Technologies Des Transports Transport Des Personnes Résumé | Les Systèmes De Transport CIV6707A ! Par Pierre-Léo Bourbonnais Référence Principale: VUCHIC, Vukan R

Total Page:16

File Type:pdf, Size:1020Kb

Technologies Des Transports Transport Des Personnes Résumé | Les Systèmes De Transport CIV6707A ! Par Pierre-Léo Bourbonnais Référence Principale: VUCHIC, Vukan R Technologies des transports Transport des personnes Résumé | Les systèmes de transport CIV6707A ! Par Pierre-Léo Bourbonnais Référence principale: VUCHIC, Vukan R. Urban Transit Systems and Technology, 2007 Chapitres 2 & 5 à 10 Des extraits du livre VUCHIC, Vukan R. Urban Transit Systems and Technology,1 © 2007 John Wiley & Sons, Inc. sont insérés dans ce document avec la permission de l’éditeur CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Contenu de la présentation • Priorités de passage et • Modes sur rail • Comment les évaluer? vitesses • Tramway (Streetcar) • Courtes distances • Évolution optimale d’une • SLR • Téléphériques ville • SRR / Métros • Bateaux et traversiers • Modes sur rue • Trains régionaux / Trains • Modes parallèles • Minibus de banlieue • Location de voitures et • Midibus • Tram-train covoiturage • Bus régulier • Véhicules et design • Semi-public • Bus articulé et bi-articulé • Impacts • Autopartage • Bus à impériale • Coûts • Taxi • Trolleybus • Tendance et rôles futurs • Transport à la demande • Bus guidé • TGV • Rôle des modes parallèles • Bus interurbain • Modes spécialisés • Choix des technologies et • Modes de propulsion AGT des modes et • comparaisons • Design • APM • Traitements préférentiels • Monorail • Tableau récapitulatif • SRB PRT • Conclusions et • perspectives 2 CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Systèmes de transport collectif Priorité de passage / Right of way (ROW) Niveau de service, capacité, vitesse Catégorie C Catégorie B Catégorie A ‣ circulation mixte ‣ voies séparées physiquement ‣ priorité de passage entièrement ‣ voies réservées optionnelles (barrière, bordure, dénivelé, etc.) contrôlée et exclusive ‣ signalisation ou lignes sur ‣ en site propre ‣ possibilité de traverses mais la chaussée ‣ intersections partagées entièrement prioritaires (trains de banlieue/régionaux) ‣ Exemples: ‣ signalisation prioritaire ‣ en site propre ‣ tramway sur chaussée (souvent) partagée ‣ peut approcher/atteindre la ‣ accès interdit à tout autre véhicule ou personne ‣ voies réservées pour vitesse des déplacements voiture autobus urbains ‣ Exemples: ‣ peut atteindre/dépasser la vitesse des déplacements voiture ! ‣ SLR / LRT (nouveau tramway) ‣ Exemples: ! ‣ SRB / BRT (service rapide par bus) ‣ tunnel, (métro) ! ! ‣ aérien (sky train) ! ! ‣ chemins de fer régionaux Niveau de service, capacité, vitesse 3 CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Systèmes de transport collectif Relation entre la priorité de passage et la vitesse Modes collectifs associés: Vitesse basée surtout sur la catégorie de priorité de passage ‣ Bus navette ‣ sur rue (plutôt lent) (catégorie C) ‣ Bus régulier ‣ semi-rapide (toutes catégories, mais surtout B) ‣ Bus express sur rue sur rue ‣ peut approcher/atteindre la vitesse des déplacements voiture ‣ Trolleybus ‣ rapide (catégorie A) ‣ Tramway / Streetcar ‣ toujours guidé et automatisé à un certain degré ! ‣ peut atteindre/dépasser la vitesse des déplacements voiture ‣ SRB / BRT • Service rapide par bus ‣ Technologies spécialisées / non conventionnelles ‣ SLR / LRT • Nouveau tramway semi-rapide ‣ certains AGT (automated guideway transit) ‣ Navette AGT et APM (automated people mover) ‣ traversiers ‣ AGT ‣ funiculaires ‣ SRLR / LRRT ‣ trottoirs roulants ‣ Métro sur pneus ‣ téléphériques... ! ‣ Métro sur rail rapide ! ‣ Monorail ! ‣ Trains régionaux ! ‣ Trains de banlieue 4 CIV6707A | Cours 2 Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Évolution optimale du réseau de transport d’une ville Étapes d’évolution VUCHIC, Vukan R. Urban Transit Systems and Technology | Figure 2.4 5 CIV6707A | Cours 2 Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Modes sur rue • Bus Caractéristiques 3 types Avantages Bus conventionnel ‣ faible coût d’investissement ‣ catégorie C, circulation mixte/partagée ‣ fexibilité (changements de routes, d’arrêts, detours...) ‣ adéquat pour service local ‣ implantation rapide ‣ non compétitif avec l’auto (vitesse, confort, etc.) ‣ les véhicules les plus économiques entre 15 et ‣ Amérique du Nord | souvent perception à l’avant 60 passagers par unité seulement et arrêts à chaque intersection ! ‣ embarquements plus lents Avantage ou inconvénient selon le contexte ‣ vitesses commerciales ↓ ‣ faible infuence sur l’aménagement urbain BTS (Bus transit system) Désavantages ‣ catégorie C améliorée ‣ sensibles à la congestion (catégorie C) ‣ optimisation et intégration des lignes ‣ faible identité (image) ‣ traitement préférentiel (voies réservées...) ‣ capacités limitées ‣ applicable presque partout ‣ automatisation impossible SRB / BRT (Service rapide par bus) ‣ optimisation de la main d’œuvre difficile/impossible fréquente confusion ‣ catégorie B ‣ pollution, bruit ‣ véhicules à haute performance ‣ dimensions régies par des lois ‣ meilleure image ! ‣ capacités plus élevées ‣ traitement prioritaire marqué ! ‣ coûts d’implantation élevés ! ‣ pas applicable partout 6 CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Mercedes Sprinter Minivan et minibus Longueur Capacité Coût Masse Utilisations optimales assises/debout 50 000 $ • Transport adapté • Rabattement vers les modes + lourds 4 à 9 m 7 à 20 / 0 à 20 75 000 $ 4 à 6 t • Navettes + • Routes à faible / moyenne densités 7 CIV6707A | Cours 3 Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Midibus Longueur Capacité Coût Masse Utilisations optimales assises/debout 200 000 à • Rabattement vers les modes + lourds 7,5 à 10 m 20 à 40 / 20 à 40 10 à 20 t • Petites villes, banlieues 400 000 $ • Routes à faible / moyenne densité Eldorado EZ-Rider II Midibus MAN Mercedes Cito Prototype de midibus 8 CIV6707A | Cours 3 Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Bus régulier Longueur Capacité Coût Masse Utilisations optimales ! assises/debout 300 000 à • Le plus utilisé 10 à 15 m 25 à 60 / 30 à 80 • Villes de toutes tailles 700 000 $ 15 à 30 t ! (12 m) (25 à 50 / 30 à 60) • Routes à moyenne / haute densité et + • Rabattement vers les modes + lourds ! Caractéristiques ‣ durée de vie limitée (5 à 12 ans, jusqu’à 20 dans certains cas) ‣ produits en grande quantité (économies d’échelle) ‣ plusieurs options (moteur, transmission, design, aménagements intérieurs…) ! Hauteur du plancher Bus à plancher haut (GM Classic) ‣ Plancher haut ‣ Plancher bas Bus CNG à Singapour (moins d’espace à cause des roues et du moteur) ‣ Entrée basse 9 CIV6707A | Cours 3 Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Bus régulier Plusieurs exemples de véhicules (site du transporteur suisse CarPostal) : http://www.carpostal.ch/pag-startseite/pag-ueberuns/pag-portrait/pag-fahrzeugflotte/pag-fahrzeugflotte-fahrzeuge.htm CarPostal Mercedes Citaro (2 portes) CarPostal Setra 15 m Prototype Credo E-Bone CarPostal MAN Lion’s City (3 portes) Prototype Scania NovaBus LFS 10 CIV6707A | Cours 3 Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Bus régulier York FTR Design d’intérieur des autobus Assemblage modulable CO-BOLT (Hess) 11 CIV6707A | Cours 3 Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Bus articulé et bi-articulé Longueur Capacité Coût Masse Utilisations optimales total 500 000 à • Routes à haute densité 16 à 18 m Total 130 + 25 à 40 t 900 000 $ • Routes avec virages limités 22 à 24 m Total 190 + et + ? • Perception automatisée et + • SRB / BRT Longueuil VanHool AG300 STM NovaBus Artic Volvo BRT bi-articulé Hannover Mercedes Citaro CNG MAN articulé version longue CarPostal Mercedes Citaro 12 CIV6707A | Cours 3 Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Nombre de voies d’accès : nombre de personnes pouvant entrer simultanément dans le véhicule Bus articulé Bus bi-articulé Caractéristiques, avantages et inconvénients Caractéristiques, avantages et inconvénients ‣ productivité de main d’œuvre ↑ ‣ productivité de main d’œuvre ↑↑ ‣ capacité ↑, véhicules plus spacieux ‣ capacité ↑↑ ‣ trajectoire de virage aussi bonne que bus ‣ trajectoire de virage plus large (sécurité et complexité) régulier, sinon meilleure ‣ espaces d’arrêt ↑↑ ‣ petite perte de confort à l’arrière ‣ manœuvres encore plus difficiles aux terminus, (amplifcation des mouvements du bus) pentes, etc. ‣ souvent, on doit les utiliser en hors pointe sur ‣ doivent garder le même ratio de voies d’accès les mêmes lignes, même si la demande ↓ (door channel) par passager que les bus réguliers ‣ un système de perception automatique est ‣ espaces d’arrêt ↑ essentiel ‣ manœuvres plus difficiles aux terminus, ‣ souvent utilisé avec les SRB / BRT pentes, etc. ‣ doivent garder le même ratio de voies d’accès (door channel) par passager que les bus Bus bi-articulé hybride à Hambourg réguliers ‣ un système de perception automatique à au moins une des portes arrières doit être inclus pour que son utilisation soit justifée (STM?) ‣ différents emplacements de moteurs 13
Recommended publications
  • The Demand for Public Transport: a Practical Guide
    The demand for public transport: a practical guide R Balcombe, TRL Limited (Editor) R Mackett, Centre for Transport Studies, University College London N Paulley, TRL Limited J Preston, Transport Studies Unit, University of Oxford J Shires, Institute for Transport Studies, University of Leeds H Titheridge, Centre for Transport Studies, University College London M Wardman, Institute for Transport Studies, University of Leeds P White, Transport Studies Group, University of Westminster TRL Report TRL593 First Published 2004 ISSN 0968-4107 Copyright TRL Limited 2004. This report has been produced by the contributory authors and published by TRL Limited as part of a project funded by EPSRC (Grants No GR/R18550/01, GR/R18567/01 and GR/R18574/01) and also supported by a number of other institutions as listed on the acknowledgements page. The views expressed are those of the authors and not necessarily those of the supporting and funding organisations TRL is committed to optimising energy efficiency, reducing waste and promoting recycling and re-use. In support of these environmental goals, this report has been printed on recycled paper, comprising 100% post-consumer waste, manufactured using a TCF (totally chlorine free) process. ii ACKNOWLEDGEMENTS The assistance of the following organisations is gratefully acknowledged: Arriva International Association of Public Transport (UITP) Association of Train Operating Companies (ATOC) Local Government Association (LGA) Confederation of Passenger Transport (CPT) National Express Group plc Department for Transport (DfT) Nexus Engineering and Physical Sciences Research Network Rail Council (EPSRC) Rees Jeffery Road Fund FirstGroup plc Stagecoach Group plc Go-Ahead Group plc Strategic Rail Authority (SRA) Greater Manchester Public Transport Transport for London (TfL) Executive (GMPTE) Travel West Midlands The Working Group coordinating the project consisted of the authors and Jonathan Pugh and Matthew Chivers of ATOC and David Harley, David Walmsley and Mark James of CPT.
    [Show full text]
  • The Electromechanical Battery
    12 13 A New Look at an Old Idea TheThe ElectromechanicalElectromechanical BatteryBattery Laboratory researchers PINNING at 60,000 revolutions “charged” by spinning its rotor to lead–acid battery. Power densities can S per minute, a cylinder about the maximum speed with an integral soar to 5 to 10 kW/kg, several times size of a large coffee can may hold the generator/motor in its “motor mode.” that of a typical gasoline-powered are integrating innovative key to the long-awaited realization of It is “discharged” by slowing the rotor engine and up to 100 times that of practical electric cars and trucks. The of the same generator/motor to draw out typical electrochemical batteries. And materials and designs to graphite, fiber-composite cylinder the kinetically stored energy in its because of its simple design and belongs to a new breed of LLNL- “generator mode.” The advanced design advanced materials, an EMB is developed, flywheel-based, energy features a special array of permanent expected to run without maintenance develop highly efficient storage systems with new materials, magnets (called a Halbach array) in the for at least a decade. new technologies, and new thinking generator–motor to perform these Livermore researchers envision about the most efficient ways to charging and discharging functions several small, maintenance-free and cost-effective energy store energy. efficiently. modules, each with a kilowatt-hour of Called an electromechanical battery The EMB offers significant energy storage, for use in electric or (EMB) by its Laboratory creators, the advantages over other kinds of energy hybrid-electric vehicles. See the storage.
    [Show full text]
  • Electric Buses in Urban Transport—The Situation and Development Trends
    June 2014, Volume 2, No. 1 (Serial No. 2), pp. 45-58 Journal of Traffic and Transportation Engineering, ISSN 2328-2142, USA D DAVID PUBLISHING Electric Buses in Urban Transport—The Situation and Development Trends Jakub Slavík Self-employed business consultant, Říčany u Prahy 25101, Czech Republic Abstract: A study called “E-mobilita v MHD” (e-mobility in urban mass transit) has been conducted by the author’s private consultancy to inform Czech public transport operators about the technologies and operational experience to date and stimulate the e-bus utilization as well as their involvement in e-bus research and development projects. The study covers trolley-buses, diesel hybrids and e-buses including fuel cell buses. These electric urban buses have been compared with combustion engine vehicles represented by diesel and CNG (compressed natural gas) buses, in terms of energy consumption and cost, greenhouse gas emissions, noise and life cycle cost. Relations between urban transport e-mobility and the “smart grid” concept have been presented as well. Comprehensive reports prepared on the European Union and the USA levels have been the basis for the study, completed by information from the field research, focused especially on the bus operational reliability and other parameters important for a transport operator and covering, interalia, 12 case studies. The results show electric buses as a promising urban transport mode with massive technology development overcoming their operational limitations. Synergies between electric buses and other urban systems, such as power supply, are notable as well. Key words: Electric bus, trolley-bus, fuel cell bus, charging, urban transport.
    [Show full text]
  • Flywheel Energy Storage for Automotive Applications
    Energies 2015, 8, 10636-10663; doi:10.3390/en81010636 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Flywheel Energy Storage for Automotive Applications Magnus Hedlund *, Johan Lundin, Juan de Santiago, Johan Abrahamsson and Hans Bernhoff Division for Electricity, Uppsala University, Lägerhyddsvägen 1, Uppsala 752 37, Sweden; E-Mails: [email protected] (J.L.); [email protected] (J.S.); [email protected] (J.A.); [email protected] (H.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-18-471-5804. Academic Editor: Joeri Van Mierlo Received: 25 July 2015 / Accepted: 12 September 2015 / Published: 25 September 2015 Abstract: A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%), 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS) applications.
    [Show full text]
  • Efficiency Analysis of İzmir Metro in Its Current State MASTER of CITY PLANNING
    Efficiency Analysis of İzmir Metro in Its Current State By Ömer SELVİ A Dissertation Submitted to the Graduate School in Partial Fulfillment to the Requirements for the Degree of MASTER OF CITY PLANNING Department: City and Regional Planning Major: City Planning İzmir Institute of Technology İzmir, Turkey September, 2002 We approve the thesis of Ömer SELVİ Date of Signature …………………………………… 19.09.2002 Assoc. Prof. Dr. Güneş GÜR Supervisor Department of City and Regional Planning …………………………………… 19.09.2002 Assist. Prof. Dr. Yavuz DUVARCI Department of City and Regional Planning …………………………………… 19.09.2002 Assoc. Prof. Dr. Özen EYÜCE Department of Architecture …………………………………… 19.09.2002 Prof. Dr. Akõn SÜEL Head of Department ACKNOWLEDGEMENT I would express firstly great thanks to my supervisor Assoc. Prof. Dr. Güneş GÜR for having accepted me to prepare this master thesis. I would also thank to Assist. Prof. Dr. Yavuz DUVARCI for his theoretical support during the process of this study. I would express heartfelt thanks to my dearest Evrim GÜÇER who made a serious contribution and support while preparing the thesis. I am also in debt to Ali Kemal ÇINAR for computer support. I am deeply grateful to; İBŞB staff; Ilgaz CANDEMİR, Emre ORAL, Esin TÜRSEN and Orhan KESLER for their help to enable data access. Ömür SAYGIN for GIS database support. Rose GANDEE, information specialist of APTA, for sending books. Özgür İMRE for his help throughout printing process. Finally, I would like to thank to my fellow Mehmet BAŞOĞLU for his help in land survey. i ABSTRACT This thesis analyzes the efficiency of the current state of İzmir Metro System by using the Method of Comparative Benchmarking.
    [Show full text]
  • Buses That We Don't Have Current Details For
    Check List - buses that we don't have current details for The main lists on our website show the details of the many thousands of open top buses that currently exist throughout the world, and those that are listed as either scrapped or for scrap. However, there are a number of buses in our database that we don’t have current details for, that could still exist or have been scrapped. The buses listed on this page are those that we need to confirm the location and status of. These buses do not appear on any of our other lists, so if you're looking for a particular vehicle, it could be here. Please have a look at this page and if you can update any of it, even if only a small piece of information that helps to determine where a bus is now, then please contact us using the link button on the Front Page. The buses are divided into lists in Chassis manufacturer order. ? REG NO / LICENCE PLATE CHASSIS BODY STATUS/LAST KNOWN OWNER J2374 ? ? Last reported with JMT in 1960s, no further trace AEC Regent REG NO / LICENCE PLATE CHASSIS BODY STATUS/LAST KNOWN OWNER AUO 90 AEC Regent Unidentified Devon General AUO 91 AEC Regent Unidentified Devon General GW 6276 AEC Regent Brighton & Hove Acquired by Southern Vectis (903) from Brighton Hove and District in 1955. Sold, 1960, not traced further. GW 6277 AEC Regent Brighton & Hove Acquired by Southern Vectis (902) from Brighton Hove and District in 1955, never entered service, disposed of in 1957.
    [Show full text]
  • TCQSM Part 8
    Transit Capacity and Quality of Service Manual—2nd Edition PART 8 GLOSSARY This part of the manual presents definitions for the various transit terms discussed and referenced in the manual. Other important terms related to transit planning and operations are included so that this glossary can serve as a readily accessible and easily updated resource for transit applications beyond the evaluation of transit capacity and quality of service. As a result, this glossary includes local definitions and local terminology, even when these may be inconsistent with formal usage in the manual. Many systems have their own specific, historically derived, terminology: a motorman and guard on one system can be an operator and conductor on another. Modal definitions can be confusing. What is clearly light rail by definition may be termed streetcar, semi-metro, or rapid transit in a specific city. It is recommended that in these cases local usage should prevail. AADT — annual average daily ATP — automatic train protection. AADT—accessibility, transit traffic; see traffic, annual average ATS — automatic train supervision; daily. automatic train stop system. AAR — Association of ATU — Amalgamated Transit Union; see American Railroads; see union, transit. Aorganizations, Association of American Railroads. AVL — automatic vehicle location system. AASHTO — American Association of State AW0, AW1, AW2, AW3 — see car, weight Highway and Transportation Officials; see designations. organizations, American Association of State Highway and Transportation Officials. absolute block — see block, absolute. AAWDT — annual average weekday traffic; absolute permissive block — see block, see traffic, annual average weekday. absolute permissive. ABS — automatic block signal; see control acceleration — increase in velocity per unit system, automatic block signal.
    [Show full text]
  • Green BRT in Tehran
    International Journal of Environmental Science P. Parvizi et al. http://iaras.org/iaras/journals/ijes Green BRT in Tehran P. Parvizi, S. Hajeb, P. Parvizi Abstract— Population growth and urban development in recent A Tehran public transport network composed of two layers years, has created many problems in the transport field of major ,Subway and BRT networks .Subway as the first layer cities. Increased traffic, noise and air pollution in large cities is the including 5 lines and BRT network including 10 high-speed phenomenon of negative consequences. Creation Appropriate lines as the second layer are defined in the Tehran integrated infrastructure to facilitate the use of the public transport system is the best option for confronting with this problem. With the advent BRT public transport [1]. system and dedicated public transport corridor for the public In Iran, the BRT system has been implemented in Tehran. transport system, speed and volume displacement increases and thus Tehran Bus Rapid Transit has been officially inaugurated by reducing private car traffic and pollution levels have declined. This Tehran’s mayor in order to facilitate the motor traffic in paper presents the design of bus and bus stations equipped with solar Tehran on January 14, 2008. Tehran has five BRT lines. The cells, with ability isolated and connect power supplies between bus first stretch of Tehran BRT corridor from the Azadi square in and stations to elimination of fossil fuel in the path of Tehran BRT to increase efficiency and reduce environmental lead contamination. In Tehran-pars has been operational since Jan (2008) [2].
    [Show full text]
  • Flywheel Energy Storage for Vehicle Applications
    Scuola di Ingegneria Industriale e dell’Informazione Laurea Magistrale in Ingegneria Meccanica Flywheel energy storage for vehicle applications Ettore Rasca 841979 Supervisor: prof. Francesco Braghin Academic Year 2016-2017 Esprimo il mio ringraziamento a Stefano Sorti per tutto il supporto fornito. Abstract 1 Abstract In recent years, a significant increase in the market share of electric vehicles was observed. Most of these vehicles are meant for private use and are equipped with chemical batteries. Despite the huge improvements made on the capacity of the new generation lithium ion batteries, the long charging time remains a main drawback of this technology and opens the possibility for alternative solutions. The present work describes a preliminary study aimed at investigating the possibility to realize an electric vehicle relying on the flywheel energy storage technology as a primary energy source. First, a numerical and an analytical model of such a system are proposed and evaluated. Next, two sets of optimizations are performed on these models. Through the first optimization set, the optimal geometry for the rotors in the energy storage system is identified. This first process is repeated several times considering different alternatives for the rotors material, maximum rotational speed and basic geometry. Through the second optimization set, the ideal displacement and orientation of the rotors on the vehicle frame, as well as the total number of rotors, are investigated. Finally, three multi-rotor configurations for the energy storage system are proposed and described. The data collected after performing simulations on the dynamics of these systems are then studied. In conclusion, after presenting observations on the feasibility of such a technical solution, a set of future steps for the development of the flywheel energy storage technology for vehicle applications are proposed.
    [Show full text]
  • Market Inquiry Into Land Based Public Passenger Transport Main Report
    MARKET INQUIRY INTO LAND BASED PUBLIC PASSENGER TRANSPORT MAIN REPORT NON-CONFIDENTIAL VERSION 19 February 2020 i Table of Contents Table of Contents .................................................................................................................................... ii List of figures .......................................................................................................................................... iv List of Abbreviations ................................................................................................................................ v EXECUTIVE SUMMARY ........................................................................................................................ 1 1. MARKET INQUIRY PROCESS................................................................................................... 1 2. BACKGROUND TO THE PUBLIC TRANSPORT SECTOR IN SOUTH AFRICA ...................... 9 3. REGULATORY FRAMEWORK................................................................................................. 26 4. PUBLIC TRANSPORT AS AN INTEGRATED SYSTEM .......................................................... 41 5. SUBSIDIES IN THE PUBLIC TRANSPORT SECTOR ............................................................. 61 6. THE RAIL SECTOR .................................................................................................................. 91 7. SUBSIDISED BUS CONTRACTS IN URBAN AREAS ........................................................... 126 8. RURAL TRANSPORTATION AND
    [Show full text]
  • Fuel Cells in Transit Buses Summary
    Fuel Cells in Transit Buses Summary Transit buses are widely viewed as one of the best strategies for commercializing fuel cells for vehicles and transitioning to a hydrogen economy. Many advantages have been identified regarding the use of transit buses as fuel cell platforms. For example: • Transit buses have well-defined duty cycles, centralized fueling and maintenance infrastructure, and dedicated maintenance personnel; • Transit buses are large, providing ample room to install the fuel cell and related components; • Diesel transit buses are noisy and polluting, providing fuel cells with an opportunity to make significant performance improvements; • Transit bus manufacturers generally do not develop their own power plant technologies, not even diesel engines. Thus, they are accustomed to working with power plant manufacturers to accommodate new technologies; • Transit agencies are subsidized by the government, thus helping to defray most of the risks and costs of technology development; • Transit buses are highly visible in the community, providing an excellent showcase for fuel cells; and • Fuel cell transit technology can readily be transferred to other medium- and heavy-duty vehicle applications. As a result, governments in North America, Europe, and Asia are supporting many demonstrations of fuel cell buses, causing the number of fuel cell buses to grow at an almost exponential pace. In 2003 alone, the number of fuel cell buses built and operated doubled, bringing the total to around 65 worldwide. The demonstrations are designed to prove the technology in revenue service and collect data on operations and maintenance costs, performance, and reliability. Nearly all of the modern buses are powered by PEM fuel cells.
    [Show full text]
  • (Chapter Title on Righthand Pages) 1
    Innovative Perspective of Transport and Logistics BURNEWICZ Jan; BORKOWSKI Przemysław INNOVATIVE PERSPECTIVE OF TRANSPORT AND LOGISTICS BURNEWICZ Jan; University of Gdansk BORKOWSKI Przemyslaw, University of Gdansk ABSTRACT The need to create and implement innovation in transport results from the continuing low efficiency of many of its technical elements and processes, leading to unsatisfactory levels of productivity, capacity and reliability, waste of time and resources, and higher operating costs. The need for innovation exists both within entire transport systems (of a country or city) as well as within individual modes or forms of transport. Transport innovation processes are the main driving force behind technological progress and increase in service productivity, but they are accompanied by high risk. An innovation-oriented transport company takes a risk that innovations introduced may become a failure, or rejected by the market, or their cost will be higher than originally planned. To main directions of the innovative development of present transport systems belong: intelligent transport system management, carbon neutral transport solutions, alternative fuels and sources of energy, innovative ideas for reducing transport costs, city logistics ideas, new mobility strategies, liveability solutions. In every branch of transport there exist different conditions for the initiation and spreadings of innovations. Keywords: alternative fuels, disruptive technology, electric cars, innovation, innovation risk, innovative transport, new generation transport infrastructure, transport development, INTRODUCTION The motives for creating innovations are both the creative capabilities of scientific research centres and industry as well as pressure from consumers for a greater higher of products and services, and elimination of faults in things and processes commonly used.
    [Show full text]