Flywheel Energy Storage for Vehicle Applications
Total Page:16
File Type:pdf, Size:1020Kb
Scuola di Ingegneria Industriale e dell’Informazione Laurea Magistrale in Ingegneria Meccanica Flywheel energy storage for vehicle applications Ettore Rasca 841979 Supervisor: prof. Francesco Braghin Academic Year 2016-2017 Esprimo il mio ringraziamento a Stefano Sorti per tutto il supporto fornito. Abstract 1 Abstract In recent years, a significant increase in the market share of electric vehicles was observed. Most of these vehicles are meant for private use and are equipped with chemical batteries. Despite the huge improvements made on the capacity of the new generation lithium ion batteries, the long charging time remains a main drawback of this technology and opens the possibility for alternative solutions. The present work describes a preliminary study aimed at investigating the possibility to realize an electric vehicle relying on the flywheel energy storage technology as a primary energy source. First, a numerical and an analytical model of such a system are proposed and evaluated. Next, two sets of optimizations are performed on these models. Through the first optimization set, the optimal geometry for the rotors in the energy storage system is identified. This first process is repeated several times considering different alternatives for the rotors material, maximum rotational speed and basic geometry. Through the second optimization set, the ideal displacement and orientation of the rotors on the vehicle frame, as well as the total number of rotors, are investigated. Finally, three multi-rotor configurations for the energy storage system are proposed and described. The data collected after performing simulations on the dynamics of these systems are then studied. In conclusion, after presenting observations on the feasibility of such a technical solution, a set of future steps for the development of the flywheel energy storage technology for vehicle applications are proposed. Flywheel energy storage 2 Contents Abstract ............................................................................................................................................................. 2 Contents ............................................................................................................................................................ 2 1 Introduction and aims of the work ............................................................................................................ 7 1.1 Energy storing in flywheel-based devices ......................................................................................... 8 1.1.1 Historical overlook ..................................................................................................................... 8 1.1.2 High performance flywheels .................................................................................................... 10 1.1.3 Characteristics of flywheel energy storage devices ................................................................ 10 1.1.4 Kinetical energy storage systems applications ........................................................................ 12 1.2 Vehicle applications ......................................................................................................................... 12 1.2.1 Kinetic energy recovery system ............................................................................................... 13 1.2.2 Oerlikon Gyrobus ..................................................................................................................... 14 1.3 Objectives of the study .................................................................................................................... 15 2 Analytical model of the rotor-frame system ........................................................................................... 17 2.1 Introduction ..................................................................................................................................... 18 2.1.1 Degrees of freedom for the model .......................................................................................... 18 2.1.2 Multibody system .................................................................................................................... 20 2.1.3 Inertial and non-inertial reference frames .............................................................................. 22 2.1.4 Cardan angles and their properties ......................................................................................... 24 2.2 General procedure........................................................................................................................... 26 2.2.1 Motion equation for the two subsystems ............................................................................... 28 2.2.2 Preliminary observations for subsystem coupling .................................................................. 28 2.2.3 Analysis of the rotor motion equations ................................................................................... 29 2.2.4 Preparing the rotor motion equations for coupling ................................................................ 29 2.2.5 Analysis of the frame motion equations ................................................................................. 31 2.2.6 Preparing the frame motion equations for coupling ............................................................... 31 2.2.7 Motion equations coupling ..................................................................................................... 31 2.3 Rotor motion equation .................................................................................................................... 32 2.3.1 Rotor subsystem overlook ....................................................................................................... 32 2.3.2 Lagrange equation components .............................................................................................. 33 2.3.3 Solving the rotor motion equation .......................................................................................... 36 Contents 3 2.3.4 Simulations and results ........................................................................................................... 36 2.4 Preparing the rotor motion equation for coupling ......................................................................... 38 2.4.1 Variable change procedure ..................................................................................................... 38 2.4.2 Rotor subsystem boundary displacements ............................................................................. 43 2.5 Frame motion equation ................................................................................................................... 44 2.5.1 Frame subsystem overlook ...................................................................................................... 44 2.5.2 Lagrange equation components .............................................................................................. 45 2.5.3 Solving the frame motion equation ......................................................................................... 48 2.5.4 Simulations and results ........................................................................................................... 48 2.6 Equations coupling .......................................................................................................................... 48 2.7 Final observations and SimMechanics models ................................................................................ 50 3 Single rotor optimization ......................................................................................................................... 55 3.1 SimMechanics models ..................................................................................................................... 56 3.2 Analysis of the problem ................................................................................................................... 56 3.2.1 General variables of the optimization ..................................................................................... 56 3.2.2 System models for the optimization ....................................................................................... 57 3.2.3 System forcing ......................................................................................................................... 59 3.2.4 Limits of the optimization field ................................................................................................ 59 3.2.5 Additional constrains of the optimization ............................................................................... 60 3.2.6 Elementary cost functions ....................................................................................................... 61 3.3 Definition of the optimization procedure for the rotor geometry .................................................. 62 3.3.1 Preliminary evaluation 1 .......................................................................................................... 63 3.3.2 Preliminary evaluation 2 .......................................................................................................... 65 3.3.3 Preliminary evaluation 3 .......................................................................................................... 66 3.3.4 Introduction to the rotor geometry optimization ................................................................... 69 3.3.5 The selected optimization