The Electromechanical Battery

Total Page:16

File Type:pdf, Size:1020Kb

The Electromechanical Battery 12 13 A New Look at an Old Idea TheThe ElectromechanicalElectromechanical BatteryBattery Laboratory researchers PINNING at 60,000 revolutions “charged” by spinning its rotor to lead–acid battery. Power densities can S per minute, a cylinder about the maximum speed with an integral soar to 5 to 10 kW/kg, several times size of a large coffee can may hold the generator/motor in its “motor mode.” that of a typical gasoline-powered are integrating innovative key to the long-awaited realization of It is “discharged” by slowing the rotor engine and up to 100 times that of practical electric cars and trucks. The of the same generator/motor to draw out typical electrochemical batteries. And materials and designs to graphite, fiber-composite cylinder the kinetically stored energy in its because of its simple design and belongs to a new breed of LLNL- “generator mode.” The advanced design advanced materials, an EMB is developed, flywheel-based, energy features a special array of permanent expected to run without maintenance develop highly efficient storage systems with new materials, magnets (called a Halbach array) in the for at least a decade. new technologies, and new thinking generator–motor to perform these Livermore researchers envision about the most efficient ways to charging and discharging functions several small, maintenance-free and cost-effective energy store energy. efficiently. modules, each with a kilowatt-hour of Called an electromechanical battery The EMB offers significant energy storage, for use in electric or (EMB) by its Laboratory creators, the advantages over other kinds of energy hybrid-electric vehicles. See the storage. modular device contains a modern storage systems (see box, next page). prototype in Figure 1 (also see box, flywheel stabilized by nearly For example, the efficiency of energy p. 15). Larger modules with 2 to frictionless magnetic bearings, recovery (kilowatt-hours out versus 25 kWh of storage capacity could be integrated with a special ironless kilowatt-hours in) is projected to employed by electrical utilities for more generator motor, and housed in a sealed exceed 95%, considerably better than efficient use of their transmission lines vacuum enclosure. The EMB is any electrochemical battery such as a and by factories for power conditioning. These larger units could also be used in wind and solar-electric power systems Figure 1. Prototype to enable them to deliver power of the LLNL whenever it is needed, rather than only electromechanical when it is generated. battery, which is The exceptional potential of the based on the Laboratory design has not gone flywheel concept of unnoticed by American industry. energy storage. Left Trinity Flywheel Batteries, to right: high-speed Westinghouse Electric, and General rotor, rotor in motion, Motors have all sponsored research at and enclosed battery Livermore for vehicular and industrial (20 cm in diameter by applications. The efforts, which include 30 cm high). tapping the expertise of researchers throughout the Laboratory, involve Science & Technology Review April 1996 14 Electromechanical Battery Electromechanical Battery 15 solving challenging problems in funding. The program drew Storing Energy motor/generator design, composite considerable interest from the private EMB Applications for Vehicles rotors, magnetic bearings, containment, sector and eventually direct Since the introduction of electricity into society, stored electrical energy has played and integrated system design. sponsorship of development work by Except that their output is alternating current rather than direct current, EMB a critical role in the development of electrical devices. Before the turn of the century three companies. Trinity Flywheel modules would power an electric car in the same way as a bank of electrochemical electrochemical storage cells were used to power the telegraph and the telephone. Old Invention, New Use Batteries Inc. and Westinghouse batteries. If each module stored about 1 kWh, as is currently projected, some 20 to 30 Some of the earliest automobiles were powered, not by an internal combustion engine, Electric Corp. continued to develop modules might be needed to provide the 200-mile-plus range for a vehicle required but by an electrical motor that drew energy from lead–acid storage batteries. Before Despite its current high-tech EMBs to smooth out the flow of by the public. At the same time, the fast charge (5 to 10 minutes) that could be the 1920s, electric cars were as common as gasoline-powered ones. designed into such a car would answer the challenge of long-range trips, provided appearance, the flywheel is one of electricity for factories, computer Today, concern for the air pollution from the gasoline-powered automobile has there was a “charging station” infrastructure, (which could also use EMB modules intensified the development of electric-powered cars and power to run them. However, society’s oldest inventions. (Its kin, the centers, and other facilities; General for peak power demand). along with the concern for less pollution come the plaguing shortfalls of current potter’s wheel, is mentioned in The Motors Corp. has evaluated EMBs Although these possibilities are intriguing for long-range planning purposes, they electric autos: sluggish acceleration, limited driving range, and too-short battery Bible.) Even the “modern” idea of as part of a future automobile may not be very realistic in the short term. Fortunately, there is another possibility: a service lifetime. The figure below illustrates the vast differences in present power coupling a flywheel to a generator/ propulsion system. “hybrid” internal combustion–electric car. One kind of hybrid would feature a small, storage strategies. Today the push is on to develop a vehicular “super battery” to motor to emulate a battery for use in “This unusual technology transfer constant-speed internal combustion engine (piston or a gas turbine) to provide overcome these limitations. electric vehicles is at least four decades arrangement offers several advantages. average-power requirements, with one or two EMB modules providing peak power- The electric car is only one example of the need to store energy. Others include old. It dates to the Swiss “Gyrobus,” an It places significant emphasis on the handling capabilities and recouping energy otherwise lost through braking or “load leveling” for electrical utilities, which must make more efficient use of their urban bus that used a steel flywheel to end use of EMBs and addresses the descending a hill. Such a hybrid would fit well with the present vehicle infrastructure transmission lines and base-load generating plants. Also, wind and solar-electric power a generator/motor and drive it flywheel system as an interdependent while also significantly reducing air pollution and fuel consumption. power systems, owing to the intermittent nature of their power outputs, urgently between stops, where a charging trolley whole, rather than as a collection of Another type of EMB hybrid would use electrochemical batteries, with EMB units need energy storage systems that can deliver power when it is needed, not just when again providing peak power demands. (See the article on zinc–air batteries in Science was engaged. Too cumbersome, too subsystems,” Post says. Indeed, the it is generated. & Technology Review, October 1995.) Besides providing snappier performance, the Thus far, virtually the entire effort to develop improved batteries for storage has expensive, and too limited by 1950s-era primary thrust of the present program EMB would reduce wear and tear on conventional batteries and improve the centered on hoped-for extensions of the electrochemical art. The Laboratory’s power electronics, the Gyrobus never is to test complete prototype EMB efficiency of a regenerative braking system. electromechanical battery (EMB), however, may be a better way to go or, at the very caught on, but a few researchers have systems. Operation at over 100 kW of Compared to stationary EMB applications such as with wind turbines, vehicular least, be an important piece in the evolving energy storage infrastructure. not let the concept die. power and storage of more than 1 kWh applications pose two special problems: gyroscopic forces and containment in Livermore has been involved in of energy have been demonstrated the case of failure. Solving both problems is made much simpler by the choice of developing flywheels made of using compact rotors and integrated small modules. Gyroscopic forces come into play whenever a vehicle departs from a straight-line 104 composite materials since a new way of containment structures. Prototype thinking about such flywheels was rotors have been tested at 60,000 rpm course, as in turning or in pitching upward or downward from road grades or bumps. Advanced flywheels published in a 1973 seminal article in and have exceeded specific power of The effects can be minimized by vertically orienting the axis of rotation (as in Scientific American. It was written by 8 kW/kg with a measured energy Figure 2, p. 16), which is also a desirable orientation for the magnetic bearing system. The designer can also mount the module vacuum chamber in limited- Ultracapacitors Richard Post, Livermore fusion scientist recovery efficiency of more than 92%. excursion gimbals or provide restoring forces in the magnetic bearing system (or in and current EMB program leader, and a mechanical backup bearing) to resist the torque from the vehicle’s movements. By his son Stephen.
Recommended publications
  • Flywheel Energy Storage
    Energy and the Environment Capstone Design Project { Bass Connections 2017 Flywheel Energy Storage (FES): Exploring Alternative Use Cases Randy Frank, Mechanical Engineering '17 Jessica Matthys, Mechanical Engineering '17 Caroline Ayanian, Mechanical Engineering '17 Daniel Herron, Civil and Environmental Engineering '17 Nathaniel Sizemore, Public Policy '17 Cameron Simpson, Economics '17 Dante Cordaro, Economics '18 Jack Carey, Environmental Science and Policy '17 Spring 2017 Contents 1 Abstract 3 2 Introduction 3 2.1 Energy Markets............................................3 3 Concept Generation 6 3.1 Traditional Energy Storage Methods................................6 3.2 Decision Matrix............................................7 4 Technology Background 8 4.1 Flywheel Past and Present......................................8 4.2 Flywheel Energy Storage Fundamentals..............................8 4.3 Limiting Factors to FES Storage Capacity.............................9 4.4 Additional Mechanical Components................................ 10 4.5 Electrical Components........................................ 14 5 Prototype Design 14 5.1 Prototype Overview and Goals................................... 14 5.2 Bill of Materials........................................... 15 5.3 Material Selection.......................................... 15 5.4 Motor Selection............................................ 15 5.5 Timeline................................................ 17 5.6 Prototype Assembly......................................... 17 5.7 Prototype
    [Show full text]
  • Energy Storage Technology Assessment Prepared for Public Service Company of New Mexico
    Energy Storage Technology Assessment Prepared for Public Service Company of New Mexico HDR Report No. 10060535-0ZP-C1001 Revision B - Draft October 30, 2017 Principal Investigators Todd Aquino, PE Chris Zuelch, PE Cristina Koss Publi c Service Company of New Mexico | Energy Storage Technology Assessment Table of Contents I. Scope .................................................................................................................................................... 3 II. Introduction / Purpose ........................................................................................................................ 3 III. The Need for Energy Storage ............................................................................................................... 6 V. Energy Storage Technologies ............................................................................................................... 7 VI. Battery Storage Technologies .............................................................................................................. 7 Lithium Ion Battery ................................................................................................................................. 13 Background ......................................................................................................................................... 13 Maturity .............................................................................................................................................. 13 Technological Characteristics
    [Show full text]
  • Flywheel Energy Storage – a Smart Grid Approach to Supporting Wind Integration
    Flywheel Energy Storage – a Smart Grid Approach to Supporting Wind Integration Chet Lyons (Beacon Power Corp.) — Tyngsboro, Massachusetts, USA — [email protected] Wind developers face tough challenges in integrating and operating wind resources on today's grid. A recently commercialized inertial energy storage technology can help address several issues of common interest to wind developers, utilities and grid operators. These include the need for more regulation to help balance generation and load as wind penetration rises; the projected shortfall in some grid areas of regional ramping capacity that is needed to cope with wind’s variability; and the difficulty of developing wind generation in smaller balancing areas that lack sufficient regulation and ramping capacity. After more than 10 years of development and successful scale-power tests in California and New York, in 2008 Beacon Power began operating the world’s first commercial 1 MW flywheel frequency regulation system under ISO New England’s Advanced Technologies Pilot Program. Beacon’s resource has since expanded to two megawatts, and by the end of 2009 is expected to be three megawatts. (See Figure 1) Figure 1: 1 MW Flywheel Regulation System Operating in New England Flywheels are installed below grade while the power electronics, monitoring and control systems are housed in a steel cargo container A flywheel energy storage system is elegant in its simplicity. The ISO monitors the frequency of the grid, and based on North American Electric Reliability Corporation (NERC) frequency control guidelines the ISO decides when more or less generation is needed to balance generation with load. When generation exceeds load, the ISO’s regulation dispatch control signal directs the flywheels to absorb energy from the grid and store it kinetically by spinning the flywheels faster.
    [Show full text]
  • Flywheel Energy Storage for Automotive Applications
    Energies 2015, 8, 10636-10663; doi:10.3390/en81010636 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Flywheel Energy Storage for Automotive Applications Magnus Hedlund *, Johan Lundin, Juan de Santiago, Johan Abrahamsson and Hans Bernhoff Division for Electricity, Uppsala University, Lägerhyddsvägen 1, Uppsala 752 37, Sweden; E-Mails: [email protected] (J.L.); [email protected] (J.S.); [email protected] (J.A.); [email protected] (H.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-18-471-5804. Academic Editor: Joeri Van Mierlo Received: 25 July 2015 / Accepted: 12 September 2015 / Published: 25 September 2015 Abstract: A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%), 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS) applications.
    [Show full text]
  • Preliminary Design and Analysis of an Energy Storage Flywheel
    PRELIMINARY DESIGN AND ANALYSIS OF AN ENERGY STORAGE FLYWHEEL ___________________________________ A Dissertation Presented to the Faculty of the School of Engineering and Applied Science University of Virginia ___________________________________ In Partial Fulfillment of the requirements for the Degree Doctor of Philosophy by Arunvel Kailasan May 2013 APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical and Aerospace Engineering ___________________________________ Arunvel Kailasan This dissertation has been read and approved by the Examining Committee: __________________________________ Timothy Dimond, Advisor __________________________________ Houston Wood, Chairman __________________________________ George Gillies __________________________________ Andres Clarens __________________________________ Wei Jiang Accepted for the School of Engineering and Applied Science: _________________________________ James H. Aylor, Dean May 2013 Abstract Energy storage is becoming increasingly important with the rising need to accommodate a greater population. Flywheel energy storage systems store kinetic energy by constantly spinning a compact rotor in a low-friction environment. When short-term back-up power is required as a result of utility power loss or fluctuations, the rotor's inertia allows it to continue spinning and the resulting kinetic energy is converted to electricity. Unlike the fossil-fuel power plants and batteries, the Flywheel based energy storage systems does not emit any harmful byproducts during their operation and have gained a lot of interest recently. A typical flywheel system is comprised of an energy storage rotor, a motor-generator system, bearings, power electronics, controls and housing. Conventional flywheel designs have a large diameter energy storage rotor attached to a smaller diameter section which is used as a motor/generator.
    [Show full text]
  • DESIGN of a WATER TOWER ENERGY STORAGE SYSTEM a Thesis Presented to the Faculty of Graduate School University of Missouri
    DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM A Thesis Presented to The Faculty of Graduate School University of Missouri - Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science by SAGAR KISHOR GIRI Dr. Noah Manring, Thesis Supervisor MAY 2013 The undersigned, appointed by the Dean of the Graduate School, have examined he thesis entitled DESIGN OF A WATER TOWER ENERGY STORAGE SYSTEM presented by SAGAR KISHOR GIRI a candidate for the degree of MASTER OF SCIENCE and hereby certify that in their opinion it is worthy of acceptance. Dr. Noah Manring Dr. Roger Fales Dr. Robert O`Connell ACKNOWLEDGEMENT I would like to express my appreciation to my thesis advisor, Dr. Noah Manring, for his constant guidance, advice and motivation to overcome any and all obstacles faced while conducting this research and support throughout my degree program without which I could not have completed my master’s degree. Furthermore, I extend my appreciation to Dr. Roger Fales and Dr. Robert O`Connell for serving on my thesis committee. I also would like to express my gratitude to all the students, professors and staff of Mechanical and Aerospace Engineering department for all the support and helping me to complete my master’s degree successfully and creating an exceptional environment in which to work and study. Finally, last, but of course not the least, I would like to thank my parents, my sister and my friends for their continuous support and encouragement to complete my program, research and thesis. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................ ii ABSTRACT .................................................................................................................... v LIST OF FIGURES .......................................................................................................
    [Show full text]
  • A Numerical and Graphical Review of Energy Storage Technologies', Energies, Vol
    Edinburgh Research Explorer A Numerical and Graphical Review of Energy Storage Technologies Citation for published version: Sabihuddin, S, Kiprakis, A & Mueller, M 2015, 'A Numerical and Graphical Review of Energy Storage Technologies', Energies, vol. 8, no. 1, pp. 172-216. https://doi.org/10.3390/en8010172 Digital Object Identifier (DOI): 10.3390/en8010172 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Energies General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 Energies 2015, 8, 172-216; doi:10.3390/en8010172 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review A Numerical and Graphical Review of Energy Storage Technologies Siraj Sabihuddin *, Aristides E. Kiprakis and Markus Mueller Institute for Energy Systems (IES), School of Engineering, University of Edinburgh, Faraday Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK; E-Mails: [email protected] (A.E.K.); [email protected] (M.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-0-131-650-6487; Fax: +44-0-131-650-6554.
    [Show full text]
  • 2 MW 130 Kwh Flywheel Energy Storage System
    2 MW 130 kWh Flywheel Energy Storage System Matthew Caprio, John Herbst,1 and Robert Thelen The University of Texas at Austin Abstract The Center for Electromechanics has developed and is currently testing a 2 MW, 130 kWh (480 MJ) flywheel energy storage system (FESS) designed as a load leveling energy management device. The flywheel energy storage system consists of the energy storage flywheel, a high speed induction motor/generator, and a bi- directional power converter. The FESS is a key element of the Advanced Locomotive Propulsion System (ALPS), an advanced high speed passenger locomotive power supply being developed for use on existing (non- electrified) track to provide speed and acceleration performance comparable to modern electric trains currently in service on electrified routes. This paper describes the electrical and physical characteristics of the FESS, the application requirements that shaped the design of the FESS, and the internal details of the major components: the flywheel, motor / generator, and power converter. Safety of the flywheel is addressed in terms of the designed probability against a ring burst and the ability of the internal containment structure to controllably manage an unlikely burst event. Finally, the current status of the flywheel component development, testing, and planned future demonstrations are described. ALPS Flywheel System Overview The ALPS flywheel energy storage system (FESS) serves as an electrical load leveling device for a hybrid electric locomotive propulsion system. The FESS reduces load fluctuations of the prime generator by providing supplemental power to the dc bus during periods of peak acceleration, and recharging during periods of deceleration or excess generation capacity.
    [Show full text]
  • Overview of Mobile Flywheel Energy Storage Systems State-Of-The-Art
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Overview of Mobile Flywheel Energy Storage Systems State-Of-The-Art Dagnæs-Hansen, Nikolaj A.; Santos, Ilmar Published in: Proceedings of 13th SIRM: The 13th International Conference on Dynamics of Rotating Machinery Publication date: 2019 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Dagnæs-Hansen, N. A., & Santos, I. (2019). Overview of Mobile Flywheel Energy Storage Systems State-Of- The-Art. In Proceedings of 13th SIRM: The 13th International Conference on Dynamics of Rotating Machinery (pp. 282-294). Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines, Copenhagen, Denmark, 13th – 15th February 2019 Overview of Mobile Flywheel Energy Storage Systems State-Of-The-Art Nikolaj A. Dagnaes-Hansen 1, Ilmar F.
    [Show full text]
  • Flywheel Energy Storage for Automotive Applications
    Energies 2015, 8, 10636-10663; doi:10.3390/en81010636 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Flywheel Energy Storage for Automotive Applications Magnus Hedlund *, Johan Lundin, Juan de Santiago, Johan Abrahamsson and Hans Bernhoff Division for Electricity, Uppsala University, Lägerhyddsvägen 1, Uppsala 752 37, Sweden; E-Mails: [email protected] (J.L.); [email protected] (J.S.); [email protected] (J.A.); [email protected] (H.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-18-471-5804. Academic Editor: Joeri Van Mierlo Received: 25 July 2015 / Accepted: 12 September 2015 / Published: 25 September 2015 Abstract: A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%), 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS) applications.
    [Show full text]
  • FLR) for Fusion Power
    Informal Report A Conceptual Design of the Fast-Liner Reactor (FLR) for Fusion Power oCO "co LOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos. New Mexico 87545 TjyK m xmt OOCUKJE^T IS UNLKOTED LA-7686-MS Informal Report UC-20d Issued: February 1979 A Conceptual Design of the Fast-Liner Reactor (FLR) for Fusion Power R. W. Moses R. A. Krakowski R. L. Miller MAJOR CONTRIBUTORS G. E. Cort (heat transfer), R. A. Gerwin (physics), R. L. Hagenson (plasma engineering, costing), J. D. Jacobson (blast confinement), T. R. Jarboe (physics), R C. Malone (physics), T. A. Oliphant (numerical techniques), P. D. Soran (neutronics), and C. E. Swannack (energy storage and tninsfer). This work was supported by the US Department of Energy, Office of Fusion Energy, and in part by the Electric Power Research Institute. IftSl CONTENTS ABSTRACT 1 I. INTRODUCTION AND SUMMARY 1 II. SUMMARY DESCRIPTION OF REACTOR OPERATION 3 III. PHYSICS AND TECHNOLOGY DESIGN BASES 7 A. Reactor Physics 7 1. Plasma Model 7 a. Radial Transport 9 b. Axial Transport 10 c. Burn Dynamics 11 2. Liner Model 11 a. Stability 12 b. Dynamics 13 3. Numerical Methods 14 4. Development of Physics Operating Point 14 B. Reactor Engineering/Technology 20 1. Energy Balance 21 2. Plasma Preparation 23 3. Energy Storage, Switching, and Transfer 24 4. Liner Leads 26 5. Neutronics Analysis 32 6. Blast Containment 39 7. Heat Transfer 46 C. Costing Model 50 D. Design Point 52 IV. PRESENT KNOWLEDGE IN PHYSICS AND TECHNOLOGY 65 A. Physics Confidence 67 1. Plasma Preparation 67 2.
    [Show full text]
  • Green BRT in Tehran
    International Journal of Environmental Science P. Parvizi et al. http://iaras.org/iaras/journals/ijes Green BRT in Tehran P. Parvizi, S. Hajeb, P. Parvizi Abstract— Population growth and urban development in recent A Tehran public transport network composed of two layers years, has created many problems in the transport field of major ,Subway and BRT networks .Subway as the first layer cities. Increased traffic, noise and air pollution in large cities is the including 5 lines and BRT network including 10 high-speed phenomenon of negative consequences. Creation Appropriate lines as the second layer are defined in the Tehran integrated infrastructure to facilitate the use of the public transport system is the best option for confronting with this problem. With the advent BRT public transport [1]. system and dedicated public transport corridor for the public In Iran, the BRT system has been implemented in Tehran. transport system, speed and volume displacement increases and thus Tehran Bus Rapid Transit has been officially inaugurated by reducing private car traffic and pollution levels have declined. This Tehran’s mayor in order to facilitate the motor traffic in paper presents the design of bus and bus stations equipped with solar Tehran on January 14, 2008. Tehran has five BRT lines. The cells, with ability isolated and connect power supplies between bus first stretch of Tehran BRT corridor from the Azadi square in and stations to elimination of fossil fuel in the path of Tehran BRT to increase efficiency and reduce environmental lead contamination. In Tehran-pars has been operational since Jan (2008) [2].
    [Show full text]