Flywheel Energy Storage for Vehicle Applications

Total Page:16

File Type:pdf, Size:1020Kb

Flywheel Energy Storage for Vehicle Applications Scuola di Ingegneria Industriale e dell’Informazione Laurea Magistrale in Ingegneria Meccanica Flywheel energy storage for vehicle applications Ettore Rasca 841979 Supervisor: prof. Francesco Braghin Academic Year 2016-2017 Esprimo il mio ringraziamento a Stefano Sorti per tutto il supporto fornito. Abstract 1 Abstract In recent years, a significant increase in the market share of electric vehicles was observed. Most of these vehicles are meant for private use and are equipped with chemical batteries. Despite the huge improvements made on the capacity of the new generation lithium ion batteries, the long charging time remains a main drawback of this technology and opens the possibility for alternative solutions. The present work describes a preliminary study aimed at investigating the possibility to realize an electric vehicle relying on the flywheel energy storage technology as a primary energy source. First, a numerical and an analytical model of such a system are proposed and evaluated. Next, two sets of optimizations are performed on these models. Through the first optimization set, the optimal geometry for the rotors in the energy storage system is identified. This first process is repeated several times considering different alternatives for the rotors material, maximum rotational speed and basic geometry. Through the second optimization set, the ideal displacement and orientation of the rotors on the vehicle frame, as well as the total number of rotors, are investigated. Finally, three multi-rotor configurations for the energy storage system are proposed and described. The data collected after performing simulations on the dynamics of these systems are then studied. In conclusion, after presenting observations on the feasibility of such a technical solution, a set of future steps for the development of the flywheel energy storage technology for vehicle applications are proposed. Flywheel energy storage 2 Contents Abstract ............................................................................................................................................................. 2 Contents ............................................................................................................................................................ 2 1 Introduction and aims of the work ............................................................................................................ 7 1.1 Energy storing in flywheel-based devices ......................................................................................... 8 1.1.1 Historical overlook ..................................................................................................................... 8 1.1.2 High performance flywheels .................................................................................................... 10 1.1.3 Characteristics of flywheel energy storage devices ................................................................ 10 1.1.4 Kinetical energy storage systems applications ........................................................................ 12 1.2 Vehicle applications ......................................................................................................................... 12 1.2.1 Kinetic energy recovery system ............................................................................................... 13 1.2.2 Oerlikon Gyrobus ..................................................................................................................... 14 1.3 Objectives of the study .................................................................................................................... 15 2 Analytical model of the rotor-frame system ........................................................................................... 17 2.1 Introduction ..................................................................................................................................... 18 2.1.1 Degrees of freedom for the model .......................................................................................... 18 2.1.2 Multibody system .................................................................................................................... 20 2.1.3 Inertial and non-inertial reference frames .............................................................................. 22 2.1.4 Cardan angles and their properties ......................................................................................... 24 2.2 General procedure........................................................................................................................... 26 2.2.1 Motion equation for the two subsystems ............................................................................... 28 2.2.2 Preliminary observations for subsystem coupling .................................................................. 28 2.2.3 Analysis of the rotor motion equations ................................................................................... 29 2.2.4 Preparing the rotor motion equations for coupling ................................................................ 29 2.2.5 Analysis of the frame motion equations ................................................................................. 31 2.2.6 Preparing the frame motion equations for coupling ............................................................... 31 2.2.7 Motion equations coupling ..................................................................................................... 31 2.3 Rotor motion equation .................................................................................................................... 32 2.3.1 Rotor subsystem overlook ....................................................................................................... 32 2.3.2 Lagrange equation components .............................................................................................. 33 2.3.3 Solving the rotor motion equation .......................................................................................... 36 Contents 3 2.3.4 Simulations and results ........................................................................................................... 36 2.4 Preparing the rotor motion equation for coupling ......................................................................... 38 2.4.1 Variable change procedure ..................................................................................................... 38 2.4.2 Rotor subsystem boundary displacements ............................................................................. 43 2.5 Frame motion equation ................................................................................................................... 44 2.5.1 Frame subsystem overlook ...................................................................................................... 44 2.5.2 Lagrange equation components .............................................................................................. 45 2.5.3 Solving the frame motion equation ......................................................................................... 48 2.5.4 Simulations and results ........................................................................................................... 48 2.6 Equations coupling .......................................................................................................................... 48 2.7 Final observations and SimMechanics models ................................................................................ 50 3 Single rotor optimization ......................................................................................................................... 55 3.1 SimMechanics models ..................................................................................................................... 56 3.2 Analysis of the problem ................................................................................................................... 56 3.2.1 General variables of the optimization ..................................................................................... 56 3.2.2 System models for the optimization ....................................................................................... 57 3.2.3 System forcing ......................................................................................................................... 59 3.2.4 Limits of the optimization field ................................................................................................ 59 3.2.5 Additional constrains of the optimization ............................................................................... 60 3.2.6 Elementary cost functions ....................................................................................................... 61 3.3 Definition of the optimization procedure for the rotor geometry .................................................. 62 3.3.1 Preliminary evaluation 1 .......................................................................................................... 63 3.3.2 Preliminary evaluation 2 .......................................................................................................... 65 3.3.3 Preliminary evaluation 3 .......................................................................................................... 66 3.3.4 Introduction to the rotor geometry optimization ................................................................... 69 3.3.5 The selected optimization
Recommended publications
  • The Electromechanical Battery
    12 13 A New Look at an Old Idea TheThe ElectromechanicalElectromechanical BatteryBattery Laboratory researchers PINNING at 60,000 revolutions “charged” by spinning its rotor to lead–acid battery. Power densities can S per minute, a cylinder about the maximum speed with an integral soar to 5 to 10 kW/kg, several times size of a large coffee can may hold the generator/motor in its “motor mode.” that of a typical gasoline-powered are integrating innovative key to the long-awaited realization of It is “discharged” by slowing the rotor engine and up to 100 times that of practical electric cars and trucks. The of the same generator/motor to draw out typical electrochemical batteries. And materials and designs to graphite, fiber-composite cylinder the kinetically stored energy in its because of its simple design and belongs to a new breed of LLNL- “generator mode.” The advanced design advanced materials, an EMB is developed, flywheel-based, energy features a special array of permanent expected to run without maintenance develop highly efficient storage systems with new materials, magnets (called a Halbach array) in the for at least a decade. new technologies, and new thinking generator–motor to perform these Livermore researchers envision about the most efficient ways to charging and discharging functions several small, maintenance-free and cost-effective energy store energy. efficiently. modules, each with a kilowatt-hour of Called an electromechanical battery The EMB offers significant energy storage, for use in electric or (EMB) by its Laboratory creators, the advantages over other kinds of energy hybrid-electric vehicles. See the storage.
    [Show full text]
  • Flywheel Energy Storage for Automotive Applications
    Energies 2015, 8, 10636-10663; doi:10.3390/en81010636 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Review Flywheel Energy Storage for Automotive Applications Magnus Hedlund *, Johan Lundin, Juan de Santiago, Johan Abrahamsson and Hans Bernhoff Division for Electricity, Uppsala University, Lägerhyddsvägen 1, Uppsala 752 37, Sweden; E-Mails: [email protected] (J.L.); [email protected] (J.S.); [email protected] (J.A.); [email protected] (H.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-18-471-5804. Academic Editor: Joeri Van Mierlo Received: 25 July 2015 / Accepted: 12 September 2015 / Published: 25 September 2015 Abstract: A review of flywheel energy storage technology was made, with a special focus on the progress in automotive applications. We found that there are at least 26 university research groups and 27 companies contributing to flywheel technology development. Flywheels are seen to excel in high-power applications, placing them closer in functionality to supercapacitors than to batteries. Examples of flywheels optimized for vehicular applications were found with a specific power of 5.5 kW/kg and a specific energy of 3.5 Wh/kg. Another flywheel system had 3.15 kW/kg and 6.4 Wh/kg, which can be compared to a state-of-the-art supercapacitor vehicular system with 1.7 kW/kg and 2.3 Wh/kg, respectively. Flywheel energy storage is reaching maturity, with 500 flywheel power buffer systems being deployed for London buses (resulting in fuel savings of over 20%), 400 flywheels in operation for grid frequency regulation and many hundreds more installed for uninterruptible power supply (UPS) applications.
    [Show full text]
  • Green BRT in Tehran
    International Journal of Environmental Science P. Parvizi et al. http://iaras.org/iaras/journals/ijes Green BRT in Tehran P. Parvizi, S. Hajeb, P. Parvizi Abstract— Population growth and urban development in recent A Tehran public transport network composed of two layers years, has created many problems in the transport field of major ,Subway and BRT networks .Subway as the first layer cities. Increased traffic, noise and air pollution in large cities is the including 5 lines and BRT network including 10 high-speed phenomenon of negative consequences. Creation Appropriate lines as the second layer are defined in the Tehran integrated infrastructure to facilitate the use of the public transport system is the best option for confronting with this problem. With the advent BRT public transport [1]. system and dedicated public transport corridor for the public In Iran, the BRT system has been implemented in Tehran. transport system, speed and volume displacement increases and thus Tehran Bus Rapid Transit has been officially inaugurated by reducing private car traffic and pollution levels have declined. This Tehran’s mayor in order to facilitate the motor traffic in paper presents the design of bus and bus stations equipped with solar Tehran on January 14, 2008. Tehran has five BRT lines. The cells, with ability isolated and connect power supplies between bus first stretch of Tehran BRT corridor from the Azadi square in and stations to elimination of fossil fuel in the path of Tehran BRT to increase efficiency and reduce environmental lead contamination. In Tehran-pars has been operational since Jan (2008) [2].
    [Show full text]
  • (Chapter Title on Righthand Pages) 1
    Innovative Perspective of Transport and Logistics BURNEWICZ Jan; BORKOWSKI Przemysław INNOVATIVE PERSPECTIVE OF TRANSPORT AND LOGISTICS BURNEWICZ Jan; University of Gdansk BORKOWSKI Przemyslaw, University of Gdansk ABSTRACT The need to create and implement innovation in transport results from the continuing low efficiency of many of its technical elements and processes, leading to unsatisfactory levels of productivity, capacity and reliability, waste of time and resources, and higher operating costs. The need for innovation exists both within entire transport systems (of a country or city) as well as within individual modes or forms of transport. Transport innovation processes are the main driving force behind technological progress and increase in service productivity, but they are accompanied by high risk. An innovation-oriented transport company takes a risk that innovations introduced may become a failure, or rejected by the market, or their cost will be higher than originally planned. To main directions of the innovative development of present transport systems belong: intelligent transport system management, carbon neutral transport solutions, alternative fuels and sources of energy, innovative ideas for reducing transport costs, city logistics ideas, new mobility strategies, liveability solutions. In every branch of transport there exist different conditions for the initiation and spreadings of innovations. Keywords: alternative fuels, disruptive technology, electric cars, innovation, innovation risk, innovative transport, new generation transport infrastructure, transport development, INTRODUCTION The motives for creating innovations are both the creative capabilities of scientific research centres and industry as well as pressure from consumers for a greater higher of products and services, and elimination of faults in things and processes commonly used.
    [Show full text]
  • Lrt's Key Role In
    THE INTERNATIONAL LIGHT RAIL MAGAZINE www.lrta.org www.tautonline.com OCTOBER 2019 NO. 982 LRT’S KEY ROLE IN A ‘bALTIC BIG BANG’ Creating a sustainable gateway to Estonia’s booming capital Hopes revived for Leeds tram network Ottawa opens Confederation LRT line Shanghai doubles Songjiang tramway South Wales Tampere £4.60 The urban rail Re-imagining a revolution begins... post-industrial city 2019 2 October 2019 – London Recognising excellence and innovation in the global light and urban rail sector. Book your place now! SUPPORTED BY ColTram www.lightrailawards.com CONTENTS 369 The official journal of the Light Rail Transit Association OCTOBER 2019 Vol. 82 No. 982 www.tautonline.com EDITORIAL EDITOR – Simon Johnston [email protected] ASSOCIATE EDITOr – Tony Streeter [email protected] WORLDWIDE EDITOR – Michael Taplin 375 [email protected] NewS EDITOr – John Symons [email protected] SenIOR CONTRIBUTOR – Neil Pulling WORLDWIDE CONTRIBUTORS Richard Felski, Ed Havens, Andrew Moglestue, Paul Nicholson, Herbert Pence, Mike Russell, Nikolai Semyonov, Alain Senut, Vic Simons, Witold Urbanowicz, Bill Vigrass, Francis Wagner, Thomas Wagner, Philip Webb, Rick Wilson ampere/Wille Nyyssönen ampere/Wille T PRODUCTION – Lanna Blyth 385 of ity Tel: +44 (0)1733 367604 C [email protected] NEWS 364 neXT-generation: luXembourg 382 DESIGN – Debbie Nolan Ottawa finally opens Confederation LRT line; With the initial tram service established, ADVertiSING Jerusalem win grows CAF by 25%; Shanghai Luxembourg City looks to expansion. COMMERCIAL ManageR – Geoff Butler opens latest Songjiang extension; Phoenix Tel: +44 (0)1733 367610 [email protected] votes for LRT; Bombardier wins in Dresden.
    [Show full text]
  • Technologies Des Transports Transport Des Personnes 2
    Technologies des transports Transport des personnes 2. Modes publics et privés | Modes sur rue CIV6707A Par Pierre-Léo Bourbonnais Référence principale: VUCHIC, Vukan R. Urban Transit Systems and Technology, 2007 Chapitres 2 & 5 à 10 Des extraits du livre VUCHIC, Vukan R. Urban Transit Systems and Technology, © 2007 John Wiley & Sons, Inc. sont insérés dans ce 1 document avec la permission de l’éditeur CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Modes sur rue Modes sur rue Caractéristiques 3 types de lignes Avantages Bus conventionnel ‣ faible coût d’investissement ‣ catégorie C, circulation mixte/partagée ‣ peuvent rouler sur pratiquement n’importe quelle rue ‣ adéquat pour service local ‣ flexibilité (changements de routes, d’arrêts, detours...) ‣ non compétitif avec l’auto ‣ implantation rapide ‣ Amérique du Nord | souvent perception à ‣ les véhicules les plus économiques entre l’avant seulement et arrêts à chaque 15 et 60 passagers par unité intersection ‣ peuvent être améliorés par des ‣ embarquements plus lents traitements préférentiels ‣ vitesses commerciales ↓ Avantage ou inconvénient selon le contexte BHNS / BTS (Bus à haut niveau de service) ‣ faible influence sur l’aménagement ‣ catégorie C améliorée urbain ‣ optimisation et intégration des lignes Désavantages ‣ traitement préférentiel (voies réservées...) ‣ sensibles à la congestion (catégorie C) ‣ applicable presque partout ‣ faible identité (image) fréquente confusion SRB / BRT (Service rapide par bus) ‣ capacités limitées ‣ catégorie
    [Show full text]
  • City Research Online
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by City Research Online Dhand, A. & Pullen, K. R. (2015). Review of battery electric vehicle propulsion systems incorporating flywheel energy storage. International Journal of Automotive Technology, 16(3), pp. 487-500. doi: 10.1007/s12239-015-0051-0 City Research Online Original citation: Dhand, A. & Pullen, K. R. (2015). Review of battery electric vehicle propulsion systems incorporating flywheel energy storage. International Journal of Automotive Technology, 16(3), pp. 487-500. doi: 10.1007/s12239-015-0051-0 Permanent City Research Online URL: http://openaccess.city.ac.uk/8253/ Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages. Versions of research The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper. Enquiries If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at [email protected]. Review of Battery Electric Vehicle Propulsion Systems incorporating Flywheel Energy Storage Aditya Dhand, Keith Pullen School of Engineering and Mathematical Sciences City University London London EC1V 0HB, UK Email: [email protected] Abstract The development of battery electric vehicles (BEV) must continue since this can lead us towards a zero emission transport system.
    [Show full text]
  • Bustransport.Pdf
    Bus travel is becoming a popular option for lots of people in our community. Using buses to travel to and from school reduces the number of car journeys. Taking the bus is cheaper, better for the environment and safer for students as the number of vehicles near schools is reduced. The main purpose of this study unit is for students to learn more about our bus transport system. Teachers should assist students to choose activities appropriate to their level and ability. Curriculum links are listed to help teachers track progress. The Taranaki Regional Council website www.trc.govt.nz can be used to download the unit and as a source for research to assist with some of the activities. The main areas covered by the unit are: Key Competencies • Managing self • Using language, symbols and text • Participating and contributing • Relating to others • Thinking Essential Skills • Communication • Numeracy • Information gathering • Problem solving • Self-management and competitive • Physical • Work and study Values • Excellence • Innovation • Equity • Community and participation • Respect 1 Activity 1: Background information Social Sciences – Identity, Culture and Organisation Key Competencies: Values: • Using language, symbols and text • Excellence • Relating to others • Innovation • Thinking • Equity • Community and participation Essential Skills: • Respect • Work and study • Information Questions: 1. Name the towns in Taranaki where bus services are available. 2. Explain the difference between a chartered bus, a school bus and one that operates regularly on a specific run. 3. What are the benefits to the community of an efficient public bus service? 4. Why is it important that bus services are reliable and run to time? 5.
    [Show full text]
  • City Research Online
    Dhand, Aditya (2015). Design of electric vehicle propulsion system incorporating flywheel energy storage. (Unpublished Doctoral thesis, City University London) City Research Online Original citation: Dhand, Aditya (2015). Design of electric vehicle propulsion system incorporating flywheel energy storage. (Unpublished Doctoral thesis, City University London) Permanent City Research Online URL: http://openaccess.city.ac.uk/13699/ Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live archive. URLs from City Research Online may be freely distributed and linked to from other web pages. Versions of research The version in City Research Online may differ from the final published version. Users are advised to check the Permanent City Research Online URL above for the status of the paper. Enquiries If you have any enquiries about any aspect of City Research Online, or if you wish to make contact with the author(s) of this paper, please email the team at [email protected]. School of Engineering and Mathematical Sciences Design of electric vehicle propulsion system incorporating flywheel energy storage PhD Thesis Aditya Dhand Submitted to City University London in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD) May 2015 Abstract Battery electric vehicles are crucial for moving towards a zero emission transport system. Though battery electric vehicle technology has been rapidly improving, it is still not competitive to the conventional vehicles in terms of both cost and performance.
    [Show full text]
  • Technologies Des Transports Transport Des Personnes Résumé | Les Systèmes De Transport CIV6707A ! Par Pierre-Léo Bourbonnais Référence Principale: VUCHIC, Vukan R
    Technologies des transports Transport des personnes Résumé | Les systèmes de transport CIV6707A ! Par Pierre-Léo Bourbonnais Référence principale: VUCHIC, Vukan R. Urban Transit Systems and Technology, 2007 Chapitres 2 & 5 à 10 Des extraits du livre VUCHIC, Vukan R. Urban Transit Systems and Technology,1 © 2007 John Wiley & Sons, Inc. sont insérés dans ce document avec la permission de l’éditeur CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Contenu de la présentation • Priorités de passage et • Modes sur rail • Comment les évaluer? vitesses • Tramway (Streetcar) • Courtes distances • Évolution optimale d’une • SLR • Téléphériques ville • SRR / Métros • Bateaux et traversiers • Modes sur rue • Trains régionaux / Trains • Modes parallèles • Minibus de banlieue • Location de voitures et • Midibus • Tram-train covoiturage • Bus régulier • Véhicules et design • Semi-public • Bus articulé et bi-articulé • Impacts • Autopartage • Bus à impériale • Coûts • Taxi • Trolleybus • Tendance et rôles futurs • Transport à la demande • Bus guidé • TGV • Rôle des modes parallèles • Bus interurbain • Modes spécialisés • Choix des technologies et • Modes de propulsion AGT des modes et • comparaisons • Design • APM • Traitements préférentiels • Monorail • Tableau récapitulatif • SRB PRT • Conclusions et • perspectives 2 CIV6707A Technologies des transports • Transport des personnes | Modes publics et privés • Classification des systèmes de transport Systèmes de transport collectif
    [Show full text]
  • A Practical, 70-90% Electric Bus Without Overhead Wires
    EVS24 Stavanger, Norway, May 13-16, 2009 A Practical, 70-90% Electric Bus without Overhead Wires Roger Bedell Opbrid Transporte Sostenible S.L., Calle Tibero 7, Cenes de la Vega, Granada, Spain, +34 626-855-662 [email protected] Abstract Lithium titanate (Li4Ti5O12 or LTO) batteries have two properties that enable a new type of urban bus system: rapid charging and long cycle life. By placing a rapid charger at both ends of a bus route, LTO equipped hybrid buses can run most of the time (70-90%) in electric-only mode. A rapid charger fills the batteries each time a driver reaches the end of route. Existing hybrid diesel-electric buses with backup diesel generators are used to prevent stranding. This Rapid Charge Hybrid (RCH) approach requires virtually no changes to existing hybrid bus designs or fleet behavior, and requires little additional infrastructure. Keywords: bus, fast charge, public transport, series HEV, lithium battery 1 Introduction documented advantages compared to diesel bus fleets. These include fewer public health impacts, Recent advances in battery technology are less noise, less pollution, and improved enabling novel solutions to existing problems. A sustainability.[1] rapid charge hybrid (RCH) system which allows urban transit buses to substitute electricity for Combining the flexibility of diesel buses with the diesel in a practical manner using existing advantages of electric buses has long been an technologies with minimal changes to existing elusive goal with several attempts having been fleets is described here. If the electricity comes made in the past[2]. However, with the new nano from renewable sources such as wind and solar, technology lithium titanate (LTO) batteries, this then RCH is a sustainable transit system.
    [Show full text]
  • Energiestrategie 2050 Im Öffentlichen Verkehr (Esöv2050)
    Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK) Bundesamt für Verkehr BAV Programm Energiestrategie 2050 im öffentlichen Verkehr (ESöV2050) Energiestrategie 2050 im öffentlichen Verkehr Untersuchung des Potenzials alternativer Busantriebssysteme Schlussbericht Mathieu Horsky, Haute-Ecole ARC Rue de la Serre 7 / 2610 St-Imier, [email protected], www.he-arc.ch Thierry Robert-Nicoud, Haute-Ecole ARC Rue de la Serre 7 / 2610 St-Imier, [email protected], www.he-arc.ch Julie Barbey Horvath, Haute-Ecole d’Ingénierie et de Gestion, Kanton Waadt Route de Cheseaux 1/ 1401 Yverdon-les-Bains, [email protected], www.heig-vd.ch Yves Delacrétaz, Haute-Ecole d’Ingénierie et de Gestion, Kanton Waadt Route de Cheseaux 1 / 1401 Yverdon-les-Bains, [email protected], www.heig-vd.ch Luc Bossoney, Haute-Ecole d’Ingénierie et de Gestion, Kanton Waadt Route de Cheseaux 1 / 1401 Yverdon-les-Bains, [email protected], www.heig-vd.ch Begleitgruppe Tristan Chevroulet, Bundesamt für Verkehr (BAV) Daniel Schaller, Planair SA Stefan Schnell, Bundesamt für Verkehr (BAV) Walter Josi, Bundesamt für Verkehr (BAV) Interviewte Personen Thierry Wagenknecht, Transports Publics Genevois (TPG) Valérie Bourquard, Transports Publics de la Région Lausannoise (TL) Laurent Mudry, Transports Publics de la Région Lausannoise (TL) Eveline Wüest, PostAuto Urs Schläpfer, PostAuto Marcus Jung, Städtische Verkehrsbetriebe Bern (Bernmobil) Roman Zürcher, Regionalverkehr Bern‐Solothurn AG (RBS) Laura Andres, Freiburgische Verkehrsbetriebe (TPF) Marc Oggier, Basler Verkehrsbetriebe (BVB) Impressum Herausgeber: Bundesamt für Verkehr BAV Programm: Energiestrategie 2050 im öffentlichen Verkehr (ESöV 2050) CH‐3003 Bern Programmleitung Tristan Chevroulet, BAV Projektnummer: P‐113 Quelle: in Deutsch und in Französisch im Internet abrufbar unter der Adresse www.bav.admin.ch/energie2050 Für den Inhalt und die Schlussfolgerungen dieses Berichts ist/sind nur der Autor/die Autoren verantwortlich.
    [Show full text]