects of dioxide, a major greenhouse gas. In addition, fossil the energy life cycle to enable isolation of stages fuels are being depleted, and contributing to where significant amounts of water are used.
    [Show full text]
  • Mercury Emissions from South Africa's Coal-Fired Power Stations
    Mercury emissions from South Africa’s coal-fired power stations Belinda L. Garnham*1 and Kristy E. Langerman1 1Eskom Holdings SOC Limited, Megawatt Park, 1Maxwell Drive, Sunninghill, Sandton, [email protected], [email protected] Received: 8 August 2016 - Reviewed: 3 October 2016 - Accepted: 2 November 2016 http://dx.doi.org/10.17159/2410-972X/2016/v26n2a8 Abstract Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources con- tribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016). Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mer- cury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s) from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations.
    [Show full text]
  • Viability Assessment of Enhancing Dry Cooling Systems Using Thermal Storage Ponds
    Viability Assessment of Enhancing Dry Cooling Systems using Thermal Storage Ponds By: Priyesh Gosai Thesis presented in fulfilment of the requirements for the degree of Master of Science in Engineering in the Faculty ofUniversity Engineering and the Built of Environment Cape at The Town University of Cape Town Supervisor: A/Prof. A. G. Malan Co-supervisor: Dr. J.P. Pretorius June 2014 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration By submitting this, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof ( unless to the extent explicitly otherwise stated) and that I have not, previously in its entirety or in part submitted it for obtaining any qualification. Copyright @2014 University of Cape Town All rights reserved Abstract Dry cooled systems are employed to reject heat in modern power plants. Unfortunately, these cooling systems become less effective under windy con- ditions and when ambient temperatures are high. One proposed solution to this problem is to augment the cooling capacity of the dry cooled system by means of utilizing evaporative cooling ponds which can be operated in paral- lel during adverse ambient conditions. This study investigates a concept for a South African power station.
    [Show full text]
  • Cenyu Scoping Report
    EASTERN CAPE DEPARTMENT OF HOUSING Cenyu/ Cenyulands Housing Dev elopment Scoping Report December 2011 J29034A Arcus GIBB (Pty) Ltd Reg. 1992/007139/07 East London Office: 9 Pearce St reet , Berea , East London PROPOSED CENYU/ CENYULANDS HOUSING DEVELOPMENT DRAFT SCOPING REPORT CONTENTS Chapter Description Page 1 INTRODUCTION 1 1.1 Purpose of Report 1 1.2 EIA Process 1 2 PROPOSED ACTIVITY 5 2.1 Location of the proposed activity 5 2.2 Description of Proposed Activity 7 2.3 Roads 9 2.4 Stormwater Drainage 9 2.5 Bulk Water Supply and Reticulation 12 2.6 Sanitation 13 2.7 Motivation for Proposed Activity 13 2.8 Alternatives 13 3 LEGISLATION AND POLICY GUIDELINES CONSIDERED 15 3.1 The Constitution of South Africa (Act No. 108 of 1996) 15 3.2 The National Environmental Management Act (Act 107 of 1998) 15 3.3 Legislation for the Conservation of Natural Resources 17 3.4 Summary of Relevant Legislation 22 4 DESCRIPTION OF THE RECEIVING ENVIRONMENT 24 4.1 Introduction 24 4.2 Physical Environment 24 4.3 Biological Environment 27 4.4 Socio-Economic Environment 31 4.5 Cultural/ Historical sites 32 i 5 DESCRIPTION OF ENVIRONMENTAL ISSUES AND IMPACTS IDENTIFIED 33 5.1 Project activities affecting the environment 33 5.2 Need and Desirability of Project 34 5.3 Biophysical Impacts 35 5.4 Ecological Impacts 36 5.5 Socio-economic Impacts 37 5.6 Cumulative Impacts 37 5.7 Key Issues to be addressed in the EIA Phase 38 6 METHODOLOGY IN ASSESSING IMPACTS 39 6.1 Introduction 39 7 PLAN OF STUDY FOR EIA 42 7.1 Introduction 42 7.2 Key Issues to be addressed in the
    [Show full text]
  • Spare Parts Management in South African Power Stations
    An Investigation on Inefficiencies in Spare Part Management Processes in South African Power Plants Roṋewa E. Goliada (BSc.Eng - Wits; BEngHons – U.P.) Student Number: 14353777 Research Supervisor: Professor J.L. Coetzee Dissertation submitted in fulfilment of the requirements of the degree MEng (Mechanical Engineering) at the University of Pretoria February 2018 i ABSTRACT ABSTRACT Inefficiencies in spare parts management can, and do, have great repercussions for the execution of maintenance in Eskom power stations. Despite this, the sub-processes of spare parts management in power stations had not yet been subjected to rigorous analysis to identify inefficiencies. Consequently, the purpose of this research was to establish the inefficiencies that exist in the management of spare parts in South African power stations, and also to determine the causes of the inefficiencies. All this was done with the intent of recommending a solution to improve spare parts management. It was for this reason that this research was conducted in 13 Eskom coal-fired power stations in South Africa. The first phase of the research was concerned with uncovering and documenting the spare parts management model presently used in Eskom. The second phase included the use of a modified process failure mode and effect analysis (PFMEA) and the Delphi method to identify inefficiencies, their sources, and their significance. The research found that the inefficiencies included unsuitable maintenance and inventory management strategies, as a result of inadequate analysis of plant history. Furthermore, the study established that inadequate analysis of history was a result of poor maintenance records, incompetence, and the lack of access to computerised maintenance management systems (CMMSs).
    [Show full text]
  • Company Profile
    Access & Support Scaffolding Marine Scaffolding & Offshore Personnel Supply Entertainment & Event Platforms & Seating Thermal & Sound Insulation & Cladding Corrosion Protection & Industrial Coatings Asbestos Removal Corporate Profile Committed to Performance Excellence www.sgbcape.co.za We are Who We Are History SGB Scaffolding Systems (SGB), a division of Waco Africa in South Africa was formed in 1948 and has operated in the scaffolding business for over half a century. In February 2005, Waco Africa acquired Cape Contracts, who offered insulation, scaffolding and corrosion protection services to its customers for more than fifty years. As part of Waco Africa’s strategy to provide sustainable stakeholder value and meet our customers ever increasing needs for an integrated service, it was decided to combine these insulation and scaffolding offerings. SGB and Cape Contracts integrated into a brand new division of Waco Africa called SGB-Cape. Waco Africa is owned by Waco International and well respected black empowerment partner Bopa Moruo. We are Waco International SGB-Cape is part of Waco International, a focused equipment rental and industrial services business with operations in Africa (South Africa and other sub-Saharan African countries), Australasia (Australia and New Zealand), the United Kingdom and Chile. The Group provides services in the areas of formwork, shoring and scaffolding, insulation, painting and blasting, hydraulic and suspended access platforms, relocatable modular buildings, portable sanitation products and integrated hygiene services. Africa Africa Africa Africa Africa New Zealand New Zealand UK Australia Australia Front cover: Kusile Power Station A1 Grand Prix seating, Durban We offer a one stop service to our clients Access to arches over Moses Mabida Stadium, Durban, for 2010 World Cup What We Do Core Services SGB-Cape is well positioned to offer four lines of business namely; Access Scaffolding, Thermal Insulation and Cladding, Industrial Corrosion Protection and Asbestos Abatement.
    [Show full text]
  • Environmental Impact Assessment for the Two Proposed Coal-Fired Power Stations in the Waterberg Area, Limpopo DEAT Ref No
    ESKOM Environmental Impact Assessment for the two proposed coal-fired power stations in the Waterberg area, Limpopo DEAT Ref No. 12/12/20/1255 Draft minutes of the Authority Focus Group Meeting Friday, 3 October 2008 at 11:00, Machauka Lodge, Lephalale 1. INTRODUCTION The facilitator, Ms Anelle Odendaal, Zitholele Consulting welcomed all participants. The meeting was attended by local, district, provincial and national authorities relevant to this project. The contact details of those who attended are attached (See Appendix 1). 2. OBJECTIVES OF THE MEETING The objectives of this focus group meeting were to: · Provide stakeholders with an overview of the proposed project; · For stakeholders to raise issues of concern and suggestions for enhanced benefits; · For stakeholders to comment on the technical and public participation processes of the Environmental Impact Assessment (EIA) process; and · For members of the EIA team to gather first-hand insight into stakeholders’ issues of concern and suggestions for enhanced benefits. 1 3. OVERVIEW OF THE PROPOSED PROJECT Mr Leonard van der Walt, Eskom Holdings Pty (Ltd) gave a comprehensive overview, not only of the proposed power stations, but of Eskom’s national power grid and the significant role that the proposed power stations will play in providing energy (see Appendix 2 for his presentation). 4. APPROACH TO ENVIRONMENTAL IMPACT ASSESSMENT – TECHNICAL COMPONENT Mr Ashwin West, Ninham Shand Consulting Services, the project manager of this EIA, gave a brief overview of the EIA process, concentrating on: · Legislation; · Description of the process; · Activities involved; · Selection of alternative sites; and · Scheduling. (See Appendix 2 for his presentation).
    [Show full text]
  • United Nations Environment Programme
    UNITED NATIONS ENVIRONMENT PROGRAMME _____________________________________________________________________________ REDUCING MERCURY EMISSIONS FROM COAL COMBUSTION IN THE ENERGY SECTOR IN SOUTH AFRICA FINAL PROJECT REPORT Report prepared by: Dr Gregory Scott - Special Advisor: Industrial Process Engineering, Department of Environmental Affairs, Republic of South Africa, October 2011 Disclaimer Based on the agreement between the United Nations Environment Programme (UNEP) and the South African Department of Environmental Affairs (DEA), the UNEP agreed to co-operate with the DEA with respect to the project entitled: “Reducing mercury emissions from coal combustion in the energy sector in South Africa”. The information provided in this report is based primarily on published data derived from the participating companies and institutions. This report has been prepared as part of the above mentioned project for the UNEP Chemicals Branch, Division of Technology, Industry and Economics. Material in this report can be freely quoted or reprinted. However, acknowledgement is requested together with a reference to the report. The work was funded by the European Union with in-kind support from the United States - Environmental Protection Agency (US-EPA). The electronic version of the report can be found on UNEP website: www.unep.org/ or it can be requested from: United Nations Environment Programme UNEP Chemicals International Environment House 11-13 Chemin des Anémones CH-1219 Châtelaine Geneva, Switzerland Phone: +41 22 917 1234 E-mail: [email protected] Acknowledgements The technical support of the United Nations Environment Programme, specifically the Coal Partnership of the Global Mercury Partnership is acknowledged. The financial support of the European Union, through the UNEP Global Mercury Partnership is acknowledged.
    [Show full text]